Syntonic–diatonic equivalence continuum: Difference between revisions

BudjarnLambeth (talk | contribs)
m {{Technical data page}}<br><br>
mNo edit summary
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{Technical data page}}<br><br>
{{Technical data page}}
The '''syntonic–diatonic equivalence continuum''' is a [[equivalence continuum|continuum]] of [[regular temperament|temperaments]] which equate a number of [[81/80|syntonic commas (81/80)]] with the [[256/243|Pythagorean limma (256/243)]]. This continuum is theoretically interesting in that these are all [[5-limit]] temperaments [[support]]ed by [[5edo]].  
The '''syntonic–diatonic equivalence continuum''' is a [[equivalence continuum|continuum]] of [[regular temperament|temperaments]] which equate a number of [[81/80|syntonic commas (81/80)]] with the [[256/243|Pythagorean limma (256/243)]]. This continuum is theoretically interesting in that these are all [[5-limit]] temperaments [[support]]ed by [[5edo]].  


Line 5: Line 5:


256/243 is the characteristic [[3-limit]] comma tempered out in 5edo, and has many advantages as a target. In each case, ''n'' equals the order of [[5/1|harmonic 5]] in the corresponding comma, and equals the number of generators to obtain a harmonic 3 in the generator chain. For example:
256/243 is the characteristic [[3-limit]] comma tempered out in 5edo, and has many advantages as a target. In each case, ''n'' equals the order of [[5/1|harmonic 5]] in the corresponding comma, and equals the number of generators to obtain a harmonic 3 in the generator chain. For example:
* Superpyth {{nowrap|(''n'' {{=}} 1)}} is generated by a fifth;
* Superpyth ({{nowrap| ''n'' {{=}} 1 }}) is generated by a fifth;
* Immunity {{nowrap|(''n'' {{=}} 2)}} splits its twelfth in two;
* Immunity ({{nowrap| ''n'' {{=}} 2 }}) splits its twelfth in two;
* Rodan {{nowrap|(''n'' {{=}} 3)}} splits its fifth in three;
* Rodan ({{nowrap| ''n'' {{=}} 3 }}) splits its fifth in three;
* Etc.
* Etc.


At {{nowrap|''n'' {{=}} 5}}, the corresponding temperament splits the ''octave'' into five instead, as after a stack of five syntonic commas, both the orders of 3 and 5 are multiples of 5 again.  
At {{nowrap| ''n'' {{=}} 5 }}, the corresponding temperament splits the ''octave'' into five instead, as after a stack of five syntonic commas, both the orders of 3 and 5 are multiples of 5 again.  


If we let {{nowrap|''k'' {{=}} ''n'' + 1}} so that {{nowrap|''k'' {{=}} 0}} means {{nowrap|''n'' {{=}} &minus;1}}, {{nowrap|''k'' {{=}} 1}} means {{nowrap|''n'' {{=}} 0}}, etc. then the continuum corresponds to {{nowrap|(81/80)<sup>''k''</sup> {{=}} 16/15}}. Some prefer this way of conceptualising it because:
If we let {{nowrap| ''k'' {{=}} ''n'' + 1 }} so that {{nowrap| ''k'' {{=}} 0 }} means {{nowrap|''n'' {{=}} −1}}, {{nowrap| ''k'' {{=}} 1 }} means {{nowrap| ''n'' {{=}} 0 }}, etc. then the continuum corresponds to {{nowrap| (81/80)<sup>''k''</sup> {{=}} 16/15 }}. Some prefer this way of conceptualising it because:
* 16/15 is the classic diatonic semitone, notable in the 5-limit as the difference between 4/3 and 5/4, so this shifted continuum could also logically be termed the "syntonic–diatonic equivalence continuum". This means that at {{nowrap|''k'' {{=}} 0}}, 4/3 and 5/4 are mapped to the same interval while 81/80 becomes independent of 16/15 (meaning 81/80 may or may not be tempered) because the relation becomes {{nowrap|(81/80)<sup>0</sup> ~ 1/1 ~ 16/15}}.
* 16/15 is the classic diatonic semitone, notable in the 5-limit as the difference between 4/3 and 5/4, so this shifted continuum could also logically be termed the "syntonic–diatonic equivalence continuum". This means that at {{nowrap| ''k'' {{=}} 0 }}, 4/3 and 5/4 are mapped to the same interval while 81/80 becomes independent of 16/15 (meaning 81/80 may or may not be tempered out) because the relation becomes {{nowrap| (81/80)<sup>0</sup> ~ 1/1 ~ 16/15 }}.
* {{nowrap|''k'' {{=}} 1}} and upwards (up to a point) represent temperaments with (the potential for) reasonably good accuracy as equating at least one 81/80 with 16/15 seems like a good lower bound for a temperament intended to model JI. A good upper bound might be rodan {{nowrap|(''k'' {{=}} 4)}}, with the only exception being meantone {{nowrap|(''n'' {{=}} ''k'' {{=}} &infin;)}}. (Temperaments corresponding to {{nowrap|''k'' {{=}} 0, &minus;1, &minus;2...}} are comparatively low-accuracy to the point of developing various intriguing structures and consequences.)
* {{nowrap| ''k'' {{=}} 1 }} and upwards (up to a point) represent temperaments with the potential for reasonably good accuracy as equating at least one 81/80 with 16/15 seems like a good lower bound for a temperament intended to model JI. A good upper bound might be rodan ({{nowrap| ''k'' {{=}} 4 }}), with the only exception being meantone ({{nowrap| ''n'' {{=}} ''k'' {{=}} }}). (Temperaments corresponding to {{nowrap| ''k'' {{=}} 0, −1, −2, }} are comparatively low-accuracy to the point of developing various intriguing structures and consequences.)
* 16/15 is the simplest ratio to be tempered in the continuum.  
* 16/15 is the simplest ratio to be tempered out in the continuum.  


{| class="wikitable center-1 center-2"
{| class="wikitable center-1 center-2"
Line 32: Line 32:
| Laquadgu (5 & 28)
| Laquadgu (5 & 28)
| [[177147/160000]]
| [[177147/160000]]
| {{monzo| -8 11 -4 }}
| {{Monzo| -8 11 -4 }}
|-
|-
| −2
| −2
| −3
| −3
| [[Gamelismic clan #Gorgo|Laconic]]
| [[Laconic]]
| [[2187/2000]]
| [[2187/2000]]
| {{monzo| -4 7 -3 }}
| {{Monzo| -4 7 -3 }}
|-
|-
| −1
| −1
Line 44: Line 44:
| [[Bug]]
| [[Bug]]
| [[27/25]]
| [[27/25]]
| {{monzo| 0 3 -2 }}
| {{Monzo| 0 3 -2 }}
|-
|-
| 0
| 0
Line 50: Line 50:
| [[Father]]
| [[Father]]
| [[16/15]]
| [[16/15]]
| {{monzo| 4 -1 -1 }}
| {{Monzo| 4 -1 -1 }}
|-
|-
| 1
| 1
Line 56: Line 56:
| [[Blackwood]]
| [[Blackwood]]
| [[256/243]]
| [[256/243]]
| {{monzo| 8 -5 }}
| {{Monzo| 8 -5 }}
|-
|-
| 2
| 2
Line 62: Line 62:
| [[Superpyth]]
| [[Superpyth]]
| [[20480/19683]]
| [[20480/19683]]
| {{monzo| 12 -9 1 }}
| {{Monzo| 12 -9 1 }}
|-
|-
| 3
| 3
Line 68: Line 68:
| [[Immunity]]
| [[Immunity]]
| [[1638400/1594323]]
| [[1638400/1594323]]
| {{monzo| 16 -13 2 }}
| {{Monzo| 16 -13 2 }}
|-
|-
| 4
| 4
Line 74: Line 74:
| [[Rodan]]
| [[Rodan]]
| [[131072000/129140163]]
| [[131072000/129140163]]
| {{monzo| 20 -17 3 }}
| {{Monzo| 20 -17 3 }}
|-
|-
| 5
| 5
Line 80: Line 80:
| [[Vulture]]
| [[Vulture]]
| [[10485760000/10460353203|(22 digits)]]
| [[10485760000/10460353203|(22 digits)]]
| {{monzo| 24 -21 4 }}
| {{Monzo| 24 -21 4 }}
|-
|-
| 6
| 6
Line 86: Line 86:
| [[Quintile]]
| [[Quintile]]
| (24 digits)
| (24 digits)
| {{monzo| -28 25 -5 }}
| {{Monzo| -28 25 -5 }}
|-
|-
| 7
| 7
Line 92: Line 92:
| [[Hemiseven]]
| [[Hemiseven]]
| (28 digits)
| (28 digits)
| {{monzo| -32 29 -6 }}
| {{Monzo| -32 29 -6 }}
|-
|-
| …
| …
Line 103: Line 103:
| [[Meantone]]
| [[Meantone]]
| [[81/80]]
| [[81/80]]
| {{monzo| -4 4 -1 }}
| {{Monzo| -4 4 -1 }}
|}
|}


We may invert the continuum by setting ''m'' such that 1/''m'' + 1/''n'' = 1. This may be called the ''superpyth-diatonic equivalence continuum'', which is essentially the same thing. The just value of ''m'' is 1.3130… The [[superpyth comma]] is both larger and more complex than the syntonic comma. As such, this continuum does not contain as many useful temperaments, but still interesting nonetheless.  
We may invert the continuum by setting ''m'' such that {{nowrap| 1/''m'' + 1/''n'' {{=}} 1 }}. This may be called the ''superpyth–diatonic equivalence continuum'', which is essentially the same thing. The just value of ''m'' is 1.3130…. The [[superpyth comma]] is both larger and more complex than the syntonic comma. As such, this continuum does not contain as many useful temperaments, but still interesting nonetheless.  


{| class="wikitable center-1"
{| class="wikitable center-1"
Line 121: Line 121:
| [[Ultrapyth]]
| [[Ultrapyth]]
| [[5242880/4782969]]
| [[5242880/4782969]]
| {{monzo| 20 -14 1 }}
| {{Monzo| 20 -14 1 }}
|-
|-
| 0
| 0
| [[Blackwood]]
| [[Blackwood]]
| [[256/243]]
| [[256/243]]
| {{monzo| 8 -5 }}
| {{Monzo| 8 -5 }}
|-
|-
| 1
| 1
| [[Meantone]]
| [[Meantone]]
| [[81/80]]
| [[81/80]]
| {{monzo| -4 4 -1 }}
| {{Monzo| -4 4 -1 }}
|-
|-
| 2
| 2
| [[Immunity]]
| [[Immunity]]
| [[1638400/1594323]]
| [[1638400/1594323]]
| {{monzo| 16 -13 2 }}
| {{Monzo| 16 -13 2 }}
|-
|-
| 3
| 3
| 5 & 56
| 5 & 56
| [[33554432000/31381059609]]
| [[33554432000/31381059609]]
| {{monzo| 28 -22 3 }}
| {{Monzo| 28 -22 3 }}
|-
|-
| …
| …
Line 151: Line 151:
| [[Superpyth]]
| [[Superpyth]]
| [[20480/19683]]
| [[20480/19683]]
| {{monzo| 12 -9 1 }}
| {{Monzo| 12 -9 1 }}
|}
|}


Line 159: Line 159:
! ''n'' !! ''m'' !! Temperament !! Comma
! ''n'' !! ''m'' !! Temperament !! Comma
|-
|-
| −3/2 = −1.5 || 3/5 = 0.6 || [[University]] || {{monzo| 4 2 -3 }}
| −3/2 = −1.5 || 3/5 = 0.6 || [[University]] || {{Monzo| 4 2 -3 }}
|-
|-
| −1/2 = −0.5 || 1/3 = 0.{{overline|3}} || [[Uncle]] || {{monzo| 12 -6 -1 }}
| −1/2 = −0.5 || 1/3 = 0.{{overline|3}} || [[Uncle]] || {{Monzo| 12 -6 -1 }}
|-
|-
| 1/3 = 0.{{overline|3}} || −1/2 = −0.5 || [[Dirt]] || {{monzo| 28 -19 1 }}
| 1/3 = 0.{{overline|3}} || −1/2 = −0.5 || [[Dirt]] || {{Monzo| 28 -19 1 }}
|-
|-
| 5/2 = 2.5 || 5/3 = 1.{{overline|6}} || [[Counterpental]] || {{monzo| 36 -30 5 }}
| 5/2 = 2.5 || 5/3 = 1.{{overline|6}} || [[Counterpental]] || {{Monzo| 36 -30 5 }}
|-
|-
| 7/2 = 3.5 || 7/5 = 1.4 || [[Septiquarter]] || {{monzo| 44 -38 7 }}
| 7/2 = 3.5 || 7/5 = 1.4 || [[Septiquarter]] || {{Monzo| 44 -38 7 }}
|-
|-
| 21/5 = 4.2 || 21/16 = 1.3125 || 559 &amp; 2513 || {{monzo| -124 109 -21 }}
| 21/5 = 4.2 || 21/16 = 1.3125 || 559 & 2513 || {{Monzo| -124 109 -21 }}
|-
|-
| 9/2 = 4.5 || 9/7 = 1.{{overline|285714}} || 5 &amp; 118 || {{monzo| -52 46 -9 }}
| 9/2 = 4.5 || 9/7 = 1.{{overline|285714}} || 5 & 118 || {{Monzo| -52 46 -9 }}
|-
|-
| 11/2 = 5.5 || 11/9 = 1.{{overline|2}} || 5 &amp; 137 || {{monzo| -60 54 -11 }}
| 11/2 = 5.5 || 11/9 = 1.{{overline|2}} || 5 & 137 || {{Monzo| -60 54 -11 }}
|}
|}


Line 179: Line 179:
: ''For extensions, see [[Archytas clan #Superpyth]] and [[Jubilismic clan #Bipyth]].''
: ''For extensions, see [[Archytas clan #Superpyth]] and [[Jubilismic clan #Bipyth]].''


In the 5-limit, superpyth tempers out [[20480/19683]]. It has a fifth generator of ~3/2 = ~710¢ and ~5/4 is found at +9 generator steps, as an augmented second (C–D#). It corresponds to ''n'' = 1, meaning that the syntonic comma is equated with the diatonic semitone.  
In the 5-limit, superpyth tempers out [[20480/19683]]. It has a fifth generator of {{nowrap| ~3/2 {{=}} ~710{{c}} }} and ~5/4 is found at +9 generator steps, as an augmented second (C–D#). It corresponds to {{nowrap| ''n'' {{=}} 1 }}, meaning that the syntonic comma is equated with the diatonic semitone.  


[[Subgroup]]: 2.3.5
[[Subgroup]]: 2.3.5
Line 190: Line 190:


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1200.000, ~3/2 = 709.393
* [[WE]]: ~2 = 1197.6520{{c}}, ~3/2 = 708.6882{{c}}
: [[error map]]: {{val| 0.000 +7.438 -1.774 }}
: [[error map]]: {{val| -2.348 +4.385 -1.076 }}
* [[POTE]]: ~2 = 1200.000, ~3/2 = 710.078
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 709.8213{{c}}
: error map: {{val| 0.000 +8.123 +4.385 }}
: error map: {{val| 0.000 +7.866 +2.078 }}


{{Optimal ET sequence|legend=1| 5, 17, 22, 49, 120b, 169bbc }}
{{Optimal ET sequence|legend=1| 5, 17, 22, 49, 120b, 169bbc }}


[[Badness]] (Smith): 0.135141
[[Badness]] (Sintel): 3.17


== Uncle (5-limit) ==
== Uncle (5-limit) ==
Line 213: Line 213:


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1200.000, ~3/2 = 733.721
* [[WE]]: ~2 = 1189.7544{{c}}, ~3/2 = 724.6670{{c}}
: [[error map]]: {{val| 0.000 +31.766 +11.362 }}
: [[error map]]: {{val| -10.246 +12.466 +4.210 }}
* [[CWE]]: ~2 = 1200.000, ~3/2 = 731.732
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 731.7318{{c}}
: error map: {{val| 0.000 +29.777 +23.296 }}
: error map: {{val| 0.000 +29.777 +23.296 }}


{{Optimal ET sequence|legend=1| 5, 13, 18, 23bc }}
{{Optimal ET sequence|legend=1| 5, 13, 18, 23bc }}


[[Badness]]:
[[Badness]] (Sintel): 6.33
* Smith: 0.270
* Dirichlet: 6.33


== Ultrapyth (5-limit) ==
== Ultrapyth (5-limit) ==
: ''For extensions, see [[Archytas clan #Ultrapyth]].''
: ''For extensions, see [[Archytas clan #Ultrapyth]].''


The 5-limit version of ultrapyth tempers out the [[ultrapyth comma]]. It is generated by a perfect fifth. The interval class of 5 is found at +14 fifths as a double-augmented unison (C–Cx). It corresponds to {{nowrap|''m'' {{=}} -1}} and {{nowrap|''n'' {{=}} 1/2}}.  
The 5-limit version of ultrapyth tempers out the [[ultrapyth comma]]. It is generated by a perfect fifth. The interval class of 5 is found at +14 fifths as a double-augmented unison (C–Cx). It corresponds to {{nowrap| ''m'' {{=}} -1 }} and {{nowrap| ''n'' {{=}} 1/2 }}.  


[[Subgroup]]: 2.3.5
[[Subgroup]]: 2.3.5
Line 238: Line 236:


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1200.000, ~3/2 = 713.185
* [[WE]]: ~2 = 1196.4357{{c}}, ~3/2 = 711.7085{{c}}
: [[error map]]: {{val| 0.000 +11.230 -1.722 }}
: [[error map]]: {{val| -3.564 +6.189 -1.009 }}
* [[POTE]]: ~2 = 1200.000, ~3/2 = 713.829
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 713.5968{{c}}
: error map: {{val| 0.000 +11.874 +7.289 }}
: error map: {{val| 0.000 +11.642 +4.041 }}


{{Optimal ET sequence|legend=1| 5, 27c, 32, 37, 79bc, 116bbc }}
{{Optimal ET sequence|legend=1| 5, 27c, 32, 37, 79bc, 116bbc }}


[[Badness]] (Smith): 0.795243
[[Badness]] (Sintel): 18.7


== Dirt ==
== Dirt ==
Line 261: Line 259:


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1200.000, ~3/2 = 714.992
* [[WE]]: ~2 = 1195.8566{{c}}, ~3/2 = 713.0611{{c}}
: [[error map]]: {{val| 0.000 +13.037 -1.473 }}
: [[error map]]: {{val| -4.143 +6.963 -0.863 }}
* [[CWE]]: ~2 = 1200.000, ~3/2 = 715.341
* [[CWE]]: ~2 = 1200.000{{c}}, ~3/2 = 715.3406{{c}}
: error map: {{val| 0.000 +13.386 +5.157 }}
: error map: {{val| 0.000 +13.386 +5.157 }}


{{Optimal ET sequence|legend=1| 5, 42c, 47b, 52b, 109bbc }}
{{Optimal ET sequence|legend=1| 5, 42c, 47b, 52b, 109bbc }}


[[Badness]] (Smith): 2.36
[[Badness]] (Sintel): 55.3


== Rodan (5-limit) ==
== Rodan (5-limit) ==
: ''For extensions, see [[Gamelismic clan #Rodan]].''
: ''For extensions, see [[Gamelismic clan #Rodan]].''


The 5-limit version of rodan tempers out the [[rodan comma]], which is the difference between a stack of three [[729/640|retroptolemaic whole tones (729/640)]] and a perfect fifth (3/2). The only 7-limit extension that makes any sense to use is to add the gamelisma to the comma list. It corresponds to {{nowrap| ''n'' {{=}} 3 }}.  
The 5-limit version of rodan tempers out the [[rodan comma]], which is the difference between a stack of three [[729/640|retroptolemaic whole tones (729/640)]] and a perfect fifth (3/2). The only 7-limit extension that makes any sense to use is to add the gamelisma to the comma list, whereby the generator represents [[8/7]]. It corresponds to {{nowrap| ''n'' {{=}} 3 }}.  


[[Subgroup]]: 2.3.5
[[Subgroup]]: 2.3.5
Line 282: Line 280:


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1200.000, ~729/640 = 234.457
* [[WE]]: ~2 = 1199.5618{{c}}, ~729/640 = 234.4424{{c}}
: [[error map]]: {{val| 0.000 +1.417 -0.537 }}
: [[error map]]: {{val| -0.438 +0.934 -0.355 }}
* [[POTE]]: ~2 = 1200.000, ~729/640 = 234.528
* [[CWE]]: ~2 = 1200.000{{c}}, ~729/640 = 234.4999{{c}}
: error map: {{val| 0.000 +1.629 +0.663 }}
: error map: {{val| 0.000 +1.545 +0.185 }}


{{Optimal ET sequence|legend=1| 5, …, 41, 46, 87, 220, 307 }}
{{Optimal ET sequence|legend=1| 5, …, 41, 46, 87, 220, 307 }}


[[Badness]]: 0.168264
[[Badness]] (Sintel): 3.95


== Laconic ==
== Laconic ==
Line 301: Line 299:


{{Mapping|legend=1| 1 1 1 | 0 3 7 }}
{{Mapping|legend=1| 1 1 1 | 0 3 7 }}
{{Multival|legend=1| 3 7 4 }}


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1200.000, ~10/9 = 228.700
* [[WE]]: ~2 = 1203.1925{{c}}, ~10/9 = 228.0305{{c}}
: [[error map]]: {{val| 0.000 -15.856 +14.584 }}
: [[error map]]: {{val| +3.193 -14.671 +13.092 }}
* [[POTE]]: ~2 = 1200.000, ~10/9 = 227.426
* [[CWE]]: ~2 = 1200.000{{c}}, ~10/9 = 228.0128{{c}}
: error map: {{val| 0.000 -19.679 +5.664 }}
: error map: {{val| 0.000 -17.917 +9.776 }}


{{Optimal ET sequence|legend=1| 5, 11c, 16, 21, 37b }}
{{Optimal ET sequence|legend=1| 5, 11c, 16, 21, 37b }}


[[Badness]] (Smith): 0.161799
[[Badness]] (Sintel): 3.80


== University ==
== University ==
Line 318: Line 314:
: ''For extensions, see [[Gamelismic clan #Gidorah]] and [[Mint temperaments #Penta]].''
: ''For extensions, see [[Gamelismic clan #Gidorah]] and [[Mint temperaments #Penta]].''


Named by [[John Moriarty]], university is the 5 & 6b temperament, and tempers out [[144/125]], the triptolemaic diminished third. It corresponds to ''n'' = −3/2 and ''m'' = 3/5. In this temperament, two instances of [[6/5]] make a [[5/4]], and three make a [[3/2]]. Equating 6/5 with [[8/7]] (which makes sense since it is already very flat in the most accurate tunings of this temperament) leads to [[Gamelismic clan #Gidorah|gidorah]], and 6/5 with [[7/6]] leads to [[Mint temperaments #Penta|penta]].
Named by [[John Moriarty]], university is the {{nowrap| 5 & 6b }} temperament, and tempers out [[144/125]], the triptolemaic diminished third. It corresponds to {{nowrap| ''n'' {{=}} −3/2 }} and {{nowrap| ''m'' {{=}} 3/5 }}. In this temperament, two instances of [[6/5]] make a [[5/4]], and three make a [[3/2]]. Equating 6/5 with [[8/7]] (which makes sense since it is already very flat in the most accurate tunings of this temperament) leads to [[Gamelismic clan #Gidorah|gidorah]], and 6/5 with [[7/6]] leads to [[Mint temperaments #Penta|penta]].


[[Subgroup]]: 2.3.5
[[Subgroup]]: 2.3.5
Line 327: Line 323:


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1200.000, ~6/5 = 226.980
* [[WE]]: ~2 = 1186.1969{{c}}, ~6/5 = 232.7334{{c}}
: [[error map]]: {{val| 0.000 -21.014 +67.647 }}
: [[error map]]: {{val| -13.803 -17.558 +51.547 }}
* [[POTE]]: ~2 = 1200.000, ~6/5 = 235.442
* [[CWE]]: ~2 = 1200.000{{c}}, ~6/5 = 231.4822{{c}}
: error map: {{val| 0.000 +4.370 +84.569 }}
: error map: {{val| 0.000 -7.509 +76.651 }}


{{Optimal ET sequence|legend=1| 1b, …, 4bc, 5 }}
{{Optimal ET sequence|legend=1| 1b, …, 4bc, 5 }}


[[Badness]] (Smith): 0.101806
[[Badness]] (Sintel): 2.39


== Trisatriyo (5 &amp; 56) ==
<!--
== Trisatriyo (5 & 56) ==
[[Subgroup]]: 2.3.5
[[Subgroup]]: 2.3.5


[[Comma list]]: {{monzo| 28 -22 3 }} = 33554432000/31381059609
[[Comma list]]: {{monzo| 28 -22 3 }} (33554432000/31381059609)


{{Mapping|legend=1| 1 1 -2 | 0 3 22 }}
{{Mapping|legend=1| 1 1 -2 | 0 3 22 }}
Line 346: Line 343:


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[POTE]]: ~2 = 1200.000, ~2560/2187 = 235.867
* [[POTE]]: ~2 = 1200.000{{c}}, ~2560/2187 = 235.867{{c}}


{{Optimal ET sequence|legend=1| 5, …, 51, 56, 117b, 173b }}
{{Optimal ET sequence|legend=1| 5, …, 51, 56, 117b, 173b }}
Line 353: Line 350:


[http://x31eq.com/cgi-bin/rt.cgi?ets=5_56&limit=5 The temperament finder - 5-limit 5 & 56]
[http://x31eq.com/cgi-bin/rt.cgi?ets=5_56&limit=5 The temperament finder - 5-limit 5 & 56]
 
-->
== Hemiseven (5-limit) ==
== Hemiseven (5-limit) ==
: ''For extensions, see [[Gamelismic clan #Hemiseven]].''
: ''For extensions, see [[Gamelismic clan #Hemiseven]].''
Line 361: Line 358:
[[Comma list]]: {{monzo| 32 -29 6 }}
[[Comma list]]: {{monzo| 32 -29 6 }}


{{Mapping|legend=1| 1 4 14 | 0 -6 -29 }}
{{Mapping|legend=1| 1 -2 -15 | 0 6 29 }}


: mapping generators: ~2, ~320/243
: mapping generators: ~2, ~243/160


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[POTE]]: ~2 = 1200.000, ~320/243 = 483.247
* [[WE]]: ~2 = 1200.3725{{c}}, ~243/160 = 716.9750{{c}}
: [[error map]]: {{val| +0.373 -0.850 +0.376 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~243/160 = 716.7671{{c}}
: error map: {{val| 0.000 -1.352 -0.067 }}


{{Optimal ET sequence|legend=1| 5, 62c, 67c, 72, 149, 221, 370, 591b, 961bb }}
{{Optimal ET sequence|legend=1| 5, , 72, 149, 221, 370, 591b }}


[[Badness]] (Smith): 0.720465
[[Badness]] (Sintel): 16.9


== Counterpental ==
== Counterpental ==
Line 384: Line 384:


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[POTE]]: ~729/640 = 240.000, ~3/2 = 704.572
* [[WE]]: ~729/640 = 239.8575{{c}}, ~3/2 = 704.1540{{c}}
: [[error map]]: {{val| -0.712 +1.487 -0.535 }}
* [[CWE]]: ~729/640 = 240.0000{{c}}, ~3/2 = 704.4446{{c}}
: error map: {{val| 0.000 +2.490 +0.354 }}


{{Optimal ET sequence|legend=1| 5, …, 75, 80, 155, 390b, 545bbc }}
{{Optimal ET sequence|legend=1| 5, …, 75, 80, 155, 390b, 545bbc }}


[[Badness]] (Smith): 1.500224
[[Badness]] (Sintel): 35.2


== Septiquarter (5-limit) ==
== Septiquarter (5-limit) ==
Line 397: Line 400:
[[Comma list]]: {{monzo| 44 -38 7 }}
[[Comma list]]: {{monzo| 44 -38 7 }}


{{Mapping|legend=1| 1 3 10 | 0 -7 -38 }}
{{Mapping|legend=1| 1 -4 -28 | 0 7 38 }}


: mapping generators: ~2, ~204800/177147
: mapping generators: ~2, ~177147/102400


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[POTE]]: ~2 = 1200.000, ~204800/177147 = 242.457
* [[WE]]: ~2 = 1199.7741{{c}}, ~177147/102400 = 957.3630{{c}}
: [[error map]]: {{val| -0.226 +0.490 -0.194 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~177147/102400 = 957.5367{{c}}
: error map: {{val| 0.000 +0.802 +0.082 }}


{{Optimal ET sequence|legend=1| 5, 89c, 94, 99, 193, 292, 391 }}
{{Optimal ET sequence|legend=1| 5, , 94, 99, 193, 292, 391, 1074b, 1465bb }}


[[Badness]] (Smith): 0.971284
[[Badness]] (Sintel): 22.8


== Quinla-tritrigu (5 &amp; 118) ==
<!--
== Quinla-tritrigu (5 & 118) ==
[[Subgroup]]: 2.3.5
[[Subgroup]]: 2.3.5


Line 418: Line 425:


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[POTE]]: ~2 = 1200.000, ~320/243 = 477.961
* [[POTE]]: ~2 = 1200.000{{c}}, ~320/243 = 477.961{{c}}


{{Optimal ET sequence|legend=1| 5, 108c, 113, 118, 1057, 1175, 1293, 1411, 1529, 1647, 1765, 1883, 2001b, 3884b }}
{{Optimal ET sequence|legend=1| 5, 108c, 113, 118, 1057, 1175, 1293, 1411, 1529, 1647, 1765, 1883, 2001b, 3884b }}
Line 424: Line 431:
[[Badness]] (Smith): 0.617683
[[Badness]] (Smith): 0.617683


== Tribilalegu (5 &amp; 137) ==
== Tribilalegu (5 & 137) ==
[[Subgroup]]: 2.3.5
[[Subgroup]]: 2.3.5


Line 434: Line 441:


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[POTE]]: ~2 = 1200.000, ~320/243 = 481.742
* [[POTE]]: ~2 = 1200.000{{c}}, ~320/243 = 481.742{{c}}


{{Optimal ET sequence|legend=1| 5, 127c, 132, 137, 553, 690b, 827b, 964b }}
{{Optimal ET sequence|legend=1| 5, 127c, 132, 137, 553, 690b, 827b, 964b }}
Line 442: Line 449:
[http://x31eq.com/cgi-bin/rt.cgi?ets=5_137&limit=5 The temperament finder - 5-limit 5 & 137]
[http://x31eq.com/cgi-bin/rt.cgi?ets=5_137&limit=5 The temperament finder - 5-limit 5 & 137]


== 559 &amp; 2513 ==
== 559 & 2513 ==
[[Subgroup]]: 2.3.5
[[Subgroup]]: 2.3.5


Line 452: Line 459:


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[POTE]]: ~2 = 1200.0000, ~3355443200000/2541865828329 = 480.8595
* [[POTE]]: ~2 = 1200.0000{{c}}, ~3355443200000/2541865828329 = 480.8595{{c}}


{{Optimal ET sequence|legend=1| 5, 267c, 272c, 277, 559, 1395, 1954, 2513, 40767, 43280, 45793, 48306, 50819, 53332, 55845, 58358, 60871, 63384, 65897, 68410, 70923, 73436, 75949, 78462 }}
{{Optimal ET sequence|legend=1| 5, 267c, 272c, 277, 559, 1395, 1954, 2513, 40767, 43280, 45793, 48306, 50819, 53332, 55845, 58358, 60871, 63384, 65897, 68410, 70923, 73436, 75949, 78462 }}
Line 459: Line 466:


[http://x31eq.com/cgi-bin/rt.cgi?ets=2513_559&limit=5 The temperament finder - 5-limit 2513 & 559]
[http://x31eq.com/cgi-bin/rt.cgi?ets=2513_559&limit=5 The temperament finder - 5-limit 2513 & 559]
-->


[[Category:5edo]]
[[Category:5edo]]
[[Category:Equivalence continua]]
[[Category:Equivalence continua]]