Hemifamity family: Difference between revisions

BudjarnLambeth (talk | contribs)
m {{Technical data page}}<br><br>
 
(8 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Technical data page}}<br><br>
{{Technical data page}}
The '''hemifamity family''' of [[rank-3 temperament|rank-3]] [[temperament]]s [[tempering out|tempers out]] [[5120/5103]] = {{monzo| 10 -6 1 -1 }}. These temperaments divide an exact or approximate septimal quartertone, [[36/35]] into two equal steps, each representing [[81/80]]~[[64/63]], the syntonic comma or the septimal comma. Therefore, classical and septimal intervals are found by the same [[chain of fifths]] inflected by the same comma to the opposite sides. In addition we may identify [[10/7]] by the augmented fourth (C-F#) and [[50/49]] by the [[Pythagorean comma]].  
The '''hemifamity family''' of [[rank-3 temperament|rank-3]] [[regular temperament|temperaments]] [[tempering out|tempers out]] [[5120/5103]] ({{monzo|legend=1| 10 -6 1 -1 }}), the hemifamity comma. These temperaments divide an exact or approximate septimal quartertone, [[36/35]] into two equal steps, each representing [[81/80]]~[[64/63]], the syntonic comma or the septimal comma. Therefore, classical and septimal intervals are found by the same [[chain of fifths]] inflected by the same comma to the opposite sides. In addition we may identify [[10/7]] by the augmented fourth (C–F#) and [[50/49]] by the [[Pythagorean comma]]. Hemifamity can be compared to [[garibaldi]], with garibaldi expanding the interpretations of 81/80~64/63 to include the Pythagorean comma (collapsing to a rank-2 structure), or alternatively, hemifamity can be seen as liberating the syntonic-septimal comma from garibaldi's chain of fifths.  


It is therefore very handy to adopt an additional module of accidentals such as arrows to represent the syntonic~septimal comma, in which case we have [[5/4]] at the down major third (C-vE) and [[7/4]] at the down minor seventh (C-vBb).  
It is therefore very handy to adopt an additional module of accidentals such as arrows to represent the syntonic~septimal comma, in which case we have [[5/4]] at the down major third (C–vE) and [[7/4]] at the down minor seventh (C–vBb).  


== Hemifamity ==
== Hemifamity ==
Line 19: Line 19:
: Angle (3/2, 10/9) = 82.112 degrees
: Angle (3/2, 10/9) = 82.112 degrees


[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~3/2 = 702.7918, ~5/4 = 386.0144
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.0000, ~3/2 = 702.7918, ~5/4 = 386.0144


[[Minimax tuning]]: c = 5120/5103
[[Minimax tuning]]: c = 5120/5103
* [[7-odd-limit]]: 3 and 7 1/7c sharp, 5 just
* [[7-odd-limit]]: 3 and 7 1/7c sharp, 5 just
: {{monzo list| 1 0 0 0 | 10/7 1/7 1/7 -1/7 | 0 0 1 0 | 10/7 -6/7 1/7 6/7 }}
: {{monzo list| 1 0 0 0 | 10/7 1/7 1/7 -1/7 | 0 0 1 0 | 10/7 -6/7 1/7 6/7 }}
: [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.5.7/3
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5.7/3
* [[9-odd-limit]]: 3 1/8c sharp, 5 just, 7 1/4c sharp
* [[9-odd-limit]]: 3 1/8c sharp, 5 just, 7 1/4c sharp
: {{monzo list| 1 0 0 0 | 5/4 1/4 1/8 -1/8 | 0 0 1 0 | 5/2 -3/2 1/4 3/4 }}
: {{monzo list| 1 0 0 0 | 5/4 1/4 1/8 -1/8 | 0 0 1 0 | 5/2 -3/2 1/4 3/4 }}
: [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.5.9/7
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5.9/7


{{Optimal ET sequence|legend=1| 41, 53, 87, 94, 99, 239, 251, 292, 391, 881bd, 1272bcdd }}
{{Optimal ET sequence|legend=1| 41, 53, 87, 94, 99, 239, 251, 292, 391, 881bd, 1272bcdd }}


[[Badness]]: 0.153 × 10<sup>-3</sup>
[[Badness]] (Smith): 0.153 × 10<sup>-3</sup>


[[Projection pair]]s: 7 5120/729
[[Projection pair]]s: 7 5120/729
Line 41: Line 41:
=== Overview to extensions ===
=== Overview to extensions ===
==== 11- and 13-limit extensions ====
==== 11- and 13-limit extensions ====
Strong extensions of hemifamity are [[#Pele|pele]], [[#Laka|laka]], [[#Akea|akea]], and [[#Lono|lono]]. The rest are weak extensions. Using the arrow to represent the syntonic~septimal comma, pele finds the [[11/8]] at the down diminished fifth (C-vGb); laka, up augmented third (C-^E#); akea, double-up fourth (C-^^F); lono, triple-down augmented fourth (C-v<sup>3</sup>F#). All these extensions follow the trend of tuning the fifth a little sharp. Thus a successful mapping of 13 can be found by fixing the [[13/11]] at the minor third, tempering out [[352/351]], [[847/845]], and [[2080/2079]].  
Strong extensions of hemifamity are [[#Pele|pele]], [[#Laka|laka]], [[#Akea|akea]], and [[#Lono|lono]]. The rest are weak extensions. Using the arrow to represent the syntonic~septimal comma, pele finds the [[11/8]] at the down diminished fifth (C–vGb); laka, up augmented third (C–^E#); akea, double-up fourth (C–^^F); lono, triple-down augmented fourth (C–v<sup>3</sup>F#). All these extensions follow the trend of tuning the fifth a little sharp. Thus a successful mapping of 13 can be found by fixing the [[13/11]] at the minor third (C–Eb), tempering out [[352/351]], [[847/845]], and [[2080/2079]].  


==== Subgroup extensions ====
==== Subgroup extensions ====
Line 49: Line 49:
{{Main| Counterpyth }}
{{Main| Counterpyth }}


Developed analogous to [[parapyth]], counterpyth is an extension of hemifamity with an even milder fifth, as it finds [[19/15]] at the major third (C-E) and [[19/10]] at the major seventh (C-B). Notice the factorization 5120/5103 = ([[400/399]])([[1216/1215]]). Other important ratios are [[21/19]] at the diminished third (C-Ebb) and [[19/14]] at the augmented third (C-E#).  
Developed analogous to [[parapyth]], counterpyth is an extension of hemifamity with an even milder fifth, as it finds [[19/15]] at the major third (C–E) and [[19/10]] at the major seventh (C–B). Notice the factorization {{nowrap| 5120/5103 {{=}} ([[400/399]])([[1216/1215]]) }}. Other important ratios are [[21/19]] at the diminished third (C–Ebb) and [[19/14]] at the augmented third (C–E#).  


It can be further extended via the mappings of laka or akea, while working less well with pele or lono due to their much sharper fifths.  
It can be further extended via the mappings of laka or akea, while working less well with pele or lono due to their much sharper fifths.  
Line 59: Line 59:
Mapping: {{mapping| 1 0 0 10 -6 | 0 1 0 -6 5 | 0 0 1 1 1 }}
Mapping: {{mapping| 1 0 0 10 -6 | 0 1 0 -6 5 | 0 0 1 1 1 }}


Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 702.6411, ~5/4 = 385.4452
Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.6411, ~5/4 = 385.4452


Optimal ET sequence: {{Optimal ET sequence| 12, 29, 41, 53, 94, 99, 140, 152, 292h, 444dh }}
{{Optimal ET sequence|legend=0| 12, 29, 41, 53, 94, 99, 140, 152, 292h, 444dh }}


Badness: 0.212 × 10<sup>-3</sup>
Badness (Smith): 0.212 × 10<sup>-3</sup>


== Pele ==
== Pele ==
Line 81: Line 81:
: Angle(3/2, 56/55) = 90.4578 degrees
: Angle(3/2, 56/55) = 90.4578 degrees


[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~3/2 = 703.2829, ~5/4 = 386.5647
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.0000, ~3/2 = 703.2829, ~5/4 = 386.5647


[[Minimax tuning]]:  
[[Minimax tuning]]:  
* [[11-odd-limit]]
* [[11-odd-limit]]
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 17/10 0 1/10 0 -1/10 }}, {{monzo| 17/5 -2 6/5 0 -1/5 }}, {{monzo| 16/5 -2 3/5 0 2/5 }}, {{monzo| 17/5 -2 1/5 0 4/5 }}]
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 17/10 0 1/10 0 -1/10 }}, {{monzo| 17/5 -2 6/5 0 -1/5 }}, {{monzo| 16/5 -2 3/5 0 2/5 }}, {{monzo| 17/5 -2 1/5 0 4/5 }}]
: [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.9/5.11/9
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.9/5.11/9


{{Optimal ET sequence|legend=1| 29, 41, 58, 87, 99e, 145, 186e }}
{{Optimal ET sequence|legend=1| 29, 41, 58, 87, 99e, 145, 186e }}


[[Badness]]: 0.648 × 10<sup>-3</sup>
[[Badness]] (Smith): 0.648 × 10<sup>-3</sup>


[[Projection pair]]s: 7 5120/729 11 655360/59049
[[Projection pair]]s: 7 5120/729 11 655360/59049
Line 101: Line 101:
Mapping: {{mapping| 1 0 0 10 17 22 | 0 1 0 -6 -10 -13 | 0 0 1 1 1 1 }}
Mapping: {{mapping| 1 0 0 10 17 22 | 0 1 0 -6 -10 -13 | 0 0 1 1 1 1 }}


Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 703.4398, ~5/4 = 386.8933
Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 703.4398, ~5/4 = 386.8933


Minimax tuning:  
Minimax tuning:  
* 13-odd-limit eigenmonzo (unchanged-interval) basis: 2.9/5.13/9
* 13-odd-limit unchanged-interval (eigenmonzo) basis: 2.9/5.13/9
* 15-odd-limit eigenmonzo (unchanged-interval) basis: 2.5/3.13/9
* 15-odd-limit unchanged-interval (eigenmonzo) basis: 2.5/3.13/9


Optimal ET sequence: {{Optimal ET sequence| 29, 41, 46, 58, 87, 145, 232 }}
{{Optimal ET sequence|legend=0| 29, 41, 46, 58, 87, 145, 232 }}


Badness: 0.703 × 10<sup>-3</sup>
Badness (Smith): 0.703 × 10<sup>-3</sup>


=== 17-limit ===
=== 17-limit ===
Line 118: Line 118:
Mapping: {{mapping| 1 0 0 10 17 22 8 | 0 1 0 -6 -10 -13 -1 | 0 0 1 1 1 1 -1 }}
Mapping: {{mapping| 1 0 0 10 17 22 8 | 0 1 0 -6 -10 -13 -1 | 0 0 1 1 1 1 -1 }}


Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 703.5544, ~5/4 = 387.9654
Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 703.5544, ~5/4 = 387.9654


Optimal ET sequence: {{Optimal ET sequence| 29, 41, 46, 58, 87, 99ef, 145 }}
{{Optimal ET sequence|legend=0| 29, 41, 46, 58, 87, 99ef, 145 }}


Badness: 0.930 × 10<sup>-3</sup>
Badness (Smith): 0.930 × 10<sup>-3</sup>


== Laka ==
== Laka ==
{{Main| Laka }}
{{Main| Laka }}
Laka can be described as the {{nowrap| 41 & 53 & 58 }} temperament, tempering out [[540/539]]. [[Gene Ward Smith]] considered it to be a [[17-limit]] temperament, assigning †442/441 ({{nowrap| 41g & 53 & 58 }}) as the main extension. It should be noted that {{nowrap| 41 & 53g & 58 }} also makes for a possible extension.
<blockquote>
It's the way the numbers fall. The Laka geometry happens to work reasonably well in the 13-limit but not so well in the 17-limit. There isn't one obvious 17-limit extension and none of them are competitive with other 17-limit temperaments.
</blockquote>
—[[Graham Breed]]<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_101682.html#101776 Yahoo! Tuning Group | ''Laka 17-limit minimax planar temperament'']</ref>
It makes most sense as a 2.3.5.7.11.13.19-[[subgroup]] temperament, omitting harmonic 17, as the 19 is accurate and easily available in a 24-tone scale.


[[Subgroup]]: 2.3.5.7.11
[[Subgroup]]: 2.3.5.7.11
Line 133: Line 142:
{{Mapping|legend=1| 1 0 0 10 -18 | 0 1 0 -6 15 | 0 0 1 1 -1 }}
{{Mapping|legend=1| 1 0 0 10 -18 | 0 1 0 -6 15 | 0 0 1 1 -1 }}


[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~3/2 = 702.5133, ~5/4 = 385.5563
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.0000, ~3/2 = 702.5133, ~5/4 = 385.5563


[[Minimax tuning]]
[[Minimax tuning]]
* [[11-odd-limit]]
* [[11-odd-limit]]
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 4/3 0 2/21 -1/21 1/21 }}, {{monzo| 0 0 1 0 0 }}, {{monzo| 2 0 3/7 2/7 -2/7 }}, {{monzo| 2 0 3/7 -5/7 5/7 }}]
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 4/3 0 2/21 -1/21 1/21 }}, {{monzo| 0 0 1 0 0 }}, {{monzo| 2 0 3/7 2/7 -2/7 }}, {{monzo| 2 0 3/7 -5/7 5/7 }}]
: [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.5.11/7
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5.11/7


{{Optimal ET sequence|legend=1| 41, 53, 58, 94, 99e, 152, 497de, 555dee, 707ddee, 859bddee }}
{{Optimal ET sequence|legend=1| 41, 53, 58, 94, 99e, 152, 497de, 555dee, 707ddee, 859bddee }}


[[Badness]]: 0.825 × 10<sup>-3</sup>
[[Badness]] (Smith): 0.825 × 10<sup>-3</sup>


[[Projection pair]]s: 5120/729 11 14348907/1310720
[[Projection pair]]s: 5120/729 11 14348907/1310720
Line 153: Line 162:
Mapping: {{mapping| 1 0 0 10 -18 -13 | 0 1 0 -6 15 12 | 0 0 1 1 -1 -1 }}
Mapping: {{mapping| 1 0 0 10 -18 -13 | 0 1 0 -6 15 12 | 0 0 1 1 -1 -1 }}


Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 702.4078, ~5/4 = 385.5405
Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.4078, ~5/4 = 385.5405


Minimax tuning:  
Minimax tuning:  
* 13- and 15-odd-limit
* 13- and 15-odd-limit
: [{{monzo| 1 0 0 0 0 0 }}, {{monzo| 13/8 -1/2 1/8 0 0 1/8 }}, {{monzo| 13/4 -3 5/4 0 0 1/4 }}, {{monzo| 7/2 0 1/2 0 0 -1/2 }}, {{monzo| 25/8 -9/2 5/8 0 0 13/8 }}, {{monzo| 13/4 -3 1/4 0 0 5/4 }}]
: [{{monzo| 1 0 0 0 0 0 }}, {{monzo| 13/8 -1/2 1/8 0 0 1/8 }}, {{monzo| 13/4 -3 5/4 0 0 1/4 }}, {{monzo| 7/2 0 1/2 0 0 -1/2 }}, {{monzo| 25/8 -9/2 5/8 0 0 13/8 }}, {{monzo| 13/4 -3 1/4 0 0 5/4 }}]
: eigenmonzo (unchanged-interval) basis: 2.11.13/7
: unchanged-interval (eigenmonzo) basis: 2.11.13/7


{{Optimal ET sequence|legend=1| 41, 53, 58, 94, 111, 152f, 415dff }}*
{{Optimal ET sequence|legend=0| 41, 53, 58, 94, 111, 152f, 415dff }}*


<nowiki>*</nowiki> optimal patent val: [[205edo|205]]
<nowiki>*</nowiki> optimal patent val: [[205edo|205]]


Badness: 0.822 × 10<sup>-3</sup>
Badness (Smith): 0.822 × 10<sup>-3</sup>


=== 2.3.5.7.11.13.19 subgroup ===
=== 2.3.5.7.11.13.19 subgroup ===
Line 173: Line 182:
Mapping: {{mapping| 1 0 0 10 -18 -13 -6 | 0 1 0 -6 15 12 5 | 0 0 1 1 -1 -1 1 }}
Mapping: {{mapping| 1 0 0 10 -18 -13 -6 | 0 1 0 -6 15 12 5 | 0 0 1 1 -1 -1 1 }}


Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 702.4062, ~5/4 = 385.5254
Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.4062, ~5/4 = 385.5254


Optimal ET sequence: {{Optimal ET sequence| 41, 53, 58h, 94, 111, 152f, 415dffhh }}*
{{Optimal ET sequence|legend=0| 41, 53, 58h, 94, 111, 152f, 415dffhh }}*


<nowiki>*</nowiki> optimal patent val: [[205edo|205]]
<nowiki>*</nowiki> optimal patent val: [[205edo|205]]


Badness: 0.661 × 10<sup>-3</sup>
Badness (Smith): 0.661 × 10<sup>-3</sup>


=== 17-limit ===
=== 17-limit ===
Line 191: Line 200:
* 17-odd-limit
* 17-odd-limit
: [{{monzo| 1 0 0 0 0 0 0 }}, {{monzo| 13/12 0 0 1/12 1/6 -1/12 0 }}, {{monzo| -7/4 0 0 5/4 3/2 -5/4 0 }}, {{monzo| 7/4 0 0 3/4 1/2 -3/4 0 }}, {{monzo| 0 0 0 0 1 0 0 }}, {{monzo| 7/4 0 0 -1/4 1/2 1/4 0 }}, {{monzo| 35/12 0 0 23/12 5/6 -23/12 0 }}]
: [{{monzo| 1 0 0 0 0 0 0 }}, {{monzo| 13/12 0 0 1/12 1/6 -1/12 0 }}, {{monzo| -7/4 0 0 5/4 3/2 -5/4 0 }}, {{monzo| 7/4 0 0 3/4 1/2 -3/4 0 }}, {{monzo| 0 0 0 0 1 0 0 }}, {{monzo| 7/4 0 0 -1/4 1/2 1/4 0 }}, {{monzo| 35/12 0 0 23/12 5/6 -23/12 0 }}]
: eigenmonzo (unchanged-interval) basis: 2.11.13/7
: unchanged-interval (eigenmonzo) basis: 2.11.13/7


Optimal ET sequence: {{Optimal ET sequence| 58, 94, 111, 152f, 205, 263df }}
{{Optimal ET sequence|legend=0| 58, 94, 111, 152f, 205, 263df }}


Badness: 1.19 × 10<sup>-3</sup>
Badness (Smith): 1.19 × 10<sup>-3</sup>


== Akea ==
== Akea ==
[[File:Lattice Akea.png|thumb|Lattice for 13-limit akea.]]
[[File:Lattice Akea-commatic.png|thumb|Ditto, but rearranged to basis {~2, ~3, ~81/80}.]]
[[Subgroup]]: 2.3.5.7.11
[[Subgroup]]: 2.3.5.7.11


Line 204: Line 216:
{{Mapping|legend=1| 1 0 0 10 -3 | 0 1 0 -6 7 | 0 0 1 1 -2 }}
{{Mapping|legend=1| 1 0 0 10 -3 | 0 1 0 -6 7 | 0 0 1 1 -2 }}


: mapping generators: ~2, ~3, ~5
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.0000, ~3/2 = 702.8909, ~5/4 = 385.3273
 
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~3/2 = 702.8909, ~5/4 = 385.3273


[[Minimax tuning]]:  
[[Minimax tuning]]:  
* [[11-odd-limit]]
* [[11-odd-limit]]
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 5/3 0 1/6 -1/6 0 }}, {{monzo| 26/9 0 13/18 -7/18 -1/3 }}, {{monzo| 26/9 0 -5/18 11/18 -1/3 }}, {{monzo| 26/9 0 -5/18 -7/18 2/3 }}]
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 5/3 0 1/6 -1/6 0 }}, {{monzo| 26/9 0 13/18 -7/18 -1/3 }}, {{monzo| 26/9 0 -5/18 11/18 -1/3 }}, {{monzo| 26/9 0 -5/18 -7/18 2/3 }}]
: [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.7/5.11/5
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.7/5.11/5


{{Optimal ET sequence|legend=1| 34, 41, 53, 87, 140, 181, 321 }}
{{Optimal ET sequence|legend=1| 34, 41, 53, 87, 140, 181, 321 }}


[[Badness]]: 0.998 × 10<sup>-3</sup>
[[Badness]] (Smith): 0.998 × 10<sup>-3</sup>


=== 13-limit ===
=== 13-limit ===
Line 230: Line 240:
Mapping to lattice: [{{val| 0 1 3 -3 1 -2 }}, {{val| 0 0 -1 -1 2 2 }}]
Mapping to lattice: [{{val| 0 1 3 -3 1 -2 }}, {{val| 0 0 -1 -1 2 2 }}]


Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 702.9018, ~5/4 = 385.4158
Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.9018, ~5/4 = 385.4158


Minimax tuning:  
Minimax tuning:  
* 13- and 15-odd-limit
* 13- and 15-odd-limit
: [{{monzo| 1 0 0 0 0 0 }}, {{monzo| 5/3 0 1/6 -1/6 0 0 }}, {{monzo| 26/9 0 13/18 -7/18 -1/3 0 }}, {{monzo| 26/9 0 -5/18 11/18 -1/3 0 }}, {{monzo| 26/9 0 -5/18 -7/18 2/3 0 }}, {{monzo| 26/9 0 -7/9 1/9 2/3 0 }}]
: [{{monzo| 1 0 0 0 0 0 }}, {{monzo| 5/3 0 1/6 -1/6 0 0 }}, {{monzo| 26/9 0 13/18 -7/18 -1/3 0 }}, {{monzo| 26/9 0 -5/18 11/18 -1/3 0 }}, {{monzo| 26/9 0 -5/18 -7/18 2/3 0 }}, {{monzo| 26/9 0 -7/9 1/9 2/3 0 }}]
: eigenmonzo (unchanged-interval) basis: 2.7/5.11/5
: unchanged-interval (eigenmonzo) basis: 2.7/5.11/5


{{Optimal ET sequence|legend=1| 34, 41, 46, 53, 87, 140, 321, 461e }}
{{Optimal ET sequence|legend=0| 34, 41, 46, 53, 87, 140, 321, 461e }}


Badness: 0.822 × 10<sup>-3</sup>
Badness (Smith): 0.822 × 10<sup>-3</sup>


Scales: [[akea46_13]]
Scales: [[akea46_13]]
Line 250: Line 260:
{{Mapping|legend=1| 1 0 0 10 6 | 0 1 0 -6 -6 | 0 0 1 1 3 }}
{{Mapping|legend=1| 1 0 0 10 6 | 0 1 0 -6 -6 | 0 0 1 1 3 }}


[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~3/2 = 702.8941, ~5/4 = 388.5932
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.0000, ~3/2 = 702.8941, ~5/4 = 388.5932


{{Optimal ET sequence|legend=1| 46, 53, 58, 99, 111, 268cd }}
{{Optimal ET sequence|legend=1| 46, 53, 58, 99, 111, 268cd }}


[[Badness]]: 1.18 × 10<sup>-3</sup>
[[Badness]] (Smith): 1.18 × 10<sup>-3</sup>


=== 13-limit ===
=== 13-limit ===
Line 263: Line 273:
Mapping: {{mapping| 1 0 0 10 6 11 | 0 1 0 -6 -6 -9 | 0 0 1 1 3 3 }}
Mapping: {{mapping| 1 0 0 10 6 11 | 0 1 0 -6 -6 -9 | 0 0 1 1 3 3 }}


Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 702.8670, ~5/4 = 388.6277
Optimal tuning (CTE): ~2 = 1200.0000, ~3/2 = 702.8670, ~5/4 = 388.6277


{{Optimal ET sequence|legend=1| 46, 53, 58, 99, 104c, 111, 268cd }}
{{Optimal ET sequence|legend=0| 46, 53, 58, 99, 104c, 111, 268cd }}


Badness: 0.908 × 10<sup>-3</sup>
Badness (Smith): 0.908 × 10<sup>-3</sup>


== Kapo ==
== Kapo ==
Line 278: Line 288:
: mapping generators: ~2, ~3, ~128/99
: mapping generators: ~2, ~3, ~128/99


[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~3/2 = 702.8776, ~128/99 = 441.7516
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.0000, ~3/2 = 702.8776, ~128/99 = 441.7516


[[Minimax tuning]]:  
[[Minimax tuning]]:  
* [[11-odd-limit]]:  
* [[11-odd-limit]]:  
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 8/5 2/5 0 -1/15 -2/15 }}, {{monzo| 14/5 6/5 0 7/15 -16/15 }}, {{monzo| 16/5 -6/5 0 13/15 -4/15 }}, {{monzo| 16/5 -6/5 0 -2/15 11/15 }}]
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 8/5 2/5 0 -1/15 -2/15 }}, {{monzo| 14/5 6/5 0 7/15 -16/15 }}, {{monzo| 16/5 -6/5 0 13/15 -4/15 }}, {{monzo| 16/5 -6/5 0 -2/15 11/15 }}]
: [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.9/7.11/9
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.9/7.11/9


{{Optimal ET sequence|legend=1| 41, 87, 111, 152, 239, 391 }}
{{Optimal ET sequence|legend=1| 41, 87, 111, 152, 239, 391 }}


[[Badness]]: 0.994 × 10<sup>-3</sup>
[[Badness]] (Smith): 0.994 × 10<sup>-3</sup>


== Namaka ==
== Namaka ==
Line 298: Line 308:
: mapping generators: ~2, ~400/231, ~5
: mapping generators: ~2, ~400/231, ~5


[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~400/231 = 951.4956, ~5/4 = 386.7868
[[Optimal tuning]] ([[CTE]]): ~2 = 1200.0000, ~400/231 = 951.4956, ~5/4 = 386.7868


{{Optimal ET sequence|legend=1| 29, 53, 58, 87, 111, 140, 198 }}
{{Optimal ET sequence|legend=1| 29, 53, 58, 87, 111, 140, 198 }}


[[Badness]]: 1.74 × 10<sup>-3</sup>
[[Badness]] (Smith): 1.74 × 10<sup>-3</sup>


=== 13-limit ===
=== 13-limit ===
Line 311: Line 321:
Mapping: {{mapping| 1 0 0 10 -6 -1 | 0 2 0 -12 9 3 | 0 0 1 1 1 1 }}
Mapping: {{mapping| 1 0 0 10 -6 -1 | 0 2 0 -12 9 3 | 0 0 1 1 1 1 }}


Optimal tuning (CTE): ~2 = 1\1, ~26/15 = 951.4871, ~5/4 = 386.6606
Optimal tuning (CTE): ~2 = 1200.0000, ~26/15 = 951.4871, ~5/4 = 386.6606
 
{{Optimal ET sequence|legend=0| 29, 53, 58, 87, 111, 140, 198 }}


{{Optimal ET sequence|legend=1| 29, 53, 58, 87, 111, 140, 198 }}
Badness (Smith): 0.781 × 10<sup>-3</sup>


Badness: 0.781 × 10<sup>-3</sup>
== Notes ==


[[Category:Temperament families]]
[[Category:Temperament families]]
[[Category:Pages with mostly numerical content]]
[[Category:Hemifamity family| ]] <!-- main article -->
[[Category:Hemifamity family| ]] <!-- main article -->
[[Category:Hemifamity| ]] <!-- key article -->
[[Category:Hemifamity| ]] <!-- key article -->
[[Category:Rank 3]]
[[Category:Rank 3]]
[[Category:Listen]]
[[Category:Listen]]