Height: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 363458620 - Original comment: **
Sintel (talk | contribs)
equivalence section: no need to talk about p-adic valuations here
 
(49 intermediate revisions by 12 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
The '''height''' is a mathematical tool to measure the [[complexity]] of [[JI]] [[interval]]s.
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-09-10 12:17:10 UTC</tt>.<br>
: The original revision id was <tt>363458620</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=Definition:=
A **height** is a function on members of an algebraically defined object which maps elements to real numbers, yielding a type of complexity measurement. For example we can assign each element of the positive rational numbers a height, and hence a complexity. While there is no concensus on the restrictions of a height, we will attempt to create a definition for positive rational numbers which is practical for musical purposes.


A height function H(q) on the positive rationals q should fulfill the following criteria:
== Definition ==
# Given any constant C, there are finitely many elements q such that H(q) ≤ C.
A '''height''' is a function on members of an algebraically defined object which maps elements to real numbers, yielding a type of complexity measurement (see [[Wikipedia: Height function]]). For example we can assign each element of the positive rational numbers a height, and hence a complexity. While there is no consensus on the restrictions of a height, we will attempt to create a definition for positive rational numbers which is practical for musical purposes.
# H(q) is bounded below by H(1), so that H(q) ≥ H(1) for all q.
# H(q) = H(1/q)
# H(q^n) ≥ H(q) for any non-negative integer n


If we have a function F(x) which is strictly increasing on the positive reals, then F(H(q)) will rank elements in the same order as H(q). We can therefore establish the following equivalence relation:
A height function H(''q'') on the positive rationals ''q'' should fulfill the following criteria:
[[math]]
H \left( {q} \right) \equiv F \left( {H} \left( {q} \right) \right)
[[math]]


An **Improper Height** is a function which does not obey criteria #1 above in the strictest sense, so that there is a rational number q 1 such that H(q) = H(1), resulting in an equivalence relation on its elements. An example would be octave-equivalence, where two ratios p and q are considered equivalent if the following is true:
# Given any constant ''C'', there are finitely many elements ''q'' such that H(''q'') ≤ ''C''.
[[math]]
# H(''q'') is bounded below by H(1), so that H(''q'') ≥ H(1) for all q.
2^{-v_2 \left( {p} \right)} p = 2^{-v_2 \left( {q} \right)} q
# H(''q'') = H(1) iff ''q'' = 1.
[[math]]
# H(''q'') = H(1/''q'')
# H(''q''<sup>''n''</sup>) ≥ H(''q'') for any non-negative integer ''n''.


Or equivalently, if n has any integer solutions:
If we have a function F which is strictly increasing on the positive reals, then F(H(''q'')) will rank elements in the same order as H(''q''). We can therefore establish the following equivalence relation:
[[math]]
p = 2^n q
[[math]]


If the above condition is met, we may then establish the following equivalence relation:
<math>\displaystyle H \left( {q} \right) \equiv F \left( {H} \left( {q} \right) \right)</math>
[[math]]
p \equiv q
[[math]]


By changing the base of the exponent to a value other than 2, you can set up completely different equivalence relations. Replacing the 2 with a 3 yields tritave-equivalence, for example.
Exponentiation and logarithm are such functions commonly used for converting a height between arithmetic and logarithmic scales.
====== ======
 
=Examples of Height Functions:=
A '''semi-height''' is a function which does not obey criterion #3 above, so that there is a rational number ''q'' ≠ 1 such that H(''q'') = H(1), resulting in an equivalence relation on its elements, under which #1 is modified to a finite number of equivalence classes. An example would be [[octave equivalence]], where two ratios ''q''<sub>1</sub> and ''q''<sub>2</sub> are considered equivalent if they differ only by factors of 2.
|| __Name:__ || __Type:__ || __H(n/d):__ || __H(q):__ || __H(q) simplified by equivalence relation:__ ||
We can also consider other equivalences. For example, we can assume tritave equivalence by ignoring factors of 3.
|| [[Benedetti Height|Benedetti height]]
 
(or [[Tenney Height]]) || Proper || [[math]]
== Height versus norm ==
n d
Height functions are applied to ratios, whereas norms are measurements on interval lattices [[wikipedia: embedding|embedded]] in [[wikipedia: Normed vector space|normed vector spaces]]. Some height functions are essentially norms, and they are numerically equal. For example, the [[Tenney height]] is also the Tenney norm.
[[math]] || [[math]]
 
2^{T1 \left( {q} \right)}
However, not all height functions are norms, and not all norms are height functions. The [[Benedetti height]] is not a norm, since it does not satisfy the condition of absolute homogeneity. The [[taxicab distance]] is not a height, since there can be infinitely many intervals below a given bound.
[[math]] || [[math]]
 
T1 \left( {q} \right)
== Examples of height functions ==
[[math]] ||
{| class="wikitable"
|| Weil Height || Proper || [[math]]
! Name
\max \left( {n , d} \right)
! Type
[[math]] || [[math]]
! H(''n''/''d'')
\exp \left( {\ln \left( {2} \right) {\dfrac{T1 \left( {q} \right) + | \log_2 \left( {q} \right) |} {2}}} \right)
! H(''q'')
[[math]] || [[math]]
! H(''q'') simplified by equivalence relation
T1 \left( {q} \right) + | \log_2 \left( {q} \right) |
|-
[[math]] ||
| [[Benedetti height]] <br> (or [[Tenney height]])
|| Arithmetic Height || Proper || [[math]]
| Height
n + d
| <math>nd</math>
[[math]] || [[math]]
| <math>2^{\large{\|q\|_{T1}}}</math>
\dfrac {\left( {q + 1} \right)} {\sqrt{q}}} \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right)} {2} \right)
| <math>\|q\|_{T1}</math>
[[math]] || [[math]]
|-
T1 \left( {q} \right) + 2 \log_2 \left( {q + 1} \right) - \log_2 \left( {q} \right)
| [[Wilson height]]
[[math]] ||
| Height
|| [[Kees Height]] || Improper || [[math]]
| <math>\text{sopfr}(n d)</math>
\max \left( {2^{-v_2 \left( {n} \right)} n ,  
| <math>2^{\large{\text{sopfr}(q)}}</math>
2^{-v_2 \left( {d} \right)} d} \right)
| <math>\text{sopfr}(q)</math>
[[math]] || [[math]]
|-
\exp \left( {\ln \left( {2} \right) \dfrac {T1 \left( {2^{-v_2 \left( {q} \right)} q} \right) + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |} {2}}} \right)
| [[Weil height]]
[[math]] || [[math]]
| Height
T1 \left( {2^{-v_2 \left( {q} \right)} q} \right) + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |
| <math>\max \left( {n , d} \right)</math>
[[math]] ||
| <math>2^{\large{\frac{1}{2}(\|q\|_{T1} + \mid \log_2(\mid q \mid)\mid)}}</math>
||   ||   ||  ||  ||  ||
| <math>\|q\|_{T1} + \mid \log_2(\mid q \mid)\mid</math>
Where T1(q) is the [[xenharmonic/Generalized Tenney Norms and Tp Interval Space#The%20Tenney%20Norm%20(T1%20norm)|tenney norm]] of q in monzo form, and vp(x) is the [[http://en.wikipedia.org/wiki/P-adic_order|p-adic valuation]] of x.
|-
| Arithmetic height
| Height
| <math>n + d</math>
| <math>\dfrac {\left( {q + 1} \right)} {\sqrt{q}} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}}</math>
| <math>\|q\|_{T1} + 2 \log_2 \left( {q + 1} \right) - \log_2 \left( {q} \right)</math>
|-
| Harmonic semi-height
| Semi-Height
| <math>\dfrac {n d} {n + d}</math>
| <math>\dfrac {\sqrt{q}} {\left( {q + 1} \right)} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}}</math>
| <math>\|q\|_{T1} - 2 \log_2 \left( {q + 1} \right) + \log_2 \left( {q} \right)</math>
|-
| [[Kees semi-height]]
| Semi-Height
| <math>\max \left( {2^{-v_2 \left( {n} \right)} n, 2^{-v_2 \left( {d} \right)} d} \right)</math>
| <math>2^{\large{\left(\frac{1}{2}\left(\|2^{-v_2 \left( {q} \right)} q\|_{T1} + \mid \log_2(q) - v_2(q) \mid \right)\right)}}</math>
| <math>\|{2^{-v_2 \left( {q} \right)} q}\|_{T1} + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |</math>
|}
 
Where ||''q''||<sub>T1</sub> is the [[Generalized Tenney norms and Tp interval space #The Tenney Norm (T1 norm)|tenney norm]] of ''q'' in monzo form, and v<sub>''p''</sub>(''q'') is the [[Wikipedia: P-adic order|''p''-adic valuation]] of ''q''.
 
The function sopfr (''nd'') is the [https://mathworld.wolfram.com/SumofPrimeFactors.html "sum of prime factors with repetition"] of ''n''·''d''. Equivalently, this is the L<sub>1</sub> norm on monzos, but where each prime is weighted by ''p'' rather than log (''p''). This is called "Wilson's Complexity" in [[John Chalmers]]'s ''Divisions of the Tetrachord''<ref>[http://lumma.org/tuning/chalmers/DivisionsOfTheTetrachord.pdf ''Division of the Tetrachord''], page 55. John Chalmers. </ref>.


Some useful identities:
Some useful identities:
[[math]]
* <math>n = 2^{\large{\frac{1}{2}(\|q\|_{T1} + \log_2(q))}}</math>
n = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) + \log_2 \left( {q} \right)} {2} \right)
* <math>d = 2^{\large{\frac{1}{2}(\|q\|_{T1} - \log_2(q))}}</math>
[[math]]
* <math>n d = 2^{\|q\|_{T1}}</math>
[[math]]
 
d = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) - \log_2 \left( {q} \right)} {2} \right)
Height functions can also be put on the points of [http://planetmath.org/encyclopedia/QuasiProjectiveVariety.html projective varieties]. Since [[abstract regular temperament]]s can be identified with rational points on [[Wikipedia: Grassmannian|Grassmann varieties]], complexity measures of regular temperaments are also height functions.
[[math]]
 
[[math]]
See [[Dave Keenan & Douglas Blumeyer's guide to RTT/Alternative complexities]] for an extensive discussion of heights and semi-heights used in regular temperament theory.
n d = 2^{T1 \left( {q} \right)}
 
[[math]]
== History ==
The concept of height was introduced to xenharmonics by [[Gene Ward Smith]] in 2001<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_31418#31488 Yahoo! Tuning Group | ''Super Particular Stepsize'']</ref>; it comes from the mathematical field of number theory (for more information, see [[Wikipedia: Height function]]). It is not to be confused with the musical notion of [[Wikipedia: Pitch (music) #Theories of pitch perception|''pitch height'' (as opposed to ''pitch chroma'')]]<ref>Though it has also been used to refer to the size of an interval in cents. On page 23 of [https://www.plainsound.org/pdfs/JC&ToH.pdf ''John Cage and the Theor of Harmony''], Tenney writes: "The one-dimensional continuum of pitch-height (i.e. 'pitch' as ordinarily defined)", and graphs it ''as opposed to'' his concept of "harmonic distance", which was ironically the first measurement named by Gene Ward Smith as a "height": "Tenney height".</ref>.
 
== See also ==
* [[Commas by taxicab distance]]
* [[Harmonic entropy]]


Height functions can also be put on the points of [[http://planetmath.org/encyclopedia/QuasiProjectiveVariety.html|projective varieties]]. Since [[Abstract regular temperament|abstract regular temperaments]] can be identified with rational points on [[http://en.wikipedia.org/wiki/Grassmannian|Grassmann varieties]], complexity measures of regular temperaments are also height functions.</pre></div>
== References ==
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Height&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:19:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Definition:"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:19 --&gt;Definition:&lt;/h1&gt;
A &lt;strong&gt;height&lt;/strong&gt; is a function on members of an algebraically defined object which maps elements to real numbers, yielding a type of complexity measurement. For example we can assign each element of the positive rational numbers a height, and hence a complexity. While there is no concensus on the restrictions of a height, we will attempt to create a definition for positive rational numbers which is practical for musical purposes.&lt;br /&gt;
&lt;br /&gt;
A height function H(q) on the positive rationals q should fulfill the following criteria:&lt;br /&gt;
&lt;ol&gt;&lt;li&gt;Given any constant C, there are finitely many elements q such that H(q) ≤ C.&lt;/li&gt;&lt;li&gt;H(q) is bounded below by H(1), so that H(q) ≥ H(1) for all q.&lt;/li&gt;&lt;li&gt;H(q) = H(1/q)&lt;/li&gt;&lt;li&gt;H(q^n) ≥ H(q) for any non-negative integer n&lt;/li&gt;&lt;/ol&gt;&lt;br /&gt;
If we have a function F(x) which is strictly increasing on the positive reals, then F(H(q)) will rank elements in the same order as H(q). We can therefore establish the following equivalence relation:&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:0:
[[math]]&amp;lt;br/&amp;gt;
H \left( {q} \right) \equiv F \left( {H} \left( {q} \right) \right)&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;H \left( {q} \right) \equiv F \left( {H} \left( {q} \right) \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:0 --&gt;&lt;br /&gt;
&lt;br /&gt;
An &lt;strong&gt;Improper Height&lt;/strong&gt; is a function which does not obey criteria #1 above in the strictest sense, so that there is a rational number q ≠ 1 such that H(q) = H(1), resulting in an equivalence relation on its elements. An example would be octave-equivalence, where two ratios p and q are considered equivalent if the following is true:&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:1:
[[math]]&amp;lt;br/&amp;gt;
2^{-v_2 \left( {p} \right)} p = 2^{-v_2 \left( {q} \right)} q&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;2^{-v_2 \left( {p} \right)} p = 2^{-v_2 \left( {q} \right)} q&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:1 --&gt;&lt;br /&gt;
&lt;br /&gt;
Or equivalently, if n has any integer solutions:&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:2:
[[math]]&amp;lt;br/&amp;gt;
p = 2^n q&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;p = 2^n q&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:2 --&gt;&lt;br /&gt;
&lt;br /&gt;
If the above condition is met, we may then establish the following equivalence relation:&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:3:
[[math]]&amp;lt;br/&amp;gt;
p \equiv q&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;p \equiv q&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:3 --&gt;&lt;br /&gt;
&lt;br /&gt;
By changing the base of the exponent to a value other than 2, you can set up completely different equivalence relations. Replacing the 2 with a 3 yields tritave-equivalence, for example.&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:21:&amp;lt;h6&amp;gt; --&gt;&lt;h6 id="toc1"&gt;&lt;!-- ws:end:WikiTextHeadingRule:21 --&gt; &lt;/h6&gt;
&lt;!-- ws:start:WikiTextHeadingRule:23:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Examples of Height Functions:"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:23 --&gt;Examples of Height Functions:&lt;/h1&gt;


&lt;table class="wiki_table"&gt;
<references/>
    &lt;tr&gt;
        &lt;td&gt;&lt;u&gt;Name:&lt;/u&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;u&gt;Type:&lt;/u&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;u&gt;H(n/d):&lt;/u&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;u&gt;H(q):&lt;/u&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;u&gt;H(q) simplified by equivalence relation:&lt;/u&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/Benedetti%20Height"&gt;Benedetti height&lt;/a&gt;&lt;br /&gt;
(or &lt;a class="wiki_link" href="/Tenney%20Height"&gt;Tenney Height&lt;/a&gt;)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Proper&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:4:
[[math]]&amp;lt;br/&amp;gt;
n d&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;n d&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:4 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:5:
[[math]]&amp;lt;br/&amp;gt;
2^{T1 \left( {q} \right)}&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;2^{T1 \left( {q} \right)}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:5 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:6:
[[math]]&amp;lt;br/&amp;gt;
T1 \left( {q} \right)&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;T1 \left( {q} \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:6 --&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;Weil Height&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Proper&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:7:
[[math]]&amp;lt;br/&amp;gt;
\max \left( {n , d} \right)&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;\max \left( {n , d} \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:7 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:8:
[[math]]&amp;lt;br/&amp;gt;
\exp \left( {\ln \left( {2} \right) {\dfrac{T1 \left( {q} \right) + | \log_2 \left( {q} \right) |} {2}}} \right)&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;\exp \left( {\ln \left( {2} \right) {\dfrac{T1 \left( {q} \right) + | \log_2 \left( {q} \right) |} {2}}} \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:8 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:9:
[[math]]&amp;lt;br/&amp;gt;
T1 \left( {q} \right) + | \log_2 \left( {q} \right) |&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;T1 \left( {q} \right) + | \log_2 \left( {q} \right) |&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:9 --&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;Arithmetic Height&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Proper&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:10:
[[math]]&amp;lt;br/&amp;gt;
n + d&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;n + d&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:10 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:11:
[[math]]&amp;lt;br/&amp;gt;
\dfrac {\left( {q + 1} \right)} {\sqrt{q}}} \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right)} {2} \right)&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;\dfrac {\left( {q + 1} \right)} {\sqrt{q}}} \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right)} {2} \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:11 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:12:
[[math]]&amp;lt;br/&amp;gt;
T1 \left( {q} \right) + 2 \log_2 \left( {q + 1} \right) - \log_2 \left( {q} \right)&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;T1 \left( {q} \right) + 2 \log_2 \left( {q + 1} \right) - \log_2 \left( {q} \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:12 --&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/Kees%20Height"&gt;Kees Height&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Improper&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:13:
[[math]]&amp;lt;br/&amp;gt;
\max \left( {2^{-v_2 \left( {n} \right)} n , &amp;lt;br /&amp;gt;
2^{-v_2 \left( {d} \right)} d} \right)&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;\max \left( {2^{-v_2 \left( {n} \right)} n ,
2^{-v_2 \left( {d} \right)} d} \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:13 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:14:
[[math]]&amp;lt;br/&amp;gt;
\exp \left( {\ln \left( {2} \right) \dfrac {T1 \left( {2^{-v_2 \left( {q} \right)} q} \right) + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |} {2}}} \right)&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;\exp \left( {\ln \left( {2} \right) \dfrac {T1 \left( {2^{-v_2 \left( {q} \right)} q} \right) + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |} {2}}} \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:14 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:15:
[[math]]&amp;lt;br/&amp;gt;
T1 \left( {2^{-v_2 \left( {q} \right)} q} \right) + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;T1 \left( {2^{-v_2 \left( {q} \right)} q} \right) + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:15 --&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


Where T1(q) is the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Generalized%20Tenney%20Norms%20and%20Tp%20Interval%20Space#The%20Tenney%20Norm%20(T1%20norm)"&gt;tenney norm&lt;/a&gt; of q in monzo form, and vp(x) is the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/P-adic_order" rel="nofollow"&gt;p-adic valuation&lt;/a&gt; of x.&lt;br /&gt;
[[Category:Math]]
&lt;br /&gt;
[[Category:Interval complexity measures]]
Some useful identities:&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:16:
[[math]]&amp;lt;br/&amp;gt;
n = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) + \log_2 \left( {q} \right)} {2} \right)&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;n = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) + \log_2 \left( {q} \right)} {2} \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:16 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:17:
[[math]]&amp;lt;br/&amp;gt;
d = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) - \log_2 \left( {q} \right)} {2} \right)&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;d = \exp \left( \ln \left( {2} \right) \dfrac {T1 \left( {q} \right) - \log_2 \left( {q} \right)} {2} \right)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:17 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:18:
[[math]]&amp;lt;br/&amp;gt;
n d = 2^{T1 \left( {q} \right)}&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;n d = 2^{T1 \left( {q} \right)}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:18 --&gt;&lt;br /&gt;
&lt;br /&gt;
Height functions can also be put on the points of &lt;a class="wiki_link_ext" href="http://planetmath.org/encyclopedia/QuasiProjectiveVariety.html" rel="nofollow"&gt;projective varieties&lt;/a&gt;. Since &lt;a class="wiki_link" href="/Abstract%20regular%20temperament"&gt;abstract regular temperaments&lt;/a&gt; can be identified with rational points on &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Grassmannian" rel="nofollow"&gt;Grassmann varieties&lt;/a&gt;, complexity measures of regular temperaments are also height functions.&lt;/body&gt;&lt;/html&gt;</pre></div>