Distributional evenness: Difference between revisions

Hkm (talk | contribs)
No edit summary
No edit summary
 
Line 5: Line 5:
Let ''r'' ≥ 2 and let <math>S: \mathbb{Z}\to\mathbb{R}</math> be an ''r''-ary [[periodic scale]] with length ''n'' (i.e. ''S''(''kn'') = ''kP'' where ''P'' is the period), with step sizes ''x''<sub>1</sub>, ..., ''x''<sub>''r''</sub>, i.e. such that <math>\Delta S(i) := S(i+1)-S(i)\in \{x_1, ..., x_r\} \forall i \in \mathbb{Z}.</math> The scale ''S'' is ''distributionally even'' if for every ''i'' ∈ {1, ..., ''r''},  (Δ''S'')<sup>&minus;1</sup>(''x''<sub>''i''</sub>) mod ''n'' is a [[maximally even]] subset of <math>\mathbb{Z}/n.</math> (For the original definition of DE, simply set ''r'' = 2.)
Let ''r'' ≥ 2 and let <math>S: \mathbb{Z}\to\mathbb{R}</math> be an ''r''-ary [[periodic scale]] with length ''n'' (i.e. ''S''(''kn'') = ''kP'' where ''P'' is the period), with step sizes ''x''<sub>1</sub>, ..., ''x''<sub>''r''</sub>, i.e. such that <math>\Delta S(i) := S(i+1)-S(i)\in \{x_1, ..., x_r\} \forall i \in \mathbb{Z}.</math> The scale ''S'' is ''distributionally even'' if for every ''i'' ∈ {1, ..., ''r''},  (Δ''S'')<sup>&minus;1</sup>(''x''<sub>''i''</sub>) mod ''n'' is a [[maximally even]] subset of <math>\mathbb{Z}/n.</math> (For the original definition of DE, simply set ''r'' = 2.)


Distributionally even scales over ''r'' letters are a subset of [[product word]]s of ''r'' &minus; 1 MOS scales, which can be thought of as temperament-agnostic [[Fokker block]]s. All DE scales in this extended sense are also [[billiard scales]].<ref>Sano, S., Miyoshi, N., & Kataoka, R. (2004). m-Balanced words: A generalization of balanced words. Theoretical computer science, 314(1-2), 97-120.</ref>
Distributionally even scales over ''r'' step types are a subset of [[product word|product]]s of ''r'' &minus; 1 MOS scales, which can be thought of as temperament-agnostic [[Fokker block]]s. All DE scales in this extended sense are also [[billiard scales]].<ref>Sano, S., Miyoshi, N., & Kataoka, R. (2004). m-Balanced words: A generalization of balanced words. Theoretical computer science, 314(1-2), 97-120.</ref>


== List of distributionally even circular words ==
== List of distributionally even scale patterns ==
Below is the complete list of distributionally even circular words up to 10 letters, up to equivalence under reassignment of letters.
Below is the complete list of distributionally even scale patterns up to 10 kinds of steps, without information on their relative sizes (so that these can each be seen as collections of [[sister]] scales)


=== 1 Letter ===
=== 1 step type ===
1 letter, unary: 0
1 step type, unary: 0


=== 2 Letters ===
=== 2 step types ===
2 letters, unary: 00
2 step types, unary: 00


2 letters, binary: 01
2 step types, binary: 01


=== 3 Letters ===
=== 3 step types ===
3 letters, unary: 000
3 step types, unary: 000


3 letters, binary: 001
3 step types, binary: 001


3 letters, ternary: 012
3 step types, ternary: 012


=== 4 Letters ===
=== 4 step types ===
4 letters, unary: 0000
4 step types, unary: 0000


4 letters, binary: 0001, 0101
4 step types, binary: 0001, 0101


4 letters, ternary: 0102
4 step types, ternary: 0102


4 letters, quaternary: 0123
4 step types, quaternary: 0123


=== 5 Letters ===
=== 5 step types ===
5 letters, unary: 00000
5 step types, unary: 00000


5 letters, binary: 00001, 00101
5 step types, binary: 00001, 00101


5 letters, ternary: 00102, 01012
5 step types, ternary: 00102, 01012


5 letters, quaternary: 01023
5 step types, quaternary: 01023


5 letters, quinary: 01234
5 step types, quinary: 01234


=== 6 Letters ===
=== 6 step types ===
6 letters, unary: 000000
6 step types, unary: 000000


6 letters, binary: 000001, 001001, 010101
6 step types, binary: 000001, 001001, 010101


6 letters, ternary: 001002, 012012
6 step types, ternary: 001002, 012012


6 letters, quaternary: 010203, 012013
6 step types, quaternary: 010203, 012013


6 letters, quinary: 012034
6 step types, quinary: 012034


6 letters, 6-ary: 012345
6 step types, 6-ary: 012345


=== 7 Letters ===
=== 7 step types ===
7 letters, unary: 0000000
7 step types, unary: 0000000


7 letters, binary: 0000001, 0001001, 0010101
7 step types, binary: 0000001, 0001001, 0010101


7 letters, ternary: 0001002, 0010201, 0101012, 0102012
7 step types, ternary: 0001002, 0010201, 0101012, 0102012


7 letters, quaternary: 0010203, 0102013, 0102032, 0120123
7 step types, quaternary: 0010203, 0102013, 0102032, 0120123


7 letters, quinary: 0102034, 0120134, 0120314
7 step types, quinary: 0102034, 0120134, 0120314


7 letters, 6-ary: 0120345
7 step types, 6-ary: 0120345


7 letters, 7-ary: 0123456
7 step types, 7-ary: 0123456


=== 8 Letters ===
=== 8 step types ===
8 letters, unary: 00000000
8 step types, unary: 00000000


8 letters, binary: 00000001, 00010001, 00100101, 01010101
8 step types, binary: 00000001, 00010001, 00100101, 01010101


8 letters, ternary: 00010002, 01020102, 01021012
8 step types, ternary: 00010002, 01020102, 01021012


8 letters, quaternary: 00100203, 01012013, 01020103, 01021013, 01230123
8 step types, quaternary: 00100203, 01012013, 01020103, 01021013, 01230123


8 letters, quinary: 01020304, 01023042, 01230124
8 step types, quinary: 01020304, 01023042, 01230124


8 letters, 6-ary: 01023045, 01230145, 01230425
8 step types, 6-ary: 01023045, 01230145, 01230425


8 letters, 7-ary: 01230456
8 step types, 7-ary: 01230456


8 letters, 8-ary: 01234567
8 step types, 8-ary: 01234567


=== 9 Letters ===
=== 9 step types ===
9 letters, unary: 000000000
9 step types, unary: 000000000


9 letters, binary: 000000001, 000010001, 001001001, 001010101
9 step types, binary: 000000001, 000010001, 001001001, 001010101


9 letters, ternary: 000010002, 001020102, 010101012, 012012012
9 step types, ternary: 000010002, 001020102, 010101012, 012012012


9 letters, quaternary: 001002003, 001020103, 001020302, 010201023, 010201032, 012031023
9 step types, quaternary: 001002003, 001020103, 001020302, 010201023, 010201032, 012031023


9 letters, quinary: 001020304, 010201034, 010201304, 010203042, 012013014, 012031024, 012301234
9 step types, quinary: 001020304, 010201034, 010201304, 010203042, 012013014, 012031024, 012301234


9 letters, 6-ary: 010203045, 012031045, 012301245, 012301425, 012301435, 012304135
9 step types, 6-ary: 010203045, 012031045, 012301245, 012301425, 012301435, 012304135


9 letters, 7-ary: 012034056, 012301456, 012304156, 012304256
9 step types, 7-ary: 012034056, 012301456, 012304156, 012304256


9 letters, 8-ary: 012304567
9 step types, 8-ary: 012304567


9 letters, 9-ary: 012345678
9 step types, 9-ary: 012345678


=== 10 Letters ===
=== 10 step types ===
10 letters, unary: 0000000000
10 step types, unary: 0000000000


10 letters, binary: 0000000001, 0000100001, 0001001001, 0010100101, 0101010101
10 step types, binary: 0000000001, 0000100001, 0001001001, 0010100101, 0101010101


10 letters, ternary: 0000100002, 0010200102, 0101201012, 0102102012
10 step types, ternary: 0000100002, 0010200102, 0101201012, 0102102012


10 letters, quaternary: 0001002003, 0010200103, 0010200302, 0101201013, 0102301023, 0120120123, 0120310213
10 step types, quaternary: 0001002003, 0010200103, 0010200302, 0101201013, 0102301023, 0120120123, 0120310213


10 letters, quinary: 0010200304, 0102103014, 0102301024, 0102301043, 0102304023, 0120130214, 0120310214, 0120310413, 0123401234
10 step types, quinary: 0010200304, 0102103014, 0102301024, 0102301043, 0102304023, 0120130214, 0120310214, 0120310413, 0123401234


10 letters, 6-ary: 0102030405, 0102301045, 0102304025, 0102304053, 0120130145, 0120130415, 0120310415, 0120340253, 0123401235
10 step types, 6-ary: 0102030405, 0102301045, 0102304025, 0102304053, 0120130145, 0120130415, 0120310415, 0120340253, 0123401235


10 letters, 7-ary: 0102304056, 0120340256, 0120340563, 0123401256, 0123401536
10 step types, 7-ary: 0102304056, 0120340256, 0120340563, 0123401256, 0123401536


10 letters, 8-ary: 0120340567, 0123401567, 0123405267
10 step types, 8-ary: 0120340567, 0123401567, 0123405267


10 letters, 9-ary: 0123405678
10 step types, 9-ary: 0123405678


10 letters, 10-ary: 0123456789
10 step types, 10-ary: 0123456789


== Related topics ==
== Related topics ==