Meantone family: Difference between revisions

BudjarnLambeth (talk | contribs)
 
(40 intermediate revisions by 8 users not shown)
Line 5: Line 5:
| ja =  
| ja =  
}}
}}
The [[5-limit]] parent [[comma]] of the '''meantone family''' is the syntonic comma, [[81/80]]. This is the one they all temper out. The [[period]] is an [[octave]], the [[generator]] is a [[3/2|fifth]], and four fifths go to make up a [[5/1]] interval.
{{Technical data page}}
The '''meantone family''' is the family of [[rank-2 temperament]]s that [[tempering out|temper out]] the syntonic comma, [[81/80]], and thus can all be seen as [[extension]]s of [[meantone]].  


== Meantone ==
== Meantone ==
{{Main| Meantone }}
{{Main| Meantone }}
Meantone is characterized by an [[2/1|octave]] [[period]], a [[3/2|fifth]] [[generator]], and the relationship that four fifths go to make up a [[5/1|5th harmonic]].


[[Subgroup]]: 2.3.5
[[Subgroup]]: 2.3.5
Line 17: Line 20:


: mapping generators: ~2, ~3
: mapping generators: ~2, ~3
{{Multival|legend=1| 1 4 4 }}


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1\1, ~3/2 = 697.2143
* [[WE]]: ~2 = 1201.3906{{c}}, ~3/2 = 697.0455{{c}}
* [[POTE]]: ~2 = 1\1, ~3/2 = 696.239
: [[error map]]: {{val| +1.391 -3.519 +1.868 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 696.6512{{c}}
: error map: {{val| 0.000 -5.304 +0.291 }}


[[Minimax tuning]]:  
[[Minimax tuning]]:  
* [[5-odd-limit]]: ~3/2 = {{monzo| 0 0 1/4 }} (1/4-comma)
* [[5-odd-limit]]: ~3/2 = {{monzo| 0 0 1/4 }} (1/4-comma)
: [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.5
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5


[[Tuning ranges]]:  
[[Tuning ranges]]:  
Line 34: Line 37:
{{Optimal ET sequence|legend=1| 5, 7, 12, 19, 31, 50, 81, 131b }}
{{Optimal ET sequence|legend=1| 5, 7, 12, 19, 31, 50, 81, 131b }}


[[Badness]]: 0.007381
[[Badness]] (Sintel): 0.173


=== Extensions ===
=== Overview to extensions ===
The second comma of the normal comma list defines which [[7-limit]] family member we are looking at.
The second comma of the normal comma list defines which [[7-limit]] family member we are looking at.
* Septimal meantone adds [[Harrison's comma|{{monzo| -13 10 0 -1 }}]], finding the ~7/4 at the augmented sixth,  
* Flattertone adds {{monzo| -24 17 0 -1 }}, finding the [[~]][[7/4]] at the double-augmented sixth, for a tuning between 33edo and 26edo.
* Flattone adds {{monzo| -17 9 0 1 }}, finding the ~7/4 at the diminished seventh,  
* Flattone adds {{monzo| -17 9 0 1 }}, finding the ~7/4 at the diminished seventh, for a tuning between 26edo and 19edo.
* Dominant adds [[64/63|{{monzo| 6 -2 0 -1 }}]], finding the ~7/4 at the minor seventh,  
* Septimal meantone adds [[Harrison's comma|{{monzo| -13 10 0 -1 }}]], finding the ~7/4 at the augmented sixth, for a tuning between 19edo and 12edo.
* Flattertone adds {{monzo| -24 17 0 -1 }}, finding the ~7/4 at the double-augmented sixth,  
* Dominant adds [[64/63|{{monzo| 6 -2 0 -1 }}]], finding the ~7/4 at the minor seventh, for a tuning between 12edo and 5edo.
* Sharptone adds [[28/27|{{monzo| 2 -3 0 1 }}]], finding the ~7/4 at the major sixth,  
* Sharptone adds [[28/27|{{monzo| 2 -3 0 1 }}]], finding the ~7/4 at the major sixth, for an [[exotemperament]] never exactly well-tuned, and where 5edo is the only [[diamond monotone]] tuning, with a terrible 5-limit part.
Those all have a fifth as generator.
Those all have a fifth as generator.
* Injera adds {{monzo| -7 8 0 -2 }} with a half-octave period.
* Injera adds {{monzo| -7 8 0 -2 }} with a half-octave period.
* Mohajira adds {{monzo| -23 11 0 2 }} and splits the fifth in two.
* Mohajira adds {{monzo| -23 11 0 2 }} and splits the fifth in two.
* Godzilla adds [[49/48|{{monzo| -4 -1 0 2 }}]] with an ~8/7 generator, two of which give the [[4/3|fourth]].
* Godzilla adds [[49/48|{{monzo| -4 -1 0 2 }}]] with an ~[[8/7]] generator, two of which give the [[4/3|fourth]].
* Mothra adds [[1029/1024|{{monzo| -10 1 0 3 }}]] with an ~8/7 generator, three of which give the fifth.
* Mothra adds [[1029/1024|{{monzo| -10 1 0 3 }}]] with an ~8/7 generator, three of which give the fifth.
* Liese adds {{monzo| -9 11 0 -3 }} with a ~10/7 generator, three of which give the [[3/1|twelfth]].
* Liese adds {{monzo| -9 11 0 -3 }} with a ~[[10/7]] generator, three of which give the [[3/1|twelfth]].
* Squares adds {{monzo| -3 9 0 -4 }} with a ~9/7 generator, four of which give the [[8/3|eleventh]].
* Squares adds {{monzo| -3 9 0 -4 }} with a ~[[9/7]] generator, four of which give the [[8/3|eleventh]].
* Jerome adds {{monzo| 3 7 0 -5 }} and slices the fifth in five.
* Jerome adds {{monzo| 3 7 0 -5 }} and slices the fifth in five.


Line 63: Line 66:


==== Splitting the meantone fifth into three (1029/1024) ====
==== Splitting the meantone fifth into three (1029/1024) ====
By tempering [[1029/1024]] we equate the distance from 7/6 to 8/7 (= [[49/48|S7]]) with the distance from 8/7 to 9/8 (= [[64/63|S8]]), so that ([[8/7]])<sup>3</sup> is equated with [[3/2]], because of being able to be rewritten as (9/8)(8/7)(7/6) – this observation can be generalized to define the family of [[ultraparticular]] commas. This is an unusually natural extension, with a surprising coincidence: ([[36/35]])/([[64/63]]) = [[81/80]], or using the shorthand notation, S6/S8 = S9. As S6/S8 is already tempered out, it is natural to want [[49/48]] (S7), which is bigger than S8 and smaller than S6 to be equated with both, to avoid inconsistent mappings. This has the surprising consequence of meaning that splitting the meantone fifth into three 8/7's is equivalent to splitting 8/5 into three 7/6's by tempering (8/5)/(7/6)<sup>3</sup> = [[1728/1715]] (S6/S7), the orwellisma.
By tempering out [[1029/1024]] we equate the distance from 7/6 to 8/7 (= [[49/48|S7]]) with the distance from 8/7 to 9/8 (= [[64/63|S8]]), so that ([[8/7]])<sup>3</sup> is equated with [[3/2]], because of being able to be rewritten as (9/8)(8/7)(7/6) – this observation can be generalized to define the family of [[ultraparticular]] commas. This is an unusually natural extension, with a surprising coincidence: ([[36/35]])/([[64/63]]) = [[81/80]], or using the shorthand notation, S6/S8 = S9. As S6/S8 is already tempered out, it is natural to want [[49/48]] (S7), which is bigger than S8 and smaller than S6 to be equated with both, to avoid inconsistent mappings. This has the surprising consequence of meaning that splitting the meantone fifth into three 8/7's is equivalent to splitting 8/5 into three 7/6's by tempering (8/5)/(7/6)<sup>3</sup> = [[1728/1715]] (S6/S7), the orwellisma.


This strategy leads to the 7-limit version of [[mothra]], which is also sometimes called [[cynder]], though confusingly cynder has a different mapping for 11 in the 11-limit. Though mothra is the simplest extension by a small margin, when measured in terms of generators required to reach 11, there is another extension that is perhaps more obvious, by noticing that because we have S6~S7~S8 with S9 tempered out, we can try S8~S10 by tempering out [[176/175]] (S8/S10), which is (11/7)/(5/4)<sup>2</sup>]], taking advantage of 10/9 being tempered sharp in meantone so that we can distinguish 11/10 from it, thus finding 16/11 at 100/99 above the meantone diminished fifth, ([[6/5]])<sup>2</sup> = [[36/25]] = ([[3/2]])/([[25/24]]).
This strategy leads to the 7-limit version of [[mothra]], which is also sometimes called [[cynder]], though confusingly cynder has a different mapping for 11 in the 11-limit. Though mothra is the simplest extension by a small margin, when measured in terms of generators required to reach 11, there is another extension that is perhaps more obvious, by noticing that because we have S6~S7~S8 with S9 tempered out, we can try S8~S10 by tempering out [[176/175]] (S8/S10), which is (11/7)/(5/4)<sup>2</sup>, taking advantage of 10/9 being tempered sharp in meantone so that we can distinguish 11/10 from it, thus finding 16/11 at 100/99 above the meantone diminished fifth, ([[6/5]])<sup>2</sup> = [[36/25]] = ([[3/2]])/([[25/24]]).


==== 31edo as splitting the fifth into two, three and nine ====
==== 31edo as splitting the fifth into two, three and nine ====
[[31edo]] is unique as combining all aforementioned tempering strategies into one elegant [[11-limit]] meantone temperament; it also combines yet more extensions of meantone not discussed here, and it has a very accurate [[5/4]] and [[7/4]] and an even more accurate [[35/32]]. A tempering strategy not mentioned is splitting a flattened [[3/2]] into nine sharpened [[25/24]]'s, resulting in the 5-limit version of [[valentine]] so that 31edo is the unique tuning that combines them. Furthermore, splitting the meantone fifth into two and three in the ways described above leads to meantone + miracle without tempering 225/224, which interestingly, though a rank 2 temperament, only has 31edo as a [[patent val]] tuning (corresponding to also tempering 225/224).
[[31edo]] is unique as combining all aforementioned tempering strategies into one elegant [[11-limit]] meantone temperament; it also combines yet more extensions of meantone not discussed here, and it has a very accurate [[5/4]] and [[7/4]] and an even more accurate [[35/32]]. A tempering strategy not mentioned is splitting a flattened [[3/2]] into nine sharpened [[25/24]]'s, resulting in the 5-limit version of [[valentine]] so that 31edo is the unique tuning that combines them. Furthermore, splitting the meantone fifth into two and three in the ways described above leads to meantone + miracle without tempering out 225/224, which interestingly, though a rank-2 temperament, only has 31edo as a [[patent val]] tuning (corresponding to also tempering out 225/224).


Temperaments discussed elsewhere include
Temperaments discussed elsewhere include
* ''[[Plutus]]'' → [[Very low accuracy temperaments #Plutus|Very low accuracy temperaments]]
* ''[[Plutus]]'' (+15/14) → [[Very low accuracy temperaments #Plutus|Very low accuracy temperaments]]
* [[Godzilla]] → [[Slendro clan #Godzilla|Slendro clan]]
* [[Godzilla]] (+49/48) → [[Semaphoresmic clan #Godzilla|Semaphoresmic clan]]
* [[Mothra]] → [[Gamelismic clan #Mothra|Gamelismic clan]]
* [[Mothra]] (+1029/1024) → [[Gamelismic clan #Mothra|Gamelismic clan]]
* [[Mohaha]] → [[Rastmic clan #Mohaha|Rastmic clan]]
* ''[[Mohaha]]'' (+121/120) → [[Rastmic clan #Mohaha|Rastmic clan]]
* [[No-sevens subgroup temperaments#Dequarter|Dequarter]] → [[No-sevens subgroup temperaments#Dequarter|No-sevens subgroup temperaments]]


The rest are considered below.
The rest are considered below.
Line 84: Line 86:
{{Wikipedia| Septimal meantone temperament }}
{{Wikipedia| Septimal meantone temperament }}


In septimal meantone, ten fifths get to the interval class for 7, so that [[7/4]] is an augmented sixth (C-A♯), [[7/6]] is an augmented second (C-D♯), [[7/5]] is an augmented fourth (C-F♯), and [[21/16]] is an augmented third (C-E♯). Septimal meantone tempers out the common 7-limit commas [[126/125]], [[225/224]], and [[3136/3125]] and in fact can be defined as the 7-limit temperament that tempers out any two of 81/80, 126/125 and 225/224.  
In septimal meantone, ten fifths get to the interval class for 7, so that [[7/4]] is an augmented sixth (C–A♯), [[7/6]] is an augmented second (C–D♯), [[7/5]] is an augmented fourth (C–F♯), and [[21/16]] is an augmented third (C–E♯). Septimal meantone tempers out the common 7-limit commas [[126/125]], [[225/224]], and [[3136/3125]] and in fact can be defined as the 7-limit temperament that tempers out any two of 81/80, 126/125 and 225/224.  


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 91: Line 93:


{{Mapping|legend=1| 1 0 -4 -13 | 0 1 4 10 }}
{{Mapping|legend=1| 1 0 -4 -13 | 0 1 4 10 }}
{{Multival|legend=1| 1 4 10 4 13 12 }}


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1\1, ~3/2 = 696.9521
* [[WE]]: ~2 = 1201.2358{{c}}, ~3/2 = 697.2122{{c}}
* [[POTE]]: ~2 = 1\1, ~3/2 = 696.495
: [[error map]]: {{val| +1.236 -3.507 +2.535 -0.412 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 696.6562{{c}}
: error map: {{val| 0.000 -5.299 +0.311 -2.264 }}


[[Minimax tuning]]:  
[[Minimax tuning]]:  
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~3/2 = {{monzo| 0 0 1/4 }} (1/4-comma)
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~3/2 = {{monzo| 0 0 1/4 }} (1/4-comma)
: [[projection map]]: {{monzo list| 1 0 0 0 | 1 0 1/4 0 | 0 0 1 0 | -3 0 5/2 0 }}
: [[projection map]]: {{monzo list| 1 0 0 0 | 1 0 1/4 0 | 0 0 1 0 | -3 0 5/2 0 }}
: [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.5
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5


[[Tuning ranges]]:  
[[Tuning ranges]]:  
Line 112: Line 114:
{{Optimal ET sequence|legend=1| 12, 19, 31, 81, 112b, 143b }}
{{Optimal ET sequence|legend=1| 12, 19, 31, 81, 112b, 143b }}


[[Badness]]: 0.013707
[[Badness]] (Sintel): 0.347


=== Undecimal meantone (huygens) ===
=== Undecimal meantone (huygens) ===
{{Redirect|Huygens|the Dutch mathematician, physicist and astronomer|Wikipedia: Christiaan Huygens}}
{{Redirect|Huygens|the Dutch mathematician, physicist and astronomer|Wikipedia: Christiaan Huygens}}
{{See also| Meantone vs meanpop }}
{{See also| Huygens vs meanpop }}


Undecimal meantone maps the [[11/8]] to the double augmented third (C-E𝄪), and tridecimal meantone maps the [[13/8]] to the double augmented fifth (C-G𝄪). Note that the minor third conflates 13/11 with 6/5, and that 11/10~13/12 is the double augmented unison; 12/11 is a double diminished third; and 14/13 is a minor second.  
Undecimal meantone<ref name="meantone & meanpop 2003">[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_6048.html#6052 Yahoo! Tuning Group | ''good 11-limit meantones'']</ref> a.k.a. huygens<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_10437.html Yahoo! Tuning Group | ''The meantone family'']</ref><ref name="meantone & meanpop 2004">[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_10864.html#10870 Yahoo! Tuning Group | ''names and definitions: meantone'']</ref> maps the [[11/8]] to the double-augmented third (C–E𝄪), and tridecimal meantone maps the [[13/8]] to the double-augmented fifth (C–G𝄪). Note that the minor third conflates 13/11 with 6/5, and that 11/10~13/12 is a double-augmented unison; 12/11 is a double-diminished third; and 14/13 is a minor second.  


Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11
Line 125: Line 127:


Mapping: {{mapping| 1 0 -4 -13 -25 | 0 1 4 10 18 }}
Mapping: {{mapping| 1 0 -4 -13 -25 | 0 1 4 10 18 }}
{{Multival|legend=1| 1 4 10 18 4 13 25 12 28 16 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 697.1676
* WE: ~2 = 1200.7636{{c}}, ~3/2 = 697.4122{{c}}
* POTE: ~2 = 1\1, ~3/2 = 696.967
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.0315{{c}}


Minimax tuning:  
Minimax tuning:  
* 11-odd-limit: ~3/2 = {{monzo| 9/16 -1/8 0 0 1/16 }}
* 11-odd-limit: ~3/2 = {{monzo| 9/16 -1/8 0 0 1/16 }}
: projection map: [{{monzo| 1 0 0 0 0 }}, {{monzo| 25/16 -1/8 0 0 1/16 }}, {{monzo| 9/4 -1/2 0 0 1/4 }}, {{monzo| 21/8 -5/4 0 0 5/8 }}, {{monzo| 25/8 -9/4 0 0 9/8 }}]
: projection map: [{{monzo| 1 0 0 0 0 }}, {{monzo| 25/16 -1/8 0 0 1/16 }}, {{monzo| 9/4 -1/2 0 0 1/4 }}, {{monzo| 21/8 -5/4 0 0 5/8 }}, {{monzo| 25/8 -9/4 0 0 9/8 }}]
: eigenmonzo (unchanged-interval) basis: 2.11/9
: unchanged-interval (eigenmonzo) basis: 2.11/9


Tuning ranges:  
Tuning ranges:  
Line 143: Line 143:
Algebraic generator: Traverse, the positive real root of ''x''<sup>4</sup> + 2''x'' - 13, or 696.9529 cents.
Algebraic generator: Traverse, the positive real root of ''x''<sup>4</sup> + 2''x'' - 13, or 696.9529 cents.


{{Optimal ET sequence|legend=1| 12, 19e, 31, 105, 136b }}
{{Optimal ET sequence|legend=0| 12, 19e, 31, 105, 136b }}


Badness: 0.017027
Badness (Sintel): 0.563


; Music
; Music
Line 158: Line 158:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 696.8552
* WE: ~2 = 1200.8149{{c}}, ~3/2 = 697.1155{{c}}
* POTE: ~2 = 1\1, ~3/2 = 696.642
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.7085{{c}}


Minimax tuning:  
Minimax tuning:  
* 13- and 15-odd-limit: ~3/2 = {{monzo| 9/16 -1/8 0 0 1/16 }}
* 13- and 15-odd-limit: ~3/2 = {{monzo| 9/16 -1/8 0 0 1/16 }}
: eigenmonzo (unchanged-interval) basis: 2.11/9
: unchanged-interval (eigenmonzo) basis: 2.11/9


{{Optimal ET sequence|legend=1| 12f, 19e, 31 }}
{{Optimal ET sequence|legend=0| 12f, 19e, 31 }}


Badness: 0.018048
Badness (Sintel): 0.746


===== Meantonic =====
===== Meantonic =====
Dubbed ''meantonic'' here, this extension maps the 17/16 to the octave-reduced triple augmented seventh (C-B𝄪♯), and 19/16 to the quadruple augmented unison (C-C𝄪𝄪). The major second is now 19/17, and 17/16 is conflated with 19/18, as do all the other extensions discussed below. 31edo also conflates 17/16~19/18 with 16/15 whereas 50edo conflates all of 17/16, 18/17, 19/18, and 20/19, so a good tuning would be somewhere in this range.  
Dubbed ''meantonic'' here, this extension maps the 17/16 to the octave-reduced triple-augmented seventh (C–B𝄪♯), and 19/16 to the quadruple-augmented unison (C–C𝄪𝄪). The major second is now 19/17, and 17/16 is conflated with 19/18, as do all the other extensions discussed below. 31edo also conflates 17/16~19/18 with 16/15 whereas 50edo conflates all of 17/16, 18/17, 19/18, and 20/19, so a good tuning would be somewhere in this range.  


Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13.17
Line 179: Line 179:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 696.6486
* WE: ~2 = 1201.2376{{c}}, ~3/2 = 697.0954{{c}}
* POTE: ~2 = 1\1, ~3/2 = 696.377
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4563{{c}}


{{Optimal ET sequence|legend=1| 12fg, 19eg, 31, 50e }}
{{Optimal ET sequence|legend=0| 12fg, 19eg, 31, 50e }}


Badness: 0.019037
Badness (Sintel): 0.970


====== 19-limit ======
====== 19-limit ======
Line 194: Line 194:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 696.5551
* WE: ~2 = 1201.4134{{c}}, ~3/2 = 697.0933{{c}}
* POTE: ~2 = 1\1, ~3/2 = 696.273
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.3526{{c}}
 
{{Optimal ET sequence|legend=1| 12fghh, 19egh, 31, 50e }}
 
Badness: 0.017846


===== Meantoid =====
{{Optimal ET sequence|legend=0| 12fghh, 19egh, 31, 50e }}
Dubbed ''meantoid'' here, this extension maps 17/16~19/18 to the augmented unison (C-C♯) and 19/16 to the augmented second (C-D♯). For any tuning flatter than 12edo, the sizes of 17/16 (augmented unison) and 18/17 (minor second) are inverted, so genuine septendecimal and undevicesimal harmony cannot be expected.


Subgroup: 2.3.5.7.11.13.17
Badness (Sintel): 1.09
 
Comma list: 51/50, 66/65, 81/80, 85/84, 99/98
 
Mapping: {{mapping| 1 0 -4 -13 -25 -20 -7 | 0 1 4 10 18 15 7 }}
 
Optimal tunings:
* CTE: ~2 = 1\1, ~3/2 = 697.0360
* POTE: ~2 = 1\1, ~3/2 = 696.448
 
{{Optimal ET sequence|legend=1| 12f, 19eg, 31g }}
 
Badness: 0.019433
 
====== 19-limit ======
Subgroup: 2.3.5.7.11.13.17.19
 
Comma list: 51/50, 57/56, 66/65, 81/80, 85/84, 99/98
 
Mapping: {{mapping| 1 0 -4 -13 -25 -20 -7 -10 | 0 1 4 10 18 15 7 9 }}
 
Optimal tunings:
* CTE: ~2 = 1\1, ~3/2 = 697.2161
* POTE: ~2 = 1\1, ~3/2 = 696.394
 
{{Optimal ET sequence|legend=1| 12f, 19egh, 31gh }}
 
Badness: 0.017437


===== Huygens =====
===== Huygens =====
Dubbed ''huygens'' here, this extension is perhaps the most practical, as it maps 17/16 to the minor second (C-D♭), and 19/16 to the minor third (C-E♭), suitable for a system generated by a mildly tempered fifth.  
Dubbed ''huygens'' here, this extension is perhaps the most practical, as it maps 17/16 to the minor second (C–D♭), and 19/16 to the minor third (C–E♭), suitable for a system generated by a mildly tempered fifth.  


Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13.17
Line 243: Line 211:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 696.9080
* WE: ~2 = 1199.5548{{c}}, ~3/2 = 696.7449{{c}}
* POTE: ~2 = 1\1, ~3/2 = 697.003
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.9823{{c}}


{{Optimal ET sequence|legend=1| 12f, 31 }}
{{Optimal ET sequence|legend=0| 12f, 31 }}


Badness: 0.019982
Badness (Sintel): 1.02


====== 19-limit ======
====== 19-limit ======
Line 258: Line 226:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 696.9308
* WE: ~2 = 1199.0408{{c}}, ~3/2 = 696.5824{{c}}
* POTE: ~2 = 1\1, ~3/2 = 697.140
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.1061{{c}}


{{Optimal ET sequence|legend=1| 12f, 31 }}
{{Optimal ET sequence|legend=0| 12f, 31 }}


Badness: 0.018047
Badness (Sintel): 1.10


==== Grosstone ====
==== Grosstone ====
Grosstone maps 13/8 to the double diminished seventh (C-B♭♭♭).  
Grosstone maps 13/8 to the double-diminished seventh (C–B♭♭♭).  


Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13
Line 275: Line 243:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 697.2582
* WE: ~2 = 1199.9389{{c}}, ~3/2 = 697.2282{{c}}
* POTE: ~2 = 1\1, ~3/2 = 697.264
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.2627{{c}}


Minimax tuning:  
Minimax tuning:  
Line 286: Line 254:
* 13- and 15-odd-limit diamond tradeoff: ~3/2 = [691.202, 701.955] (1/2-comma to Pyth.)
* 13- and 15-odd-limit diamond tradeoff: ~3/2 = [691.202, 701.955] (1/2-comma to Pyth.)


{{Optimal ET sequence|legend=1| 12, 31, 43, 74 }}
{{Optimal ET sequence|legend=0| 12, 31, 43, 74 }}


Badness: 0.025899
Badness (Sintel): 1.07


===== 17-limit =====
===== 17-limit =====
Line 298: Line 266:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 697.2996
* WE: ~2 = 1199.5811{{c}}, ~3/2 = 697.0918{{c}}
* POTE: ~2 = 1\1, ~3/2 = 697.335
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.3303{{c}}


{{Optimal ET sequence|legend=1| 12, 31, 43, 74g }}
{{Optimal ET sequence|legend=0| 12, 31, 43, 74g }}


Badness: 0.020889
Badness (Sintel): 1.06


===== 19-limit =====
===== 19-limit =====
Line 313: Line 281:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 697.3271
* WE: ~2 = 1199.2931{{c}}, ~3/2 = 696.9690{{c}}
* POTE: ~2 = 1\1, ~3/2 = 697.380
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.3736{{c}}


{{Optimal ET sequence|legend=1| 12, 31, 43, 74gh }}
{{Optimal ET sequence|legend=0| 12, 31, 43, 74gh }}


Badness: 0.017611
Badness (Sintel): 1.07


==== Meridetone ====
==== Meridetone ====
Meridetone maps the 13/8 to the quadruple augmented fourth (C-F𝄪𝄪).  
Meridetone maps the 13/8 to the quadruple-augmented fourth (C–F𝄪𝄪).  


Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13
Line 330: Line 298:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 697.5155
* WE: ~2 = 1199.9122{{c}}, ~3/2 = 697.4779{{c}}
* POTE: ~2 = 1\1, ~3/2 = 697.529
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.5241{{c}}


Minimax tuning:  
Minimax tuning:  
* 13- and 15-odd-limit: ~3/2 = {{monzo| 14/25 -2/25 0 0 0 1/25 }}
* 13- and 15-odd-limit: ~3/2 = {{monzo| 14/25 -2/25 0 0 0 1/25 }}
: eigenmonzo (unchanged-interval) basis: 2.13/9
: unchanged-interval (eigenmonzo) basis: 2.13/9


{{Optimal ET sequence|legend=1| 12f, 31f, 43 }}
{{Optimal ET sequence|legend=0| 12f, 31f, 43 }}


Badness: 0.026421
Badness (Sintel): 1.09


===== Meridetonic =====
===== Meridetonic =====
Line 349: Line 317:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 697.5076
* WE: ~2 = 1199.9428{{c}}, ~3/2 = 697.4804{{c}}
* POTE: ~2 = 1\1, ~3/2 = 697.514
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.5113{{c}}


{{Optimal ET sequence|legend=1| 12fg, 31fg, 43 }}
{{Optimal ET sequence|legend=0| 12fg, 31fg, 43 }}


Badness: 0.027706
Badness (Sintel): 1.41


====== 19-limit ======
====== 19-limit ======
Line 364: Line 332:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 697.4848
* WE: ~2 = 1200.0089{{c}}, ~3/2 = 697.4864{{c}}
* POTE: ~2 = 1\1, ~3/2 = 697.481
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.4815{{c}}


{{Optimal ET sequence|legend=1| 12fghh, 31fgh, 43 }}
{{Optimal ET sequence|legend=0| 12fghh, 31fgh, 43 }}


Badness: 0.025315
Badness (Sintel): 1.54


===== Meridetoid =====
===== Sauveuric =====
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13.17


Comma list: 51/50, 78/77, 81/80, 85/84, 99/98
Comma list: 78/77, 81/80, 99/98, 120/119, 126/125


Mapping: {{mapping| 1 0 -4 -13 -25 -39 -7 | 0 1 4 10 18 27 7 }}
Mapping: {{mapping| 1 0 -4 -13 -25 -39 12 | 0 1 4 10 18 27 -5 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 697.6098
* WE: ~2 = 1199.3793{{c}}, ~3/2 = 697.2833{{c}}
* POTE: ~2 = 1\1, ~3/2 = 697.376
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.6222{{c}}


{{Optimal ET sequence|legend=1| 12f, 31fg, 43g }}
{{Optimal ET sequence|legend=0| 12f, 43 }}


Badness: 0.027518
Badness (Sintel): 1.22


====== 19-limit ======
====== 19-limit ======
Subgroup: 2.3.5.7.11.13.17.19
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 51/50, 57/56, 78/77, 81/80, 85/84, 99/98
Comma list: 78/77, 81/80, 96/95, 99/98, 120/119, 126/125


Mapping: {{mapping| 1 0 -4 -13 -25 -39 -7 -10 | 0 1 4 10 18 27 7 9 }}
Mapping: {{mapping| 1 0 -4 -13 -25 -39 12 9 | 0 1 4 10 18 27 -5 -3 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 697.7012
* WE: ~2 = 1199.0260{{c}}, ~3/2 = 697.1486{{c}}
* POTE: ~2 = 1\1, ~3/2 = 697.316
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.6887{{c}}


{{Optimal ET sequence|legend=1| 12f, 19effgh, 31fgh, 43gh }}
{{Optimal ET sequence|legend=0| 12f, 43 }}


Badness: 0.023613
Badness (Sintel): 1.25


===== Sauveuric =====
==== Hemimeantone ====
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 78/77, 81/80, 99/98, 120/119, 126/125
 
Mapping: {{mapping| 1 0 -4 -13 -25 -39 12 | 0 1 4 10 18 27 -5 }}
 
Optimal tunings:
* CTE: ~2 = 1\1, ~3/2 = 697.5384
* POTE: ~2 = 1\1, ~3/2 = 697.644
 
{{Optimal ET sequence|legend=1| 12f, 43 }}
 
Badness: 0.023881
 
====== 19-limit ======
Subgroup: 2.3.5.7.11.13.17.19
 
Comma list: 78/77, 81/80, 96/95, 99/98, 120/119, 126/125
 
Mapping: {{mapping| 1 0 -4 -13 -25 -39 12 9 | 0 1 4 10 18 27 -5 -3 }}
 
Optimal tunings:
* CTE: ~2 = 1\1, ~3/2 = 697.5550
* POTE: ~2 = 1\1, ~3/2 = 697.715
 
{{Optimal ET sequence|legend=1| 12f, 43 }}
 
Badness: 0.020540
 
==== Hemimeantone ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Line 441: Line 379:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~26/15 = 948.6109
* WE: ~2 = 1201.0387{{c}}, ~26/15 = 949.2863{{c}}
* POTE: ~2 = 1\1, ~26/15 = 948.465
* CWE: ~2 = 1200.0000{{c}}, ~26/15 = 948.5065{{c}}


{{Optimal ET sequence|legend=1| 19e, 43, 62 }}
{{Optimal ET sequence|legend=0| 19e, 43, 62 }}


Badness: 0.031433
Badness (Sintel): 1.30


===== 17-limit =====
===== 17-limit =====
Line 456: Line 394:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~26/15 = 948.6173
* WE: ~2 = 1201.0270{{c}}, ~26/15 = 949.2892{{c}}
* POTE: ~2 = 1\1, ~26/15 = 948.477
* CWE: ~2 = 1200.0000{{c}}, ~26/15 = 948.5169{{c}}


{{Optimal ET sequence|legend=1| 19eg, 43, 62 }}
{{Optimal ET sequence|legend=0| 19eg, 43, 62 }}


Badness: 0.023380
Badness (Sintel): 1.19


===== 19-limit =====
===== 19-limit =====
Line 471: Line 409:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~19/11 = 948.6088
* WE: ~2 = 1201.0339{{c}}, ~19/11 = 949.2902{{c}}
* POTE: ~2 = 1\1, ~19/11 = 948.473
* CWE: ~2 = 1200.0000{{c}}, ~19/11 = 948.5111{{c}}


{{Optimal ET sequence|legend=1| 19egh, 43, 62 }}
{{Optimal ET sequence|legend=0| 19egh, 43, 62 }}


Badness: 0.018952
Badness (Sintel): 1.15


==== Semimeantone ====
==== Semimeantone ====
Line 488: Line 426:


Optimal tunings:  
Optimal tunings:  
* CTE: ~55/39 = 1\2, ~3/2 = 697.1678
* WE: ~55/39 = 600.3606{{c}}, ~3/2 = 697.4241{{c}}
* POTE: ~55/39 = 1\2, ~3/2 = 697.005
* CWE: ~55/39 = 600.0000{{c}}, ~3/2 = 697.0545{{c}}


{{Optimal ET sequence|legend=1| 12f, 38deefff, 50eff, 62, 136b }}
{{Optimal ET sequence|legend=0| 12f, , 50eff, 62, 136b }}


Badness: 0.040668
Badness (Sintel): 1.68


===== 17-limit =====
===== 17-limit =====
Line 503: Line 441:


Optimal tunings:  
Optimal tunings:  
* CTE: ~17/12 = 1\2, ~3/2 = 697.1740
* WE: ~17/12 = 600.5426{{c}}, ~3/2 = 697.5571{{c}}
* POTE: ~17/12 = 1\2, ~3/2 = 696.927
* CWE: ~17/12 = 600.0000{{c}}, ~3/2 = 696.9858{{c}}


{{Optimal ET sequence|legend=1| 12f, 50eff, 62, 136bg }}
{{Optimal ET sequence|legend=0| 12f, 50eff, 62, 136bg }}


Badness: 0.031491
Badness (Sintel): 1.60


===== 19-limit =====
===== 19-limit =====
Line 518: Line 456:


Optimal tunings:  
Optimal tunings:  
* CTE: ~17/12 = 1\2, ~3/2 = 697.1871
* WE: ~17/12 = 600.5959{{c}}, ~3/2 = 697.5985{{c}}
* POTE: ~17/12 = 1\2, ~3/2 = 696.906
* CWE: ~17/12 = 600.0000{{c}}, ~3/2 = 696.9638{{c}}


{{Optimal ET sequence|legend=1| 12f, 50eff, 62 }}
{{Optimal ET sequence|legend=0| 12f, 50eff, 62 }}


Badness: 0.024206
Badness (Sintel): 1.47


=== Meanpop ===
=== Meanpop ===
{{See also| Meantone vs meanpop }}
{{See also| Meantone vs meanpop }}


Meanpop maps the 11/8 to the double diminished fifth (C-G𝄫), and tridecimal meanpop still maps the 13/8 to the double augmented fifth (C-G𝄪). Note also 11/10 is the double diminished third; 12/11~13/12, double augmented unison; and 14/13, minor second.  
Meanpop<ref name="meantone & meanpop 2003"/><ref name="meantone & meanpop 2004"/> maps the 11/8 to the double-diminished fifth (C–G𝄫), and tridecimal meanpop still maps the 13/8 to the double-augmented fifth (C–G𝄪). Note also 11/10 is a double-diminished third; 12/11~13/12, double-augmented unison; and 14/13, minor second.  


Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11
Line 537: Line 475:


: mapping generator: ~2, ~3
: mapping generator: ~2, ~3
{{Multival|legend=1| 1 4 10 -13 4 13 -24 12 -44 -71 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 696.5311
* WE: ~2 = 1201.3464{{c}}, ~3/2 = 697.2159{{c}}
* POTE: ~2 = 1\1, ~3/2 = 696.434
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4509{{c}}


Minimax tuning:  
Minimax tuning:  
* 11-odd-limit: ~3/2 = {{monzo| 0 0 1/4 }}
* 11-odd-limit: ~3/2 = {{monzo| 0 0 1/4 }}
: [{{monzo| 1 0 0 0 0 }}, {{monzo| 1 0 1/4 0 0 }}, {{monzo| 0 0 1 0 0 }}, {{monzo| -3 0 5/2 0 0 }}, {{monzo| 11 0 -13/4 0 0 }}]
: projection map: [{{monzo| 1 0 0 0 0 }}, {{monzo| 1 0 1/4 0 0 }}, {{monzo| 0 0 1 0 0 }}, {{monzo| -3 0 5/2 0 0 }}, {{monzo| 11 0 -13/4 0 0 }}]
: eigenmonzo (unchanged-interval) basis: 2.5
: unchanged-interval (eigenmonzo) basis: 2.5


Tuning ranges:  
Tuning ranges:  
Line 555: Line 491:
Algebraic generator: Cybozem; or else Radieubiz, the real root of 3''x''<sup>3</sup> + 6''x'' - 19. Unlike Cybozem, the recurrence for Radieubiz does not converge.
Algebraic generator: Cybozem; or else Radieubiz, the real root of 3''x''<sup>3</sup> + 6''x'' - 19. Unlike Cybozem, the recurrence for Radieubiz does not converge.


{{Optimal ET sequence|legend=1| 12e, 19, 31, 81, 112b }}
{{Optimal ET sequence|legend=0| 12e, 19, 31, 81, 112b }}


Badness: 0.021543
Badness (Sintel): 0.712


; Music
; Music
Line 569: Line 505:


Mapping: {{mapping| 1 0 -4 -13 24 -20 | 0 1 4 10 -13 15 }}
Mapping: {{mapping| 1 0 -4 -13 24 -20 | 0 1 4 10 -13 15 }}
{{Multival|legend=1| 1 4 10 -13 15 4 13 -24 20 12 -44 20 -71 5 100 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 696.3563
* WE: ~2 = 1201.0765{{c}}, ~3/2 = 696.8361{{c}}
* POTE: ~2 = 1\1, ~3/2 = 696.211
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2347{{c}}


Minimax tuning:  
Minimax tuning:  
* 13- and 15-odd-limit: ~3/2 = {{monzo| 4/7 0 0 0 -1/28 1/28 }}
* 13- and 15-odd-limit: ~3/2 = {{monzo| 4/7 0 0 0 -1/28 1/28 }}
: eigenmonzo (unchanged-interval) basis: 2.13/11
: unchanged-interval (eigenmonzo) basis: 2.13/11


Tuning ranges:  
Tuning ranges:  
Line 584: Line 518:
* 13- and 15-odd-limit diamond tradeoff: ~3/2 = [691.202, 701.955] (1/2-comma to Pyth.)
* 13- and 15-odd-limit diamond tradeoff: ~3/2 = [691.202, 701.955] (1/2-comma to Pyth.)


{{Optimal ET sequence|legend=1| 19, 31, 50, 81 }}
{{Optimal ET sequence|legend=0| 19, 31, 50, 81 }}


Badness: 0.020883
Badness (Sintel): 0.863


===== Meanpoppic =====
===== Meanpoppic =====
Line 596: Line 530:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 696.3508
* WE: ~2 = 1201.0727{{c}}, ~3/2 = 696.8168{{c}}
* POTE: ~2 = 1\1, ~3/2 = 696.194
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2195{{c}}


{{Optimal ET sequence|legend=1| 19g, 31, 50, 81, 131bd }}
{{Optimal ET sequence|legend=0| 19g, 31, 50, 81, 131bd }}


Badness: 0.019953
Badness (Sintel): 1.02


====== 19-limit ======
====== 19-limit ======
Line 611: Line 545:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 696.3471
* WE: ~2 = 1201.0719{{c}}, ~3/2 = 696.8101{{c}}
* POTE: ~2 = 1\1, ~3/2 = 696.188
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2137{{c}}


{{Optimal ET sequence|legend=1| 19gh, 31, 50, 81 }}
{{Optimal ET sequence|legend=0| 19gh, 31, 50, 81 }}


Badness: 0.017791
Badness (Sintel): 1.08


===== Meanpoid =====
===== Meanpoid =====
Line 626: Line 560:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 696.4388
* WE: ~2 = 1200.2768{{c}}, ~3/2 = 696.5683{{c}}
* POTE: ~2 = 1\1, ~3/2 = 696.408
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4114{{c}}


{{Optimal ET sequence|legend=1| 19, 31 }}
{{Optimal ET sequence|legend=0| 19, 31 }}


Badness: 0.022870
Badness (Sintel): 1.17


====== 19-limit ======
====== 19-limit ======
Line 641: Line 575:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 696.4838
* WE: ~2 = 1199.7905{{c}}, ~3/2 = 696.3779{{c}}
* POTE: ~2 = 1\1, ~3/2 = 696.499
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4973{{c}}


{{Optimal ET sequence|legend=1| 12ef, 19, 31 }}
{{Optimal ET sequence|legend=0| 19, 31 }}


Badness: 0.020488
Badness (Sintel): 1.25


==== Meanplop ====
==== Meanplop ====
Line 654: Line 588:


Mapping: {{mapping| 1 0 -4 -13 24 10 | 0 1 4 10 -13 -4 }}
Mapping: {{mapping| 1 0 -4 -13 24 10 | 0 1 4 10 -13 -4 }}
{{Multival|legend=1| 1 4 10 -13 -4 4 13 -24 -10 12 -44 -24 -71 -48 34 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 696.2827
* WE: ~2 = 1202.3237{{c}}, ~3/2 = 697.5502{{c}}
* POTE: ~2 = 1\1, ~3/2 = 696.202
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2135{{c}}


Minimax tuning:  
Minimax tuning:  
* 13- and 15-odd-limit: ~3/2 = {{monzo| 11/13 0 0 0 -1/13 }}
* 13- and 15-odd-limit: ~3/2 = {{monzo| 11/13 0 0 0 -1/13 }}
: Eigenmonzo (unchanged-interval) basis: 2.11
: unchanged-interval (eigenmonzo) basis: 2.11


{{Optimal ET sequence|legend=1| 12e, 19, 31f }}
{{Optimal ET sequence|legend=0| 12e, 19, 31f }}


Badness: 0.027666
Badness (Sintel): 1.14


===== 17-limit =====
===== 17-limit =====
Line 677: Line 609:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 696.4069
* WE: ~2 = 1201.4737{{c}}, ~3/2 = 697.2690{{c}}
* POTE: ~2 = 1\1, ~3/2 = 696.414
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4129{{c}}


{{Optimal ET sequence|legend=1| 12e, 19 }}
{{Optimal ET sequence|legend=0| 12e, 19 }}


Badness: 0.026836
Badness (Sintel): 1.37


====== 19-limit ======
===== 19-limit =====
Subgroup: 2.3.5.7.11.13.17.19
Subgroup: 2.3.5.7.11.13.17.19


Line 692: Line 624:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 696.4731
* WE: ~2 = 1200.8839{{c}}, ~3/2 = 697.0104{{c}}
* POTE: ~2 = 1\1, ~3/2 = 696.497
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4949{{c}}


{{Optimal ET sequence|legend=1| 12e, 19 }}
{{Optimal ET sequence|legend=0| 12e, 19 }}


Badness: 0.023540
Badness (Sintel): 1.43


===== Meanploid =====
=== Meanenneadecal ===
Subgroup: 2.3.5.7.11.13.17
Meanenneadecal maps the 11/8 to the augmented fourth (C–F♯), and tridecimal meanenneadecal still maps the 13/8 to the double-augmented fifth (C–G𝄪). Note also 11/10 is a major second; 12/11~14/13, minor second; and 13/12, double-augmented unison.  
 
Comma list: 51/50, 65/64, 78/77, 81/80, 85/84
 
Mapping: {{mapping| 1 0 -4 -13 24 10 -7 | 0 1 4 10 -13 -4 7 }}
 
Optimal tunings:
* CTE: ~2 = 1\1, ~3/2 = 696.6614
* POTE: ~2 = 1\1, ~3/2 = 696.415
 
{{Optimal ET sequence|legend=1| 12e, 19g, 31fg }}
 
Badness: 0.026094
 
====== 19-limit ======
Subgroup: 2.3.5.7.11.13.17.19
 
Comma list: 51/50, 57/56, 65/64, 76/75, 78/77, 81/80
 
Mapping: {{mapping| 1 0 -4 -13 24 10 -7 -10 | 0 1 4 10 -13 -4 7 9 }}
 
Optimal tunings:
* CTE: ~2 = 1\1, ~3/2 = 697.0160
* POTE: ~2 = 1\1, ~3/2 = 696.583
 
{{Optimal ET sequence|legend=1| 12e, 19gh, 31fgh }}
 
Badness: 0.023104
 
=== Meanenneadecal ===
Meanenneadecal maps the 11/8 to the augmented fourth (C-F♯), and tridecimal meanenneadecal still maps the 13/8 to the double augmented fifth (C-G𝄪). Note also 11/10 is the major second; 12/11~14/13, minor second; and 13/12, double augmented unison.  


Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11
Line 737: Line 639:


Mapping: {{mapping| 1 0 -4 -13 -6 | 0 1 4 10 6 }}
Mapping: {{mapping| 1 0 -4 -13 -6 | 0 1 4 10 6 }}
{{Multival|legend=1| 1 4 10 6 4 13 6 12 0 -18 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 696.1527
* WE: ~2 = 1199.6946{{c}}, ~3/2 = 696.0729{{c}}
* POTE: ~2 = 1\1, ~3/2 = 696.250
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2083{{c}}


Tuning ranges:  
Tuning ranges:  
Line 748: Line 648:
* 11-odd-limit diamond tradeoff: ~3/2 = [682.502, 704.377]
* 11-odd-limit diamond tradeoff: ~3/2 = [682.502, 704.377]


{{Optimal ET sequence|legend=1| 7d, 12, 19, 31e }}
{{Optimal ET sequence|legend=0| 7d, 12, 19, 31e }}


Badness: 0.021423
Badness (Sintel): 0.708


==== 13-limit ====
==== 13-limit ====
Line 758: Line 658:


Mapping: {{mapping| 1 0 -4 -13 -6 -20 | 0 1 4 10 6 15 }}
Mapping: {{mapping| 1 0 -4 -13 -6 -20 | 0 1 4 10 6 15 }}
{{Multival|legend=1| 1 4 10 6 15 4 13 6 20 12 0 20 -18 5 30 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 696.0983
* WE: ~2 = 1199.7931{{c}}, ~3/2 = 696.0258{{c}}
* POTE: ~2 = 1\1, ~3/2 = 696.146
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.1241{{c}}


{{Optimal ET sequence|legend=1| 7df, 12f, 19, 31e }}
{{Optimal ET sequence|legend=0| 7df, 12f, 19, 31e }}


Badness: 0.021182
Badness (Sintel): 0.875


===== 17-limit =====
===== 17-limit =====
Line 777: Line 675:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 696.2161
* WE: ~2 = 1198.6665{{c}}, ~3/2 = 695.8010{{c}}
* POTE: ~2 = 1\1, ~3/2 = 696.575
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.4998{{c}}


{{Optimal ET sequence|legend=1| 12f, 19, 31e }}
{{Optimal ET sequence|legend=0| 12f, 19, 31e }}


Badness: 0.022980
Badness (Sintel): 1.17


====== 19-limit ======
===== 19-limit =====
Subgroup: 2.3.5.7.11.13.17.19
Subgroup: 2.3.5.7.11.13.17.19


Line 792: Line 690:


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 696.2774
* WE: ~2 = 1198.2880{{c}}, ~3/2 = 695.7123{{c}}
* POTE: ~2 = 1\1, ~3/2 = 696.706
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.6370{{c}}


{{Optimal ET sequence|legend=1| 12f, 19, 31e }}
{{Optimal ET sequence|legend=0| 12f, 19, 31e }}


Badness: 0.020293
Badness (Sintel): 1.23


===== Meanenneadecoid =====
==== Vincenzo ====
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13


Comma list: 34/33, 45/44, 51/50, 56/55, 78/77
Comma list: 45/44, 56/55, 65/64, 81/80


Mapping: {{mapping| 1 0 -4 -13 -6 -20 -7 | 0 1 4 10 6 15 7 }}
Mapping: {{mapping| 1 0 -4 -13 -6 10 | 0 1 4 10 6 -4 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 696.4501
* WE: ~2 = 1202.1684{{c}}, ~3/2 = 696.3160{{c}}
* POTE: ~2 = 1\1, ~3/2 = 696.025
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.2045{{c}}


{{Optimal ET sequence|legend=1| 7dfg, 12f, 19g }}
{{Optimal ET sequence|legend=0| 7d, 12, 19 }}


Badness: 0.020171
Badness (Sintel): 1.02


====== 19-limit ======
===== 17-limit =====
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 45/44, 52/51, 56/55, 65/64, 81/80
 
Mapping: {{mapping| 1 0 -4 -13 -6 10 12 | 0 1 4 10 6 -4 -5 }}
 
Optimal tunings:
* WE: ~2 = 1200.5137{{c}}, ~3/2 = 696.1561{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.8771{{c}}
 
{{Optimal ET sequence|legend=0| 12, 19 }}
 
Badness (Sintel): 1.30
 
===== 19-limit =====
Subgroup: 2.3.5.7.11.13.17.19
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 34/33, 45/44, 51/50, 56/55, 57/55, 78/77
Comma list: 39/38, 45/44, 52/51, 56/55, 65/64, 81/80


Mapping: {{mapping| 1 0 -4 -13 -6 -20 -7 -10 | 0 1 4 10 6 15 7 9 }}
Mapping: {{mapping| 1 0 -4 -13 -6 10 12 9 | 0 1 4 10 6 -4 -5 -3 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 696.7925
* WE: ~2 = 1199.8261{{c}}, ~3/2 = 696.0298{{c}}
* POTE: ~2 = 1\1, ~3/2 = 696.121
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.1262{{c}}


{{Optimal ET sequence|legend=1| 7dfgh, 12f, 19gh }}
{{Optimal ET sequence|legend=0| 12, 19 }}


Badness: 0.018045
Badness (Sintel): 1.36


==== Vincenzo ====
==== Meanundec ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 45/44, 56/55, 65/64, 81/80
Comma list: 27/26, 40/39, 45/44, 56/55


Mapping: {{mapping| 1 0 -4 -13 -6 10 | 0 1 4 10 6 -4 }}
Mapping: {{mapping| 1 0 -4 -13 -6 -1 | 0 1 4 10 6 3 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 695.7897
* WE: ~2 = 1196.0359{{c}}, ~3/2 = 694.9504{{c}}
* POTE: ~2 = 1\1, ~3/2 = 695.060
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.7474{{c}}


{{Optimal ET sequence|legend=1| 7d, 12, 19 }}
{{Optimal ET sequence|legend=0| 7d, 12f, 19f }}


Badness: 0.024763
Badness (Sintel): 1.00


===== 17-limit =====
===== 17-limit =====
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13.17


Comma list: 45/44, 52/51, 56/55, 65/64, 81/80
Comma list: 27/26, 34/33, 40/39, 45/44, 56/55


Mapping: {{mapping| 1 0 -4 -13 -6 10 12 | 0 1 4 10 6 -4 -5 }}
Mapping: {{mapping| 1 0 -4 -13 -6 -1 -7 | 0 1 4 10 6 3 7 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 696.0114
* WE: ~2 = 1196.8604{{c}}, ~3/2 = 695.7613{{c}}
* POTE: ~2 = 1\1, ~3/2 = 695.858
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.1744{{c}}


{{Optimal ET sequence|legend=1| 12, 19 }}
{{Optimal ET sequence|legend=0| 7dg, 12f }}


Badness: 0.025535
Badness (Sintel): 1.09


====== 19-limit ======
===== 19-limit =====
Subgroup: 2.3.5.7.11.13.17.19
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 39/38, 45/44, 52/51, 56/55, 65/64, 81/80
Comma list: 27/26, 34/33, 40/39, 45/44, 56/55, 57/55


Mapping: {{mapping| 1 0 -4 -13 -6 10 12 9 | 0 1 4 10 6 -4 -5 -3 }}
Mapping: {{mapping| 1 0 -4 -13 -6 -1 -7 -10 | 0 1 4 10 6 3 7 9 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 696.1196
* WE: ~2 = 1196.9296{{c}}, ~3/2 = 696.3321{{c}}
* POTE: ~2 = 1\1, ~3/2 = 696.131
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.7122{{c}}


{{Optimal ET sequence|legend=1| 12, 19 }}
{{Optimal ET sequence|legend=0| 7dgh, 12f }}


Badness: 0.022302
Badness (Sintel): 1.16


====== 23-limit ======
=== Meanundeci ===
Subgroup: 2.3.5.7.11.13.17.19.23
Meanundeci is a low-complexity low-accuracy entry that maps the 11/8 to the perfect fourth (C–F), and tridecimal meanundeci maps the 13/8 to the minor sixth (C–A♭).
 
Subgroup: 2.3.5.7.11


Comma list: 39/38, 45/44, 52/51, 56/55, 65/64, 69/68, 81/80
Comma list: 33/32, 55/54, 77/75


Mapping: {{mapping| 1 0 -4 -13 -6 10 12 9 14 | 0 1 4 10 6 -4 -5 -3 -6 }}
Mapping: {{mapping| 1 0 -4 -13 5 | 0 1 4 10 -1 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 696.0585
* WE: ~2 = 1205.7146{{c}}, ~3/2 = 697.9977{{c}}
* POTE: ~2 = 1\1, ~3/2 = 696.044
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.1805{{c}}


{{Optimal ET sequence|legend=1| 12, 19 }}
{{Optimal ET sequence|legend=0| 7d, 12e, 19e }}


Badness: 0.020139
Badness (Sintel): 1.04


====== 29-limit ======
==== 13-limit ====
Subgroup: 2.3.5.7.11.13.17.19.23.29
Subgroup: 2.3.5.7.11.13


Comma list: 39/38, 45/44, 52/51, 56/55, 58/57, 65/64, 69/68, 81/80
Comma list: 33/32, 55/54, 65/64, 77/75


Mapping: {{mapping| 1 0 -4 -13 -6 10 12 9 14 8 | 0 1 4 10 6 -4 -5 -3 -6 -2 }}
Mapping: {{mapping| 1 0 -4 -13 5 10 | 0 1 4 10 -1 -4 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 695.9824
* WE: ~2 = 1205.5631{{c}}, ~3/2 = 697.9847{{c}}
* POTE: ~2 = 1\1, ~3/2 = 695.913
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.0144{{c}}


{{Optimal ET sequence|legend=1| 12, 19 }}
{{Optimal ET sequence|legend=0| 7d, 12e, 19e }}


Badness: 0.018168
Badness (Sintel): 1.09


====== 31-limit ======
=== Bimeantone ===
Subgroup: 2.3.5.7.11.13.17.19.23.29.31
11/8 is mapped to half octave minus the [[128/125|meantone diesis]].  


Comma list: 39/38, 45/44, 52/51, 56/55, 58/57, 65/64, 69/68, 81/80, 93/92
Subgroup: 2.3.5.7.11


Mapping: {{mapping| 1 0 -4 -13 -6 10 12 9 14 8 16 | 0 1 4 10 6 -4 -5 -3 -6 -2 -7 }}
Comma list: 81/80, 126/125, 245/242
 
Mapping: {{mapping| 2 0 -8 -26 -31 | 0 1 4 10 12 }}
 
: mapping generators: ~63/44, ~3


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 695.7980
* WE: ~63/44 = 600.7492{{c}}, ~3/2 = 696.8853{{c}}
* POTE: ~2 = 1\1, ~3/2 = 695.750
* CWE: ~63/44 = 600.0000{{c}}, ~3/2 = 696.1908{{c}}


{{Optimal ET sequence|legend=1| 12, 19 }}
{{Optimal ET sequence|legend=0| 12, 26de, 38d, 50 }}


Badness: 0.017069
Badness (Sintel): 1.26


====== 37-limit ======
==== 13-limit ====
Subgroup: 2.3.5.7.11.13.17.19.23.29.31.37
Subgroup: 2.3.5.7.11.13


Comma list: 39/38, 45/44, 52/51, 56/55, 58/57, 65/64, 69/68, 75/74, 81/80, 93/92
Comma list: 81/80, 105/104, 126/125, 245/242


Mapping: {{mapping| 1 0 -4 -13 -6 10 12 9 14 8 16 -9 | 0 1 4 10 6 -4 -5 -3 -6 -2 -7 9 }}
Mapping: {{mapping| 2 0 -8 -26 -31 -40 | 0 1 4 10 12 15 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 695.6746
* WE: ~55/39 = 600.8309{{c}}, ~3/2 = 696.8000{{c}}
* POTE: ~2 = 1\1, ~3/2 = 695.603
* CWE: ~55/39 = 600.0000{{c}}, ~3/2 = 696.0066{{c}}


{{Optimal ET sequence|legend=1| 12, 19 }}
{{Optimal ET sequence|legend=0| 12f, 26deff, 38df, 50 }}


Badness: 0.016129
Badness (Sintel): 1.19


====== 41-limit ======
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17.19.23.29.31.37.41
Subgroup: 2.3.5.7.11.13.17


Comma list: 39/38, 45/44, 52/51, 56/55, 58/57, 65/64, 69/68, 75/74, 81/80, 93/92, 124/123
Comma list: 81/80, 105/104, 126/125, 189/187, 221/220


Mapping: {{mapping| 1 0 -4 -13 -6 10 12 9 14 8 16 -9 18 | 0 1 4 10 6 -4 -5 -3 -6 -2 -7 9 -8 }}
Mapping: {{mapping| 2 0 -8 -26 -31 -40 5 | 0 1 4 10 12 15 1 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 695.7239
* WE: ~17/12 = 600.9234{{c}}, ~3/2 = 696.8536{{c}}
* POTE: ~2 = 1\1, ~3/2 = 695.696
* CWE: ~17/12 = 600.0000{{c}}, ~3/2 = 695.9317{{c}}


{{Optimal ET sequence|legend=1| 12, 19 }}
{{Optimal ET sequence|legend=0| 12f, 38df, 50 }}


Badness: 0.015356
Badness (Sintel): 1.15


====== 43-limit ======
==== 19-limit ====
Subgroup: 2.3.5.7.11.13.17.19.23.29.31.37.41.43
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 39/38, 45/44, 52/51, 56/55, 58/57, 65/64, 69/68, 75/74, 81/80, 86/85, 93/92, 124/123
Comma list: 81/80, 105/104, 126/125, 153/152, 189/187, 221/220


Mapping: {{mapping| 1 0 -4 -13 -6 10 12 9 14 8 16 -9 18 7 | 0 1 4 10 6 -4 -5 -3 -6 -2 -7 9 -8 -1 }}
Mapping: {{mapping| 2 0 -8 -26 -31 -40 5 -1 | 0 1 4 10 12 15 1 3 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 695.7160
* WE: ~17/12 = 600.9845{{c}}, ~3/2 = 696.8939{{c}}
* POTE: ~2 = 1\1, ~3/2 = 695.688
* CWE: ~17/12 = 600.0000{{c}}, ~3/2 = 695.8947{{c}}


{{Optimal ET sequence|legend=1| 12, 19 }}
{{Optimal ET sequence|legend=0| 12f, 26deff, 38df, 50 }}


Badness: 0.013906
Badness (Sintel): 1.08


====== 47-limit ======
=== Trimean ===
Subgroup: 2.3.5.7.11.13.17.19.23.29.31.37.41.43.47
{{See also| No-sevens subgroup temperaments #Superpine }}
 
Subgroup: 2.3.5.7.11
 
Comma list: 81/80, 126/125, 1344/1331


Comma list: 39/38, 45/44, 52/51, 56/55, 58/57, 65/64, 69/68, 75/74, 81/80, 86/85, 93/92, 95/94, 124/123
Mapping: {{mapping| 1 2 4 7 5 | 0 -3 -12 -30 -11 }}


Mapping: {{mapping| 1 0 -4 -13 -6 10 12 9 14 8 16 -9 18 7 4 | 0 1 4 10 6 -4 -5 -3 -6 -2 -7 9 -8 -1 1 }}
: mapping generators: ~2, ~11/10


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 695.6849
* WE: ~2 = 1200.7155{{c}}, ~11/10 = 167.9055{{c}}
* POTE: ~2 = 1\1, ~3/2 = 695.676
* CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.7749{{c}}


{{Optimal ET sequence|legend=1| 12, 19 }}
{{Optimal ET sequence|legend=0| 7d, 36d, 43, 50, 93 }}


Badness: 0.013818
Badness (Sintel): 1.68


===== Vincenzoid =====
==== 13-limit ====
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13


Comma list: 34/33, 45/44, 51/50, 56/55, 65/64
Comma list: 81/80, 126/125, 144/143, 364/363


Mapping: {{mapping| 1 0 -4 -13 -6 10 -7 | 0 1 4 10 6 -4 7 }}
Mapping: {{mapping| 1 2 4 7 5 3 | 0 -3 -12 -30 -11 5 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 696.4125
* WE: ~2 = 1200.6104{{c}}, ~11/10 = 167.8749{{c}}
* POTE: ~2 = 1\1, ~3/2 = 695.358
* CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.7728{{c}}


{{Optimal ET sequence|legend=1| 7dg, 12, 19g }}
{{Optimal ET sequence|legend=0| 7d, 43, 50, 93 }}


Badness: 0.022099
Badness (Sintel): 1.46


====== 19-limit ======
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17.19
Subgroup: 2.3.5.7.11.13.17


Comma list: 34/33, 45/44, 51/50, 56/55, 57/55, 65/64
Comma list: 81/80, 126/125, 144/143, 189/187, 221/220


Mapping: {{mapping| 1 0 -4 -13 -6 10 -7 -10 | 0 1 4 10 6 -4 7 9 }}
Mapping: {{mapping| 1 2 4 7 5 3 8 | 0 -3 -12 -30 -11 5 -28 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 696.9500
* WE: ~2 = 1200.6144{{c}}, ~11/10 = 167.8716{{c}}
* POTE: ~2 = 1\1, ~3/2 = 695.725
* CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.7682{{c}}


{{Optimal ET sequence|legend=1| 7dgh, 12, 19gh }}
{{Optimal ET sequence|legend=0| 7dg, 43, 50, 93 }}


Badness: 0.019904
Badness (Sintel): 1.28


==== Meanundec ====
== Flattone ==
Subgroup: 2.3.5.7.11.13
{{Main| Flattone }}


Comma list: 27/26, 40/39, 45/44, 56/55
In flattone tunings, the fifth is typically even flatter than that of [[19edo]]. Here, 9 fourths get to the interval class for 7, so that [[7/4]] is a diminished seventh (C–B𝄫), [[7/6]] is a diminished third (C–E𝄫), and [[7/5]] is a double-diminished fifth (C–G𝄫). In general, septimal subminor intervals are diminished and septimal supermajor intervals are augmented, which makes it quite easy to learn flattone notation. Good tunings for flattone are [[45edo]], [[64edo]], and [[71edo]].


Mapping: {{mapping| 1 0 -4 -13 -6 -1 | 0 1 4 10 6 3 }}
[[Subgroup]]: 2.3.5.7


Optimal tunings:  
[[Comma list]]: 81/80, 525/512
* CTE: ~2 = 1\1, ~3/2 = 695.6202
* POTE: ~2 = 1\1, ~3/2 = 697.254


{{Optimal ET sequence|legend=1| 7d, 12f, 19f }}
{{Mapping|legend=1| 1 0 -4 17 | 0 1 4 -9 }}


Badness: 0.024243
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1203.6308{{c}}, ~3/2 = 695.8782{{c}}
: [[error map]]: {{val| +3.631 -2.446 -2.801 -2.684 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 693.7334{{c}}
: error map: {{val| 0.000 -8.222 -11.380 -12.426 }}


===== 17-limit =====
[[Minimax tuning]]:
Subgroup: 2.3.5.7.11.13.17
* [[7-odd-limit]]: ~3/2 = {{monzo| 8/13 0 1/13 -1/13 }}
: [[projection map]]: [{{monzo| 1 0 0 0 }}, {{monzo| 21/13 0 1/13 -1/13 }}, {{monzo| 32/13 0 4/13 -4/13 }}, {{monzo| 32/13 0 -9/13 9/13 }}]
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.7/5
* [[9-odd-limit]]: ~3/2 = {{monzo| 6/11 2/11 0 -1/11 }}
: [[projection map]]: [{{monzo| 1 0 0 0 }}, {{monzo| 17/11 2/11 0 -1/11 }}, {{monzo| 24/11 8/11 0 -4/11 }}, {{monzo| 34/11 -18/11 0 9/11 }}]
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.9/7


Comma list: 27/26, 34/33, 40/39, 45/44, 56/55
[[Tuning ranges]]:  
* 7- and 9-odd-limit [[diamond monotone]]: ~3/2 = [692.308, 694.737] (15\26 to 11\19)
* 7-odd-limit [[diamond tradeoff]]: ~3/2 = [692.353, 701.955]
* 9-odd-limit diamond tradeoff: ~3/2 = [691.202, 701.955]


Mapping: {{mapping| 1 0 -4 -13 -6 -1 -7 | 0 1 4 10 6 3 7 }}
[[Algebraic generator]]: Squarto, the positive root of 8''x''<sup>2</sup> - 4''x'' - 9, at 506.3239 cents, equal to (1 + sqrt (19))/4.


Optimal tunings:
{{Optimal ET sequence|legend=1| 7, 19, 26, 45 }}
* CTE: ~2 = 1\1, ~3/2 = 696.2789
* POTE: ~2 = 1\1, ~3/2 = 697.586


{{Optimal ET sequence|legend=1| 7dg, 12f }}
[[Badness]] (Sintel): 0.976


Badness: 0.021400
=== 11-limit ===
This can also be considered a no-sevens temperament: [[#Hypnotone|hypnotone]].


===== 19-limit =====
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 27/26, 34/33, 40/39, 45/44, 56/55, 57/55
Comma list: 45/44, 81/80, 385/384


Mapping: {{mapping| 1 0 -4 -13 -6 -1 -7 -10 | 0 1 4 10 6 3 7 9 }}
Mapping: {{mapping| 1 0 -4 17 -6 | 0 1 4 -9 6 }}


Optimal tunings:  
Optimal tuning:  
* CTE: ~2 = 1\1, ~3/2 = 696.8486
* WE: ~2 = 1202.3247{{c}}, ~3/2 = 694.4688{{c}}
* POTE: ~2 = 1\1, ~3/2 = 698.118
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 693.1467{{c}}


{{Optimal ET sequence|legend=1| 7dgh, 12f }}
Tuning ranges:
* 11-odd-limit diamond monotone: ~3/2 = [692.308, 694.737] (15\26 to 11\19)
* 11-odd-limit diamond tradeoff: ~3/2 = [682.502, 701.955]


Badness: 0.018996
{{Optimal ET sequence|legend=0| 7, 19, 26, 45, 71bc, 116bcde }}


=== Meanundeci ===
Badness (Sintel): 1.12
Meanundeci is a low-complexity low-accuracy entry that maps the 11/8 to the perfect fourth (C-F), and tridecimal meanundeci maps the 13/8 to the minor sixth (C-A♭).  


Subgroup: 2.3.5.7.11
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


Comma list: 33/32, 55/54, 77/75
Comma list: 45/44, 65/64, 78/77, 81/80


Mapping: {{mapping| 1 0 -4 -13 5 | 0 1 4 10 -1 }}
Mapping: {{mapping| 1 0 -4 17 -6 10 | 0 1 4 -9 6 -4 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 696.7022
* WE: ~2 = 1202.5156{{c}}, ~3/2 = 694.5107{{c}}
* POTE: ~2 = 1\1, ~3/2 = 694.689
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 693.0538{{c}}


{{Optimal ET sequence|legend=1| 7d, 12e, 19e }}
Tuning ranges:
* 13- and 15-odd-limit diamond monotone: ~3/2 = [692.308, 694.737] (15\26 to 11\19)
* 13- and 15-odd-limit diamond tradeoff: ~3/2 = [682.502, 701.955]
 
{{Optimal ET sequence|legend=0| 7, 19, 26, 45f, 71bcf, 116bcdef }}
 
Badness (Sintel): 0.920


Badness: 0.031539
== Flattertone ==
Flattertone tunings are typically at least as flat as [[26edo]]. Here, 17 fifths get to the interval class for 7, so that [[7/4]] is a double-augmented sixth (C–Ax). [[26edo]] and [[33edo|33cd-edo]] are the two primary flattertone tunings. [[1/2-comma meantone]] is also encompassed within flattertone's range. Any flatter than this, the meantone mapping for 5/4 is too inaccurate (it becomes more of a [[16/13]] or [[27/22]]), and [[deeptone]] temperament's mapping is more logical.


==== 13-limit ====
[[Subgroup]]: 2.3.5.7
Subgroup: 2.3.5.7.11.13


Comma list: 33/32, 55/54, 65/64, 77/75
[[Comma list]]: 81/80, 1875/1792


Mapping: {{mapping| 1 0 -4 -13 5 10 | 0 1 4 10 -1 -4 }}
{{Mapping|legend=1| 1 0 -4 -24 | 0 1 4 17 }}


Optimal tunings:  
: mapping generators: ~2, ~3
* CTE: ~2 = 1\1, ~3/2 = 696.2408
* POTE: ~2 = 1\1, ~3/2 = 694.764


{{Optimal ET sequence|legend=1| 7d, 12e, 19e }}
[[Optimal tuning]]s:
* [[WE]]: ~2 = 1204.4511{{c}}, ~3/2 = 694.3258{{c}}
: [[error map]]: {{val| +4.451 -3.178 -9.011 +3.554 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 692.0479{{c}}
: error map: {{val| 0.000 -9.907 -18.122 -4.012 }}


Badness: 0.026288
{{Optimal ET sequence|legend=1| 7d, 19d, 26, 59bcd, 85bccd }}


=== Bimeantone ===
[[Badness]] (Sintel): 2.43
11/8 is mapped to half octave minus the [[128/125|meantone diesis]].  


==== 11-limit ====
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 81/80, 126/125, 245/242
Comma list: 45/44, 81/80, 1375/1344


Mapping: {{mapping| 2 0 -8 -26 -31 | 0 1 4 10 12 }}
Mapping: {{mapping| 1 0 -4 -24 -6 | 0 1 4 17 6 }}
 
: mapping generators: ~63/44, ~3


Optimal tunings:  
Optimal tunings:  
* CTE: ~63/44 = 1\2, ~3/2 = 696.5199
* WE: ~2 = 1203.4653{{c}}, ~3/2 = 693.8144{{c}}
* POTE: ~63/44 = 1\2, ~3/2 = 696.016
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 692.0422{{c}}


{{Optimal ET sequence|legend=1| 12, 26de, 38d, 50 }}
{{Optimal ET sequence|legend=0| 7d, 19d, 26 }}


Badness: 0.038122
Badness (Sintel): 1.53


==== 13-limit ====
; Music
Subgroup: 2.3.5.7.11.13
* [https://youtu.be/scCuGXnj5IY ''Music in 33EDO (33-Tone Equal Temperament) - Feb 2024''] by [[Budjarn Lambeth]] (2024)


Comma list: 81/80, 105/104, 126/125, 245/242
== Dominant ==
{{Main| Dominant (temperament) }}
{{See also| Archytas clan }}


Mapping: {{mapping| 2 0 -8 -26 -31 -40 | 0 1 4 10 12 15 }}
The interval class for 7 is obtained from two fourths in succession, so that 7/4 is a minor seventh (C–Bb). The 7/6 interval is, like 6/5, now a minor third, and 7/5 is a diminished fifth. An excellent tuning for dominant is [[12edo]], but it also works well with the Pythagorean tuning of pure [[3/2]] fifths, and with [[29edo]], [[41edo]], or [[53edo]].


Optimal tunings:
Because dominant entails a near-pure perfect fifth, a small number of generators will not land on an interval close to prime 11. The canonical 11-limit extension takes the tritone as 16/11, which it barely sounds like. The first alternative, domineering, takes the same step as 11/8, which it barely sounds like either. Domination tempers out 77/75 and identifies 11/8 with the augmented third; arnold tempers out 33/32 and identifies 11/8 with the perfect fourth. None of them are nearly as good as the weak extension [[neutrominant]], splitting the fifth as well as the chromatic semitone in two like in all [[rastmic clan|rastmic]] temperaments.  
* CTE: ~55/39 = 1\2, ~3/2 = 696.3410
* POTE: ~55/39 = 1\2, ~3/2 = 695.836


{{Optimal ET sequence|legend=1| 12f, 26deff, 38df, 50 }}
[[Subgroup]]: 2.3.5.7


Badness: 0.028817
[[Comma list]]: 36/35, 64/63


==== 17-limit ====
{{Mapping|legend=1| 1 0 -4 6 | 0 1 4 -2 }}
Subgroup: 2.3.5.7.11.13.17


Comma list: 81/80, 105/104, 126/125, 189/187, 221/220
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1195.3384{{c}}, ~3/2 = 698.8478{{c}}
: [[error map]]: {{val| -4.662 -7.769 +9.077 +14.832 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 701.1125{{c}}
: error map: {{val| 0.000 -0.842 +18.136 +28.949 }}


Mapping: {{mapping| 2 0 -8 -26 -31 -40 5 | 0 1 4 10 12 15 1 }}
[[Tuning ranges]]:  
* [[7-odd-limit|7-]] and [[9-odd-limit]] [[diamond monotone]]: ~3/2 = [700.000, 720.000] (7\12 to 3\5)
* 7-odd-limit [[diamond tradeoff]]: ~3/2 = [694.786, 715.587]
* 9-odd-limit diamond tradeoff: ~3/2 = [691.202, 715.587]


Optimal tunings:
{{Optimal ET sequence|legend=1| 5, 7, 12, 41cd, 53cdd, 65ccddd }}
* CTE: ~17/12 = 1\2, ~3/2 = 696.3526
* POTE: ~17/12 = 1\2, ~3/2 = 695.783


{{Optimal ET sequence|legend=1| 12f, 38df, 50 }}
[[Badness]] (Sintel): 0.524


Badness: 0.022666
=== 11-limit ===
Subgroup: 2.3.5.7.11


==== 19-limit ====
Comma list: 36/35, 56/55, 64/63
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 81/80, 105/104, 126/125, 153/152, 189/187, 221/220
Mapping: {{mapping| 1 0 -4 6 13 | 0 1 4 -2 -6 }}


Mapping: {{mapping| 2 0 -8 -26 -31 -40 5 -1 | 0 1 4 10 12 15 1 3 }}
Tuning ranges:  
* 11-odd-limit diamond monotone: ~3/2 = [700.000, 705.882] (7\12 to 10\17)
* 11-odd-limit diamond tradeoff: ~3/2 = [691.202, 715.587]


Optimal tunings:  
Optimal tunings:  
* CTE: ~17/12 = 1\2, ~3/2 = 696.3837
* WE: ~2 = 1194.0169{{c}}, ~3/2 = 699.7473{{c}}
* POTE: ~17/12 = 1\2, ~3/2 = 695.752
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 703.2672{{c}}


{{Optimal ET sequence|legend=1| 12f, 26deff, 38df, 50 }}
{{Optimal ET sequence|legend=0| 5, 12, 17c, 29cde }}


Badness: 0.017785
Badness (Sintel): 0.799


=== Trimean ===
==== 13-limit ====
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11.13


Comma list: 81/80, 126/125, 1344/1331
Comma list: 36/35, 56/55, 64/63, 66/65


Mapping: {{mapping| 1 2 4 7 5 | 0 -3 -12 -30 -11 }}
Mapping: {{mapping| 1 0 -4 6 13 18 | 0 1 4 -2 -6 -9 }}


: mapping generators: ~2, ~11/10
Optimal tunings:  
* WE: ~2 = 1193.8055{{c}}, ~3/2 = 700.0042{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 703.8254{{c}}


Optimal tunings:  
Tuning ranges:  
* CTE: ~2 = 1\1, ~11/10 = 167.7074
* 13- and 15-odd-limit diamond monotone: ~3/2 = 705.882 (10\17)
* POTE: ~2 = 1\1, ~11/10 = 167.805
* 13- and 15-odd-limit diamond tradeoff: ~3/2 = [691.202, 715.587]


{{Optimal ET sequence|legend=1| 7d, 36d, 43, 50, 93 }}
{{Optimal ET sequence|legend=0| 12f, 17c, 29cdef }}


Badness: 0.050729
Badness (Sintel): 0.996


==== 13-limit ====
==== Dominion ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 81/80, 126/125, 144/143, 364/363
Comma list: 26/25, 36/35, 56/55, 64/63


Mapping: {{mapping| 1 2 4 7 5 3 | 0 -3 -12 -30 -11 5 }}
Mapping: {{mapping| 1 0 -4 6 13 -9 | 0 1 4 -2 -6 8 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~11/10 = 167.7121
* WE: ~2 = 1195.0293{{c}}, ~3/2 = 701.9847{{c}}
* POTE: ~2 = 1\1, ~11/10 = 167.790
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 704.7698{{c}}


{{Optimal ET sequence|legend=1| 7d, 43, 50, 93 }}
{{Optimal ET sequence|legend=0| 5, 12, 17c }}


Badness: 0.035445
Badness (Sintel): 1.13


==== 17-limit ====
=== Domineering ===
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11


Comma list: 81/80, 126/125, 144/143, 189/187, 221/220
Comma list: 36/35, 45/44, 64/63


Mapping: {{mapping| 1 2 4 7 5 3 8 | 0 -3 -12 -30 -11 5 -28 }}
Mapping: {{mapping| 1 0 -4 6 -6 | 0 1 4 -2 6 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~11/10 = 167.7047
* WE: ~2 = 1194.7102{{c}}, ~3/2 = 695.6962{{c}}
* POTE: ~2 = 1\1, ~11/10 = 167.786
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 698.1765{{c}}


{{Optimal ET sequence|legend=1| 7dg, 43, 50, 93 }}
{{Optimal ET sequence|legend=0| 5e, 7, 12 }}


Badness: 0.025221
Badness (Sintel): 0.727


== Flattone ==
==== 13-limit ====
{{Main| Flattone }}
Subgroup: 2.3.5.7.11.13


In flattone tunings, the fifth is typically even flatter than that of [[19edo]]. Here, 9 fourths get to the interval class for 7, so that [[7/4]] is a diminished seventh (C-B𝄫), [[7/6]] is a diminished third (C-E𝄫), and [[7/5]] is a doubly-diminished fifth (C-G𝄫). In general, septimal subminor intervals are diminished and septimal supermajor intervals are augmented, which makes it quite easy to learn flattone notation. Good tunings for flattone are [[45edo]], [[64edo]], and [[71edo]].
Comma list: 36/35, 45/44, 52/49, 64/63


[[Subgroup]]: 2.3.5.7
Mapping: {{mapping| 1 0 -4 6 -6 10 | 0 1 4 -2 6 -4 }}


[[Comma list]]: 81/80, 525/512
Optimal tunings:  
* WE: ~2 = 1198.1958{{c}}, ~3/2 = 694.7159{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 695.6809{{c}}


{{Mapping|legend=1| 1 0 -4 17 | 0 1 4 -9 }}
{{Optimal ET sequence|legend=0| 7, 12 }}


{{Multival|legend=1| 1 4 -9 4 -17 -32 }}
Badness (Sintel): 1.12


[[Optimal tuning]]s:
===== 17-limit =====
* [[CTE]]: ~2 = 1\1, ~3/2 = 693.5520
Subgroup: 2.3.5.7.11.13.17
* [[POTE]]: ~2 = 1\1, ~3/2 = 693.779


[[Minimax tuning]]:  
Comma list: 36/35, 45/44, 51/49, 52/49, 64/63
* [[7-odd-limit]]: ~3/2 = {{monzo| 8/13 0 1/13 -1/13 }}
: [{{monzo| 1 0 0 0 }}, {{monzo| 21/13 0 1/13 -1/13 }}, {{monzo| 32/13 0 4/13 -4/13 }}, {{monzo| 32/13 0 -9/13 9/13 }}]
: [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.7/5
* [[9-odd-limit]]: ~3/2 = {{monzo| 6/11 2/11 0 -1/11 }}
: [{{monzo| 1 0 0 0 }}, {{monzo| 17/11 2/11 0 -1/11 }}, {{monzo| 24/11 8/11 0 -4/11 }}, {{monzo| 34/11 -18/11 0 9/11 }}]
: [[Eigenmonzo basis|eigenmonzo (unchanged-interval) basis]]: 2.9/7


[[Tuning ranges]]:  
Mapping: {{mapping| 1 0 -4 6 -6 10 12 | 0 1 4 -2 6 -4 -5 }}
* 7- and 9-odd-limit [[diamond monotone]]: ~3/2 = [692.308, 694.737] (15\26 to 11\19)
* 7-odd-limit [[diamond tradeoff]]: ~3/2 = [692.353, 701.955]
* 9-odd-limit diamond tradeoff: ~3/2 = [691.202, 701.955]


[[Algebraic generator]]: Squarto, the positive root of 8''x''<sup>2</sup> - 4''x'' - 9, at 506.3239 cents, equal to (1 + sqrt (19))/4.
Optimal tunings:  
* WE: ~2 = 1197.7959{{c}}, ~3/2 = 694.8362{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.0834{{c}}


{{Optimal ET sequence|legend=1| 7, 19, 26, 45 }}
{{Optimal ET sequence|legend=0| 7, 12 }}


[[Badness]]: 0.038553
Badness (Sintel): 1.25


=== 11-limit ===
===== 19-limit =====
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 45/44, 81/80, 385/384
Comma list: 36/35, 39/38, 45/44, 51/49, 52/49, 57/56


Mapping: {{mapping| 1 0 -4 17 -6 | 0 1 4 -9 6 }}
Mapping: {{mapping| 1 0 -4 6 -6 10 12 9 | 0 1 4 -2 6 -4 -5 -3 }}


Optimal tuning:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 693.2511
* WE: ~2 = 1197.6198{{c}}, ~3/2 = 694.8362{{c}}
* POTE: ~2 = 1\1, ~3/2 = 693.126
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.2075{{c}}


Tuning ranges:
{{Optimal ET sequence|legend=0| 5ef, 7, 12, 19d, 31def }}
* 11-odd-limit diamond monotone: ~3/2 = [692.308, 694.737] (15\26 to 11\19)
* 11-odd-limit diamond tradeoff: ~3/2 = [682.502, 701.955]


{{Optimal ET sequence|legend=1| 7, 19, 26, 45, 71bc, 116bcde }}
Badness (Sintel): 1.24


Badness: 0.033839
==== Dominatrix ====
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 45/44, 65/64, 78/77, 81/80
Comma list: 27/26, 36/35, 45/44, 64/63


Mapping: {{mapping| 1 0 -4 17 -6 10 | 0 1 4 -9 6 -4 }}
Mapping: {{mapping| 1 0 -4 6 -6 -1 | 0 1 4 -2 6 3 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 693.0293
* WE: ~2 = 1193.1574{{c}}, ~3/2 = 694.5610{{c}}
* POTE: ~2 = 1\1, ~3/2 = 693.058
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.7268{{c}}


Tuning ranges:
{{Optimal ET sequence|legend=0| 5e, 7, 12f }}
* 13- and 15-odd-limit diamond monotone: ~3/2 = [692.308, 694.737] (15\26 to 11\19)
* 13- and 15-odd-limit diamond tradeoff: ~3/2 = [682.502, 701.955]


{{Optimal ET sequence|legend=1| 7, 19, 26, 45f, 71bcf, 116bcdef }}
Badness (Sintel): 0.756


Badness: 0.022260
=== Domination ===
Subgroup: 2.3.5.7.11


== Flattertone ==
Comma list: 36/35, 64/63, 77/75
Flattertone tunings are typically at least as flat as [[26edo]]. Here, 17 fifths get to the interval class for 7, so that [[7/4]] is a double-augmented sixth (C-Ax). [[26edo]] and [[33edo|33cd-edo]] are the two primary flattertone tunings. [[1/2-comma meantone]] is also encompassed within flattertone's range. Any flatter than this, the meantone mapping for 5/4 is too inaccurate (it becomes more of a [[16/13]] or [[27/22]]), and [[deeptone]] temperament's mapping is more logical.


[[Subgroup]]: 2.3.5.7
Mapping: {{mapping| 1 0 -4 6 -14 | 0 1 4 -2 11 }}


[[Comma list]]: 81/80, 1875/1792
Optimal tunings:  
* WE: ~2 = 1194.8645{{c}}, ~3/2 = 701.9872{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 704.5945{{c}}


{{Mapping|legend=1| 1 0 -4 -24 | 0 1 4 17 }}
{{Optimal ET sequence|legend=0| 5e, 12e, 17c }}


: mapping generators: ~2, ~3
Badness (Sintel): 1.21


[[Optimal tuning]]s:
==== 13-limit ====
* [[CTE]]: ~2 = 1\1, ~3/2 = 692.6984
Subgroup: 2.3.5.7.11.13
* [[CWE]]: ~2 = 1\1, ~3/2 = 692.0479


{{Optimal ET sequence|legend=1| 7d, 19d, 26, 59bcd, 85bccd }}
Comma list: 26/25, 36/35, 64/63, 66/65


[[Badness]]: 0.0961
Mapping: {{mapping| 1 0 -4 6 -14 -9 | 0 1 4 -2 11 8 }}


==== 11-limit ====
Optimal tunings:
* WE: ~2 = 1195.1324{{c}}, ~3/2 = 702.6343{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 705.0791{{c}}


[[Subgroup]]: 2.3.5.7
{{Optimal ET sequence|legend=0| 5e, 12e, 17c }}


[[Comma list]]: 45/44, 81/80, 1375/1344
Badness (Sintel): 1.13


{{Mapping|legend=1| 1 0 -4 -24 0| 0 1 4 17 6 }}
=== Arnold ===
Subgroup: 2.3.5.7.11


: mapping generators: ~2, ~3
Comma list: 22/21, 33/32, 36/35


[[Optimal tuning]]s:  
Mapping: {{mapping| 1 0 -4 6 5 | 0 1 4 -2 -1 }}
* [[CTE]]: ~2 = 1\1, ~3/2 = 692.642
* [[CWE]]: ~2 = 1\1, ~3/2 = 692.042


{{Optimal ET sequence|legend=1| 7d, 19d, 26, 59bcd, 85bccd }}
Optimal tunings:
* WE: ~2 = 1199.8507{{c}}, ~3/2 = 698.4045{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 698.4822{{c}}


'''Music'''
{{Optimal ET sequence|legend=0| 5, 7, 12e }}
* [https://youtu.be/scCuGXnj5IY ''Music in 33EDO (33-Tone Equal Temperament) - Feb 2024''] - [[Budjarn Lambeth]] (2024)


== Dominant ==
Badness (Sintel): 0.864
{{Main| Dominant (temperament) }}
{{See also| Archytas clan }}


The interval class for 7 is obtained from two fourths in succession, so that 7/4 is a minor seventh. The 7/6 interval is, like 6/5, now a minor third, and 7/5 is a diminished fifth. An excellent tuning for dominant is [[12edo]], but it also works well with the Pythagorean tuning of pure [[3/2]] fifths, and with [[29edo]], [[41edo]], or [[53edo]].
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


Because dominant entails a near-pure perfect fifth, a small number of generators will not land on an interval close to prime 11. The canonical 11-limit extension takes the tritone as 16/11, which it barely sounds like. The first alternative, domineering, takes the same step as 11/8, which it barely sounds like either. Domination tempers out 77/75 and identifies 11/8 with the augmented third; arnold tempers out 33/32 and identifies 11/8 with the perfect fourth. None of them are nearly as good as the weak extension [[neutrominant]], splitting the fifth as well as the chromatic semitone in two like in all [[rastmic clan|rastmic]] temperaments.
Comma list: 22/21, 27/26, 33/32, 36/35


[[Subgroup]]: 2.3.5.7
Mapping: {{mapping| 1 0 -4 6 5 -1 | 0 1 4 -2 -1 3 }}


[[Comma list]]: 36/35, 64/63
Optimal tunings:  
* WE: ~2 = 1197.8123{{c}}, ~3/2 = 695.4727{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.5713{{c}}


{{Mapping|legend=1| 1 0 -4 6 | 0 1 4 -2 }}
{{Optimal ET sequence|legend=0| 5, 7 }}


{{Multival|legend=1| 1 4 -2 4 -6 -16 }}
Badness (Sintel): 0.963


[[Optimal tuning]]s:
==== 17-limit ====
* [[CTE]]: ~2 = 1\1, ~3/2 = 699.622
Subgroup: 2.3.5.7.11.13.17
* [[POTE]]: ~2 = 1\1, ~3/2 = 701.573
 
Comma list: 22/21, 27/26, 33/32, 36/35, 51/49


[[Tuning ranges]]:  
Mapping: {{mapping| 1 0 -4 6 5 -1 12 | 0 1 4 -2 -1 3 -5 }}
* [[7-odd-limit|7-]] and [[9-odd-limit]] [[diamond monotone]]: ~3/2 = [700.000, 720.000] (7\12 to 3\5)
* 7-odd-limit [[diamond tradeoff]]: ~3/2 = [694.786, 715.587]
* 9-odd-limit diamond tradeoff: ~3/2 = [691.202, 715.587]


{{Optimal ET sequence|legend=1| 5, 7, 12, 41cd, 53cdd, 65ccddd }}
Optimal tunings:
* WE: ~2 = 1197.6327{{c}}, ~3/2 = 695.6030{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 696.9316{{c}}


[[Badness]]: 0.020690
{{Optimal ET sequence|legend=0| 5, 7 }}


=== 11-limit ===
Badness (Sintel): 1.25
Subgroup: 2.3.5.7.11


Comma list: 36/35, 56/55, 64/63
==== 19-limit ====
Subgroup: 2.3.5.7.11.13.17.19


Mapping: {{mapping| 1 0 -4 6 13 | 0 1 4 -2 -6 }}
Comma list: 22/21, 27/26, 33/32, 36/35, 51/49, 57/56


Tuning ranges:  
Mapping: {{mapping| 1 0 -4 6 5 -1 12 9 | 0 1 4 -2 -1 3 -5 -3 }}
* 11-odd-limit diamond monotone: ~3/2 = [700.000, 705.882] (7\12 to 10\17)
* 11-odd-limit diamond tradeoff: ~3/2 = [691.202, 715.587]


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 703.334
* WE: ~2 = 1197.5295{{c}}, ~3/2 = 695.6325{{c}}
* POTE: ~2 = 1\1, ~3/2 = 703.254
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 697.0579{{c}}


Optimal ET sequence: {{Optimal ET sequence| 5, 12, 17c, 29cde }}
{{Optimal ET sequence|legend=0| 5, 7, 12ef, 19def }}


Badness: 0.024180
Badness (Sintel): 1.28


==== 13-limit ====
== Sharptone ==
Subgroup: 2.3.5.7.11.13
Sharptone is a low-accuracy temperament tempering out [[21/20]] and [[28/27]]. In sharptone, 7/4 is a major sixth, 7/6 a whole tone, and 7/5 a fourth. Genuinely septimal sounding harmony therefore cannot be expected, but it can be used to translate, more or less, 7-limit JI into 5-limit meantone. [[12edo]] tuning does sharptone about as well as such a thing can be done, of course not in its patent val.
 
However, while 12edo ends up near-optimal, the only valid [[diamond monotone]] tuning for sharptone is [[5edo]]. Anything flat of it has ~12/7 and ~7/4 in the wrong order (and so should be dominant) and anything sharp of it has ~5/4 and ~4/3 in the wrong order (and so should not be meantone).
 
The 11-limit extension was named by Gene Ward Smith in 2004<ref name="meantone & meanpop 2004"/>.  


Comma list: 36/35, 56/55, 64/63, 66/65
[[Subgroup]]: 2.3.5.7


Mapping: {{mapping| 1 0 -4 6 13 18 | 0 1 4 -2 -6 -9 }}
[[Comma list]]: 21/20, 28/27


Optimal tunings:
{{Mapping|legend=1| 1 0 -4 -2 | 0 1 4 3 }}
* CTE: ~2 = 1\1, ~3/2 = 704.847
* POTE: ~2 = 1\1, ~3/2 = 703.636


Tuning ranges:  
[[Optimal tuning]]s:  
* 13- and 15-odd-limit diamond monotone: ~3/2 = 705.882 (10\17)
* [[WE]]: ~2 = 1204.2961{{c}}, ~3/2 = 702.6463{{c}}
* 13- and 15-odd-limit diamond tradeoff: ~3/2 = [691.202, 715.587]
: [[error map]]: {{val| +4.296 +4.987 +24.271 -56.591 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 701.4928{{c}}
: error map: {{val| 0.000 -0.462 +19.657 -64.347 }}


Optimal ET sequence: {{Optimal ET sequence|12f, 17c, 29cdef }}
{{Optimal ET sequence|legend=1| 5, 7d, 12d }}


Badness: 0.024108
[[Badness]] (Sintel): 0.629


==== Dominion ====
=== Meanertone ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11


Comma list: 26/25, 36/35, 56/55, 64/63
Comma list: 21/20, 28/27, 33/32


Mapping: {{mapping| 1 0 -4 6 13 -9 | 0 1 4 -2 -6 8 }}
Mapping: {{mapping| 1 0 -4 -2 5 | 0 1 4 3 -1 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 704.034
* WE: ~2 = 1208.5304{{c}}, ~3/2 = 701.5669{{c}}
* POTE: ~2 = 1\1, ~3/2 = 704.905
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 698.1117{{c}}


Optimal ET sequence: {{Optimal ET sequence| 5, 12, 17c, 46cde }}
{{Optimal ET sequence|legend=0| 5, 7d, 12de }}


Badness: 0.027295
Badness (Sintel): 0.832


=== Domineering ===
== Supermean ==
Subgroup: 2.3.5.7.11
Supermean tempers out 672/625 and finds the interval class of 7 at 15 generators up, as a double-augmented fifth (C–Gx). As such, it extends [[leapfrog]].  


Comma list: 36/35, 45/44, 64/63
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 81/80, 672/625


Mapping: {{mapping| 1 0 -4 6 -6 | 0 1 4 -2 6 }}
{{Mapping|legend=1| 1 0 -4 -21 | 0 1 4 15 }}


Optimal tunings:  
[[Optimal tuning]]s:  
* CTE: ~2 = 1\1, ~3/2 = 696.240
* [[WE]]: ~2 = 1195.4372{{c}}, ~3/2 = 702.2086{{c}}
* POTE: ~2 = 1\1, ~3/2 = 698.776
: [[error map]]: {{val| -4.563 -4.309 +22.521 -8.319 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 704.5375{{c}}
: error map: {{val| 0.000 +2.583 +31.836 -0.763 }}


Optimal ET sequence: {{Optimal ET sequence| 5e, 7, 12, 19d, 43de }}
{{Optimal ET sequence|legend=1| 5d, 12d, 17c }}


Badness: 0.021978
[[Badness]] (Sintel): 3.40


==== 13-limit ====
=== 11-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11


Comma list: 36/35, 45/44, 52/49, 64/63
Comma list: 56/55, 81/80, 132/125


Mapping: {{mapping| 1 0 -4 6 -6 10 | 0 1 4 -2 6 -4 }}
Mapping: {{mapping| 1 0 -4 -21 -14 | 0 1 4 15 11 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 695.315
* WE: ~2 = 1195.7270{{c}}, ~3/2 = 702.5848{{c}}
* POTE: ~2 = 1\1, ~3/2 = 695.762
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 704.7471{{c}}


Optimal ET sequence: {{Optimal ET sequence| 5ef, 7, 12, 19d, 31def }}
{{Optimal ET sequence|legend=0| 5de, 12de, 17c }}


Badness: 0.027039
Badness (Sintel): 2.09


===== 17-limit =====
=== 13-limit ===
Subgroup: 2.3.5.7.11.13.17
Subgroup: 2.3.5.7.11.13


Comma list: 36/35, 45/44, 51/49, 52/49, 64/63
Comma list: 26/25, 56/55, 66/65, 81/80


Mapping: {{mapping| 1 0 -4 6 -6 10 12 | 0 1 4 -2 6 -4 -5 }}
Mapping: {{mapping| 1 0 -4 -21 -14 -9 | 0 1 4 15 11 8 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 695.894
* WE: ~2 = 1196.3958{{c}}, ~3/2 = 702.9766{{c}}
* POTE: ~2 = 1\1, ~3/2 = 696.115
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 704.7940{{c}}


Optimal ET sequence: {{Optimal ET sequence| 5ef, 7, 12, 19d, 31def }}
{{Optimal ET sequence|legend=0| 5de, 12de, 17c, 29c }}


Badness: 0.024539
Badness (Sintel): 1.67


===== 19-limit =====
== Mohajira ==
Subgroup: 2.3.5.7.11.13.17.19
{{Main| Mohajira }}


Comma list: 36/35, 39/38, 45/44, 51/49, 52/49, 57/56
Mohajira can be viewed as derived from mohaha which maps the interval half a [[chromatic semitone|chroma]] flat of the minor seventh to ~7/4 so that 7/4 is mapped to a semidiminished seventh (C–Bdb), although mohajira really makes more sense as an 11-limit temperament. It tempers out 6144/6125, the [[porwell comma]]. It can be described as {{nowrap| 24 & 31 }}; its ploidacot is dicot. [[31edo]] makes for an excellent mohajira tuning, with generator 9\31.


Mapping: {{mapping| 1 0 -4 6 -6 10 12 9 | 0 1 4 -2 6 -4 -5 -3 }}
[[Subgroup]]: 2.3.5.7


Optimal tunings:  
[[Comma list]]: 81/80, 6144/6125
* CTE: ~2 = 1\1, ~3/2 = 696.139
 
* POTE: ~2 = 1\1, ~3/2 = 696.217
{{Mapping|legend=1| 1 1 0 6 | 0 2 8 -11 }}


Optimal ET sequence: {{Optimal ET sequence| 5ef, 7, 12, 19d, 31def }}
: mapping generators: ~2, ~128/105


Badness: 0.020398
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1200.8160{{c}}, ~128/105 = 348.6518{{c}}
: [[error map]]: {{val| +0.816 -3.835 +2.901 +0.900 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~128/105 = 348.4194{{c}}
: error map: {{val| 0.000 -5.116 +1.041 -1.439 }}


==== Dominatrix ====
[[Minimax tuning]]:
Subgroup: 2.3.5.7.11.13
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~128/105 = {{monzo| 0 0 1/8 }}
: [[projection map]]: {{monzo list| 1 0 0 0 | 1 0 1/4 0 | 0 0 1 0 | 6 0 -11/8 0 }}
: [[eigenmonzo basis|Unchanged-interval (eigenmonzo) basis]]: 2.5


Comma list: 27/26, 36/35, 45/44, 64/63
[[Tuning ranges]]:
* 7- and 9-odd-limit [[diamond monotone]]: ~128/105 = [347.368, 350.000] (11\38 to 7\24)
* 7-odd-limit [[diamond tradeoff]]: ~128/105 = [347.393, 350.978]
* 9-odd-limit diamond tradeoff: ~128/105 = [345.601, 350.978]


Mapping: {{mapping| 1 0 -4 6 -6 -1 | 0 1 4 -2 6 3 }}
[[Algebraic generator]]: Mohabis, real root of 3''x''<sup>3</sup> - 3''x''<sup>2</sup> - 1, 348.6067 cents. Corresponding recurrence converges quickly.


Optimal tunings:
{{Optimal ET sequence|legend=1| 7, 24, 31 }}
* CTE: ~2 = 1\1, ~3/2 = 694.840
* POTE: ~2 = 1\1, ~3/2 = 698.544


Optimal ET sequence: {{Optimal ET sequence| 5e, 7, 12f, 19df }}
[[Badness]] (Sintel): 1.41


Badness: 0.018289
Scales: [[mohaha7]], [[mohaha10]]


=== Domination ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 36/35, 64/63, 77/75
Comma list: 81/80, 121/120, 176/175


Mapping: {{mapping| 1 0 -4 6 -14 | 0 1 4 -2 11 }}
Mapping: {{mapping| 1 1 0 6 2 | 0 2 8 -11 5 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 703.268
* WE: ~2 = 1201.1562{{c}}, ~11/9 = 348.8124{{c}}
* POTE: ~2 = 1\1, ~3/2 = 705.004
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 348.4910{{c}}


Optimal ET sequence: {{Optimal ET sequence| 5e, 12e, 17c, 46cd }}
Minimax tuning:  
* 11-odd-limit: ~11/9 = {{monzo| 0 0 1/8 }}
: projection map: [{{Monzo| 1 0 0 0 0 }}, {{monzo| 1 0 1/4 0 0 }}, {{monzo| 0 0 1 0 0 }}, {{monzo| 6 0 -11/8 0 0 }}, {{monzo| 2 0 5/8 0 0 }}]
: unchanged-interval (eigenmonzo) basis: 2.5


Badness: 0.036562
Tuning ranges:
* 11-odd-limit diamond monotone: ~11/9 = [348.387, 350.000] (9\31 to 7\24)
* 11-odd-limit diamond tradeoff: ~11/9 = [344.999, 350.978]


==== 13-limit ====
{{Optimal ET sequence|legend=0| 7, 24, 31 }}
 
Badness (Sintel): 0.862
 
Scales: [[mohaha7]], [[mohaha10]]
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 26/25, 36/35, 64/63, 66/65
Comma list: 66/65, 81/80, 105/104, 121/120


Mapping: {{mapping| 1 0 -4 6 -14 -9 | 0 1 4 -2 11 8 }}
Mapping: {{mapping| 1 1 0 6 2 4 | 0 2 8 -11 5 -1 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 703.719
* WE: ~2 = 1200.4256{{c}}, ~11/9 = 348.6819{{c}}
* POTE: ~2 = 1\1, ~3/2 = 705.496
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 348.5622{{c}}
 
{{Optimal ET sequence|legend=0| 7, 24, 31 }}


Optimal ET sequence: {{Optimal ET sequence| 5e, 12e, 17c }}
Badness (Sintel): 0.966


Badness: 0.027435
Scales: [[mohaha7]], [[mohaha10]]


=== Arnold ===
=== 17-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11.13.17


Comma list: 22/21, 33/32, 36/35
Comma list: 66/65, 81/80, 105/104, 121/120, 154/153


Mapping: {{mapping| 1 0 -4 6 5 | 0 1 4 -2 -1 }}
Mapping: {{mapping| 1 1 0 6 2 4 7 | 0 2 8 -11 5 -1 -10 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 698.546
* WE: ~2 = 1200.0382{{c}}, ~11/9 = 348.7471{{c}}
* POTE: ~2 = 1\1, ~3/2 = 698.491
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 348.7360{{c}}


Optimal ET sequence: {{Optimal ET sequence| 5, 7, 12e }}
{{Optimal ET sequence|legend=0| 7, 24, 31 }}


Badness: 0.026141
Badness (Sintel): 1.05


==== 13-limit ====
Scales: [[mohaha7]], [[mohaha10]]
Subgroup: 2.3.5.7.11.13
 
=== 19-limit ===
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 22/21, 27/26, 33/32, 36/35
Comma list: 66/65, 77/76, 81/80, 96/95, 105/104, 153/152


Mapping: {{mapping| 1 0 -4 6 5 -1 | 0 1 4 -2 -1 3 }}
Mapping: {{mapping| 1 1 0 6 2 4 7 6 | 0 2 8 -11 5 -1 -10 -6 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 695.929
* WE: ~2 = 1199.7469{{c}}, ~11/9 = 348.7367{{c}}
* POTE: ~2 = 1\1, ~3/2 = 696.743
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 348.8117{{c}}


Optimal ET sequence: {{Optimal ET sequence| 5, 7, 12ef, 19def }}
{{Optimal ET sequence|legend=0| 7, 24, 31, 55 }}


Badness: 0.023300
Badness (Sintel): 1.05


==== 17-limit ====
Scales: [[mohaha7]], [[mohaha10]]
Subgroup: 2.3.5.7.11.13.17


Comma list: 22/21, 27/26, 33/32, 36/35, 51/49
== Mohamaq ==
Mohamaq is a lower-accuracy alternative to mohajira that favors tunings sharp of 24edo. It may be described as {{nowrap| 17c & 24 }}; its ploidacot is dicot, the same as mohajira.


Mapping: {{mapping| 1 0 -4 6 5 -1 12 | 0 1 4 -2 -1 3 -5 }}
[[Subgroup]]: 2.3.5.7


Optimal tunings:  
[[Comma list]]: 81/80, 392/375
* CTE: ~2 = 1\1, ~3/2 = 696.683
* POTE: ~2 = 1\1, ~3/2 = 696.978


Optimal ET sequence: {{Optimal ET sequence| 5, 7, 12ef, 19def }}
{{Mapping|legend=1| 1 1 0 -1 | 0 2 8 13 }}


Badness: 0.024535
: mapping generators: ~2, ~25/21


==== 19-limit ====
[[Optimal tuning]]s:
Subgroup: 2.3.5.7.11.13.17.19
* [[WE]]: ~2 = 1199.0661{{c}}, ~25/21 = 350.3127{{c}}
: [[error map]]: {{val| -0.934 -2.264 +16.188 -13.827 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~25/21 = 350.4856{{c}}
: error map: {{val| 0.000 -0.984 +17.571 -12.513 }}


Comma list: 22/21, 27/26, 33/32, 36/35, 51/49, 57/56
{{Optimal ET sequence|legend=1| 7d, 17c, 24 }}


Mapping: {{mapping| 1 0 -4 6 5 -1 12 9 | 0 1 4 -2 -1 3 -5 -3 }}
[[Badness]] (Sintel): 1.97


Optimal tunings:  
Scales: [[mohaha7]], [[mohaha10]]
* CTE: ~2 = 1\1, ~3/2 = 696.996
* POTE: ~2 = 1\1, ~3/2 = 697.068


Optimal ET sequence: {{Optimal ET sequence| 5, 7, 12ef, 19def }}
=== 11-limit ===
Subgroup: 2.3.5.7.11


Badness: 0.021098
Comma list: 56/55, 77/75, 243/242


== Sharptone ==
Mapping: {{mapping| 1 1 0 -1 2 | 0 2 8 13 5 }}
Sharptone is a low-accuracy temperament tempering out [[21/20]] and [[28/27]]. In sharptone, 7/4 is a major sixth, 7/6 a whole tone, and 7/5 a fourth. Genuinely septimal sounding harmony therefore cannot be expected, but it can be used to translate, more or less, 7-limit JI into 5-limit meantone. [[12edo]] tuning does sharptone about as well as such a thing can be done, of course not in its patent val.


[[Subgroup]]: 2.3.5.7
Optimal tunings:  
* WE: ~2 = 1199.1924{{c}}, ~11/9 = 350.3286{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 350.4821{{c}}


[[Comma list]]: 21/20, 28/27
{{Optimal ET sequence|legend=0| 7d, 17c, 24 }}


{{Mapping|legend=1| 1 0 -4 -2 | 0 1 4 3 }}
Badness (Sintel): 1.20


{{Multival|legend=1| 1 4 3 4 2 -4 }}
Scales: [[mohaha7]], [[mohaha10]]


[[Optimal tuning]]s:
=== 13-limit ===
* [[CTE]]: ~2 = 1\1, ~3/2 = 703.732
Subgroup: 2.3.5.7.11.13
* [[POTE]]: ~2 = 1\1, ~3/2 = 700.140


{{Optimal ET sequence|legend=1| 5, 7d, 12d }}
Comma list: 56/55, 66/65, 77/75, 243/242


[[Badness]]: 0.024848
Mapping: {{mapping| 1 1 0 -1 2 4 | 0 2 8 13 5 -1 }}


=== Meanertone ===
Optimal tunings:
Subgroup: 2.3.5.7.11
* WE: ~2 = 1198.5986{{c}}, ~11/9 = 350.3353{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/9 = 350.6459{{c}}


Comma list: 21/20, 28/27, 33/32
{{Optimal ET sequence|legend=0| 7d, 17c, 24, 41c }}


Mapping: {{mapping| 1 0 -4 -2 5 | 0 1 4 3 -1 }}
Badness (Sintel): 1.19


Optimal tunings:  
Scales: [[mohaha7]], [[mohaha10]]
* CTE: ~2 = 1\1, ~3/2 = 702.730
* POTE: ~2 = 1\1, ~3/2 = 696.615


Optimal ET sequence: {{Optimal ET sequence| 5, 7d, 12de }}
== Liese ==
<span style="display: block; text-align: right;">[[:de:Liese|Deutsch]]</span>


Badness: 0.025167
Liese splits the [[3/1|perfect twelfth]] into three generators of ~10/7, using the comma 1029/1000. It also tempers out 686/675, the senga. It may be described as {{nowrap| 17c & 19 }}; its ploidacot is alpha-tricot. It is a very natural 13-limit tuning, given the generator is so near 13/9. [[74edo]] makes for a good liese tuning, though [[19edo]] can be used. The tuning is well-supplied with mos scales: 7, 9, 11, 13, 15, 17, 19, 36, 55.  


== Supermean ==
[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 81/80, 672/625
[[Comma list]]: 81/80, 686/675


{{Mapping|legend=1| 1 0 -4 -21 | 0 1 4 15 }}
{{Mapping|legend=1| 1 0 -4 -3 | 0 3 12 11 }}
 
: mapping generators: ~2, ~10/7


[[Optimal tuning]]s:  
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1\1, ~3/2 = 703.811
* [[WE]]: ~2 = 1201.5548{{c}}, ~10/7 = 633.2251{{c}}
* [[POTE]]: ~2 = 1\1, ~3/2 = 704.889
: [[error map]]: {{val| +1.555 -2.280 +6.168 -8.015 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~10/7 = 632.5640{{c}}
: error map: {{val| 0.000 -4.263 +4.454 -10.622 }}


{{Optimal ET sequence|legend=1| 5d, 12d, 17c, 29c }}
[[Minimax tuning]]:
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/7 = {{monzo| 1/3 0 1/12 }}
: [[projection map]]: {{monzo list| 1 0 0 0 | 1 0 1/4 0 | 0 0 1 0 | 2/3 0 11/12 0 }}
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5


[[Badness]]: 0.134204
[[Algebraic generator]]: Radix, the real root of ''x''<sup>5</sup> - 2''x''<sup>4</sup> + 2''x''<sup>3</sup> - 2''x''<sup>2</sup> + 2''x'' - 2, also a root of ''x''<sup>6</sup> - ''x''<sup>5</sup> - 2. The recurrence converges.


=== 11-limit ===
{{Optimal ET sequence|legend=1| 17c, 19, 55, 74d }}
 
[[Badness]] (Sintel): 1.18
 
=== Liesel ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 56/55, 81/80, 132/125
Comma list: 56/55, 81/80, 540/539


Mapping: {{mapping| 1 0 -4 -21 -14 | 0 1 4 15 11 }}
Mapping: {{mapping| 1 0 -4 -3 4 | 0 3 12 11 -1 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 704.016
* WE: ~2 = 1198.8507{{c}}, ~10/7 = 632.4668{{c}}
* POTE: ~2 = 1\1, ~3/2 = 705.096
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 632.9963{{c}}


Optimal ET sequence: {{Optimal ET sequence| 5de, 12de, 17c, 29c }}
{{Optimal ET sequence|legend=0| 17c, 19, 36 }}


Badness: 0.063262
Badness (Sintel): 1.35


=== 13-limit ===
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 26/25, 56/55, 66/65, 81/80
Comma list: 56/55, 78/77, 81/80, 91/90


Mapping: {{mapping| 1 0 -4 -21 -14 -9 | 0 1 4 15 11 8 }}
Mapping: {{mapping| 1 0 -4 -3 4 0 | 0 3 12 11 -1 7 }}


Optimal tunings:  
Optimal tunings:  
* CTE: ~2 = 1\1, ~3/2 = 704.121
* WE: ~2 = 1199.4968{{c}}, ~10/7 = 632.7766{{c}}
* POTE: ~2 = 1\1, ~3/2 = 705.094
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 633.0082{{c}}


Optimal ET sequence: {{Optimal ET sequence| 5de, 12de, 17c, 29c }}
{{Optimal ET sequence|legend=0| 17c, 19, 36 }}


Badness: 0.040324
Badness (Sintel): 1.13


== Mohajira ==
=== Elisa ===
{{Main| Mohajira }}
Subgroup: 2.3.5.7.11


Mohajira can be viewed as derived from mohaha which maps the interval one quarter tone flat of 16/9 to 7/4, although mohajira really makes more sense as an 11-limit temperament. It tempers out 6144/6125, the porwell comma. [[31edo]] makes for an excellent (7-limit) mohajira tuning, with generator 9\31.
Comma list: 77/75, 81/80, 99/98


[[Subgroup]]: 2.3.5.7
Mapping: {{mapping| 1 0 -4 -3 -5 | 0 3 12 11 16 }}


[[Comma list]]: 81/80, 6144/6125
Optimal tunings:  
* WE: ~2 = 1201.0489{{c}}, ~10/7 = 633.6147{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 633.1644{{c}}


[[Mapping]]: [{{val| 1 1 0 6 }}, {{val| 0 2 8 -11 }}]
{{Optimal ET sequence|legend=0| 17c, 19e, 36e }}


: mapping generators: ~2, ~128/105
Badness (Sintel): 1.37


{{Multival|legend=1| 2 8 -11 8 -23 -48 }}
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~128/105 = 348.415
Comma list: 66/65, 77/75, 81/80, 99/98


[[Minimax tuning]]:  
Mapping: {{mapping| 1 0 -4 -3 -5 0 | 0 3 12 11 16 7 }}
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~128/105 = {{monzo| 0 0 1/8 }}
: [{{Monzo| 1 0 0 0 }}, {{monzo| 1 0 1/4 0 }}, {{monzo| 0 0 1 0 }}, {{monzo| 6 0 -11/8 0 }}]
: [[Eigenmonzo basis|Eigenmonzo (unchanged-interval) basis]]: 2.5


[[Tuning ranges]]:
Optimal tunings:  
* 7- and 9-odd-limit [[diamond monotone]]: ~128/105 = [347.368, 350.000] (11\38 to 7\24)
* WE: ~2 = 1201.4815{{c}}, ~10/7 = 633.7720{{c}}
* 7-odd-limit [[diamond tradeoff]]: ~128/105 = [347.393, 350.978]
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 633.1281{{c}}
* 9-odd-limit diamond tradeoff: ~128/105 = [345.601, 350.978]


[[Algebraic generator]]: Mohabis, real root of 3''x''<sup>3</sup> - 3''x''<sup>2</sup> - 1, 348.6067 cents. Corresponding recurrence converges quickly.
{{Optimal ET sequence|legend=0| 17c, 19e, 36e }}


{{Optimal ET sequence|legend=1| 7, 24, 31 }}
Badness (Sintel): 1.11


[[Badness]]: 0.055714
=== Lisa ===
Subgroup: 2.3.5.7.11


Scales: [[mohaha7]], [[mohaha10]]
Comma list: 45/44, 81/80, 343/330


=== 11-limit ===
Mapping: {{mapping| 1 0 -4 -3 -6 | 0 3 12 11 18 }}
Subgroup: 2.3.5.7.11


Comma list: 81/80, 121/120, 176/175
Optimal tunings:  
* WE: ~2 = 1202.6773{{c}}, ~10/7 = 632.7783{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 631.6175{{c}}


Mapping: [{{val| 1 1 0 6 2 }}, {{val| 0 2 8 -11 5 }}]
{{Optimal ET sequence|legend=0| 17cee, 19 }}


{{Multival|legend=1| 2 8 -11 5 8 -23 1 -48 -16 52 }}
Badness (Sintel): 1.81


Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 348.477
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


Minimax tuning:  
Comma list: 45/44, 81/80, 91/88, 147/143
* 11-odd-limit: ~11/9 = {{monzo| 0 0 1/8 }}
: [{{Monzo| 1 0 0 0 0 }}, {{monzo| 1 0 1/4 0 0 }}, {{monzo| 0 0 1 0 0 }}, {{monzo| 6 0 -11/8 0 0 }}, {{monzo| 2 0 5/8 0 0 }}]
: Eigenmonzo (unchanged-interval) basis: 2.5


Tuning ranges:
Mapping: {{mapping| 1 0 -4 -3 -6 0 | 0 3 12 11 18 7 }}
* 11-odd-limit diamond monotone: ~11/9 = [348.387, 350.000] (9\31 to 7\24)
* 11-odd-limit diamond tradeoff: ~11/9 = [344.999, 350.978]


{{Optimal ET sequence|legend=1| 7, 24, 31 }}
Optimal tunings:
* WE: ~2 = 1203.6086{{c}}, ~10/7 = 633.1193{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 631.5346{{c}}


Badness: 0.026064
{{Optimal ET sequence|legend=0| 17cee, 19 }}


Scales: [[mohaha7]], [[mohaha10]]
Badness (Sintel): 1.49


=== 13-limit ===
== Superpine ==
Subgroup: 2.3.5.7.11.13
{{See also| No-sevens subgroup temperaments #Superpine }}


Comma list: 66/65, 81/80, 105/104, 121/120
The superpine temperament is generated by 1/3 of a fourth, represented by [[~]][[35/32]], which resembles [[porcupine]], but it favors flat fifths instead of sharp ones. It may be described as {{nowrap| 36 & 43 }}; its ploidacot is omega-tricot. Unlike in porcupine, the minor third reached by 2 generators up is strongly neutral-flavored and does not represent [[6/5]] – harmonics other than 3 all require the 15-tone mos ([[7L 8s]]) to properly utilize. This temperament has an obvious 11-limit interpretation by treating the generator as [[11/10]] as in porcupine, which makes [[11/8]] high-[[complexity]] like the other harmonics, but in the 13-limit 5 generators up closely approximates [[13/8]]. [[43edo]] is a good tuning especially for the higher-limit extensions.


Mapping: [{{val| 1 1 0 6 2 4 }}, {{val| 0 2 8 -11 5 -1 }}]
[[Subgroup]]: 2.3.5.7


Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 348.558
[[Comma list]]: 81/80, 1119744/1071875


{{Optimal ET sequence|legend=1| 7, 24, 31 }}
{{Mapping|legend=1| 1 2 4 1 | 0 -3 -12 13 }}


Badness: 0.023388
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1199.3652{{c}}, ~35/32 = 167.1615{{c}}
: [[error map]]: {{val| -0.635 -4.709 +5.209 +3.639 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~35/32 = 167.2561{{c}}
: error map: {{val| 0.000 -3.723 +6.613 +5.503 }}


Scales: [[mohaha7]], [[mohaha10]]
{{Optimal ET sequence|legend=1| 7, 36, 43, 79c }}


=== 17-limit ===
[[Badness]] (Sintel): 3.46
Subgroup: 2.3.5.7.11.13.17


Comma list: 66/65, 81/80, 105/104, 121/120, 154/153
=== 11-limit ===
Subgroup: 2.3.5.7.11


Mapping: [{{val| 1 1 0 6 2 4 7 }}, {{val| 0 2 8 -11 5 -1 -10 }}]
Comma list: 81/80, 176/175, 864/847


Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 348.736
Mapping: {{mapping| 1 2 4 1 5 | 0 -3 -12 13 -11 }}


{{Optimal ET sequence|legend=1| 7, 24, 31, 86ef }}
Optimal tunings:
* WE: ~2 = 1199.0522{{c}}, ~11/10 = 167.1904{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.3382{{c}}


Badness: 0.020576
{{Optimal ET sequence|legend=0| 7, 36, 43 }}


Scales: [[mohaha7]], [[mohaha10]]
Badness (Sintel): 1.90


=== 19-limit ===
=== 13-limit ===
Subgroup: 2.3.5.7.11.13.17.19
Subgroup: 2.3.5.7.11.13


Comma list: 66/65, 77/76, 81/80, 96/95, 105/104, 153/152
Comma list: 78/77, 81/80, 144/143, 176/175


Mapping: [{{val| 1 1 0 6 2 4 7 6 }}, {{val| 0 2 8 -11 5 -1 -10 -6 }}]
Mapping: {{mapping| 1 2 4 1 5 3 | 0 -3 -12 13 -11 5 }}


Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 348.810
Optimal tunings:
* WE: ~2 = 1199.4286{{c}}, ~11/10 = 167.3105{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/10 = 167.3958{{c}}


{{Optimal ET sequence|legend=1| 7, 24, 31, 55, 86efh }}
{{Optimal ET sequence|legend=0| 7, 36, 43 }}


Badness: 0.017302
Badness (Sintel): 1.52


Scales: [[mohaha7]], [[mohaha10]]
== Lithium ==
Lithium is named after the 3rd element for having a 3rd-octave period (and also for lithium's molar mass of 6.9 g/mol since 69edo supports it). Its ploidacot is triploid monocot. It supports a [[3L 6s]] scale and thus intuitively can be thought of as "tcherepnin meantone" in that context.


== Mohamaq ==
[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 81/80, 392/375
[[Comma list]]: 81/80, 3125/3087


[[Mapping]]: [{{val| 1 1 0 -1 }}, {{val| 0 2 8 13 }}]
{{Mapping|legend=1| 3 0 -12 -20 | 0 1 4 6 }}


: mapping generators: ~2, ~25/21
: mapping generators: ~56/45, ~3


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~25/21 = 350.586
[[Optimal tuning]]s:
* [[WE]]: ~56/45 = 400.6744{{c}}, ~3/2 = 695.8474{{c}} {~15/14 = 105.5015{{c}})
: [[error map]]: {{val| +2.023 -4.084 -2.924 +4.910 }}
* [[CWE]]: ~56/45 = 400.0000{{c}}, ~3/2 = 695.1413{{c}} {~15/14 = 104.8587{{c}})
: error map: {{val| 0.000 -6.814 -5.748 +2.022 }}


{{Optimal ET sequence|legend=1| 7d, 17c, 24, 65cc, 89ccd }}
{{Optimal ET sequence|legend=1| 12, 33cd, 45, 57 }}


[[Badness]]: 0.077734
[[Badness]] (Sintel): 1.75


Scales: [[mohaha7]], [[mohaha10]]
== Squares ==
{{Main| Squares }}


=== 11-limit ===
Squares splits the [[6/1|6th harmonic]] into four subminor sixths of [[11/7]]~[[14/9]] (or splits a [[8/3|perfect eleventh]] into four supermajor thirds of [[9/7]]~[[14/11]]), and uses it for a generator. It may be described as {{nowrap| 14c & 17c }}; its ploidacot is beta-tetracot. [[31edo]], with a generator of 11/31, makes for a good squares tuning, with 8-, 11-, and 14-note mos scales available. Squares tempers out [[2401/2400]], the breedsma, as well as [[2430/2401]].
Subgroup: 2.3.5.7.11


Comma list: 56/55, 77/75, 243/242
[[Subgroup]]: 2.3.5.7


Mapping: [{{val| 1 1 0 -1 2 }}, {{val| 0 2 8 13 5 }}]
[[Comma list]]: 81/80, 2401/2400


Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 350.565
{{Mapping|legend=1| 1 -1 -8 -3 | 0 4 16 9 }}


{{Optimal ET sequence|legend=1| 7d, 17c, 24, 65cc, 89ccd }}
: mapping generators: ~2, ~14/9


Badness: 0.036207
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1201.2488{{c}}, ~14/9 = 774.8640{{c}}
: [[error map]]: {{val| +1.249 -3.748 +1.520 +1.204 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~14/9 = 774.1560{{c}}
: error map: {{val| 0.000 -5.331 +0.183 -1.422 }}


Scales: [[mohaha7]], [[mohaha10]]
[[Minimax tuning]]:  
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~9/7 = {{monzo| 1/2 0 -1/16 }}
: [[projection map]]: {{monzo list| 1 0 0 0 | 1 0 1/4 0 | 0 0 1 0 | 3/2 0 9/16 0 }}
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5


=== 13-limit ===
[[Algebraic generator]]: Sceptre2, the positive root of 9''x''<sup>2</sup> + ''x'' - 16, or (sqrt (577) - 1)/18, which is 425.9311 cents.
Subgroup: 2.3.5.7.11.13


Comma list: 56/55, 66/65, 77/75, 243/242
{{Optimal ET sequence|legend=1| 14c, 17c, 31, 169b, 200b }}


Mapping: [{{val| 1 1 0 -1 2 4 }}, {{val| 0 2 8 13 5 -1 }}]
[[Badness]] (Sintel): 1.16


Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 350.745
Scales: [[skwares8]], [[skwares11]], [[skwares14]]


{{Optimal ET sequence|legend=1| 7d, 17c, 24, 41c, 65cc }}
=== 11-limit ===
Subgroup: 2.3.5.7.11


Badness: 0.028738
Comma list: 81/80, 99/98, 121/120


Scales: [[mohaha7]], [[mohaha10]]
Mapping: {{mapping| 1 -1 -8 -3 -3 | 0 4 16 9 10 }}


== Liese ==
Optimal tunings:
<span style="display: block; text-align: right;">[[:de:Liese|Deutsch]]</span>
* WE: ~2 = 1201.6657{{c}}, ~11/7 = 775.1171{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 774.1754{{c}}


Liese splits the twelfth interval of 3/1 into three generators of 10/7, using the comma 1029/1000. It also tempers out 686/675, the senga. [[74edo]] makes for a good liese tuning, though [[19edo]] can be used. The tuning is well-supplied with MOS: 7, 9, 11, 13, 15, 17, 19, 36, 55.
{{Optimal ET sequence|legend=0| 14c, 17c, 31, 130bee, 169beee }}


[[Subgroup]]: 2.3.5.7
Badness (Sintel): 0.715


[[Comma list]]: 81/80, 686/675
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


[[Mapping]]: [{{val| 1 0 -4 -3 }}, {{val| 0 3 12 11 }}]
Comma list: 66/65, 81/80, 99/98, 121/120


: mapping generators: ~2, ~10/7
Mapping: {{mapping| 1 -1 -8 -3 -3 5 | 0 4 16 9 10 -2 }}


{{Multival|legend=1| 3 12 11 12 9 -8 }}
Optimal tunings:
* WE: ~2 = 1199.8419{{c}}, ~11/7 = 774.3484{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 774.4422{{c}}


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~10/7 = 632.406
{{Optimal ET sequence|legend=0| 14c, 17c, 31, 79cf }}


[[Minimax tuning]]:
Badness (Sintel): 1.05
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~10/7 = {{monzo| 1/3 0 1/12 }}
: [{{Monzo| 1 0 0 0 }}, {{monzo| 1 0 1/4 0 }}, {{monzo| 0 0 1 0 }}, {{monzo| 2/3 0 11/12 0 }}]
: [[Eigenmonzo basis|Eigenmonzo (unchanged-interval) basis]]: 2.5


[[Algebraic generator]]: Radix, the real root of ''x''<sup>5</sup> - 2''x''<sup>4</sup> + 2''x''<sup>3</sup> - 2''x''<sup>2</sup> + 2''x'' - 2, also a root of ''x''<sup>6</sup> - ''x''<sup>5</sup> - 2. The recurrence converges.
==== Squad ====
Subgroup: 2.3.5.7.11.13


{{Optimal ET sequence|legend=1| 17c, 19, 55, 74d }}
Comma list: 78/77, 81/80, 91/90, 99/98


[[Badness]]: 0.046706
Mapping: {{mapping| 1 -1 -8 -3 -3 -6 | 0 4 16 9 10 15 }}


=== Liesel ===
Optimal tunings:
Subgroup: 2.3.5.7.11
* WE: ~2 = 1202.0312{{c}}, ~11/7 = 775.5589{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 774.4140{{c}}


Comma list: 56/55, 81/80, 540/539
{{Optimal ET sequence|legend=0| 14cf, 17c, 31f }}


Mapping: [{{val| 1 0 -4 -3 4 }}, {{val| 0 3 12 11 -1 }}]
Badness (Sintel): 1.11


{{Multival|legend=1| 3 12 11 -1 12 9 -12 -8 -44 -41 }}
==== Agora ====
Subgroup: 2.3.5.7.11.13


Optimal tuning (POTE): ~2 = 1\1, ~10/7 = 633.073
Comma list: 81/80, 99/98, 105/104, 121/120


{{Optimal ET sequence|legend=1| 17c, 19, 36, 91cee }}
Mapping: {{mapping| 1 -1 -8 -3 -3 -15 | 0 4 16 9 10 29 }}


Badness: 0.040721
Optimal tunings:  
* WE: ~2 = 1202.3228{{c}}, ~11/7 = 775.2214{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 773.8617{{c}}


==== 13-limit ====
{{Optimal ET sequence|legend=0| 14cf, 31, 45ef, 76e }}
Liesel is a very natural 13-limit tuning, given the generator is so near 13/9.


Subgroup: 2.3.5.7.11.13
Badness (Sintel): 1.01


Comma list: 56/55, 78/77, 81/80, 91/90
===== 17-limit =====
Subgroup: 2.3.5.7.11.13.17


Mapping: [{{val| 1 0 -4 -3 4 0 }}, {{val| 0 3 12 11 -1 7 }}]
Comma list: 81/80, 99/98, 105/104, 120/119, 121/119


Optimal tuning (POTE): ~2 = 1\1, ~10/7 = 633.042
Mapping: {{mapping| 1 -1 -8 -3 -3 -15 -3 | 0 4 16 9 10 29 11 }}


{{Optimal ET sequence|legend=1| 17c, 19, 36, 91ceef }}
Optimal tunings:
* WE: ~2 = 1201.4340{{c}}, ~11/7 = 774.7375{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 773.8955{{c}}


Badness: 0.027304
{{Optimal ET sequence|legend=0| 14cf, 31 }}


=== Elisa ===
Badness (Sintel): 1.15
Subgroup: 2.3.5.7.11


Comma list: 77/75, 81/80, 99/98
===== 19-limit =====
Subgroup: 2.3.5.7.11.13.17.19


Mapping: [{{val| 1 0 -4 -3 -5 }}, {{val| 0 3 12 11 16 }}]
Comma list: 77/76, 81/80, 99/98, 105/104, 120/119, 121/119


Mapping: {{mapping| 1 -1 -8 -3 -3 -15 -3 -8 | 0 4 16 9 10 29 11 19 }}


{{Multival|legend=1| 3 12 11 16 12 9 15 -8 -4 7 }}
Optimal tunings:
* WE: ~2 = 1201.2461{{c}}, ~11/7 = 774.5783{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~11/7 = 773.8479{{c}}


Optimal tuning (POTE): ~2 = 1\1, ~10/7 = 633.061
{{Optimal ET sequence|legend=0| 14cf, 31 }}


{{Optimal ET sequence|legend=1| 17c, 19e, 36e }}
Badness (Sintel): 1.15


Badness: 0.041592
=== Cuboctahedra ===
Subgroup: 2.3.5.7.11


==== 13-limit ====
Comma list: 81/80, 385/384, 1375/1372
Subgroup: 2.3.5.7.11.13


Comma list: 66/65, 77/75, 81/80, 99/98
Mapping: {{mapping| 1 -1 -8 -3 17 | 0 4 16 9 -21 }}


Mapping: [{{val| 1 0 -4 -3 -5 0 }}, {{val| 0 3 12 11 16 7 }}]
Optimal tunings:  
* WE: ~2 = 1201.4436{{c}}, ~14/9 = 774.9386{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~14/9 = 774.0243{{c}}


Optimal tuning (POTE): ~2 = 1\1, ~10/7 = 632.991
{{Optimal ET sequence|legend=0| 31, 107b, 138b, 169be, 200be }}


{{Optimal ET sequence|legend=1| 17c, 19e, 36e }}
Badness (Sintel): 1.88


Badness: 0.026922
== Jerome ==
Jerome is related to [[20ed5|Hieronymus' tuning]]; the Hieronymus generator is 5<sup>1/20</sup>, or 139.316 cents. It may be described as {{nowrap| 17c & 26 }}; its ploidacot is pentacot. While the generator represents both 13/12 and 12/11, the CTE/CWE and Hieronymus generators are close to 13/12 in size.


=== Lisa ===
[[Subgroup]]: 2.3.5.7
Subgroup: 2.3.5.7.11


Comma list: 45/44, 81/80, 343/330
[[Comma list]]: 81/80, 17280/16807


Mapping: [{{val| 1 0 -4 -3 -6 }}, {{val| 0 3 12 11 18 }}]
{{Mapping|legend=1| 1 1 0 2 | 0 5 20 7 }}


Optimal tuning (POTE): ~2 = 1\1, ~10/7 = 631.370
: mapping generators: ~2, ~54/49


{{Optimal ET sequence|legend=1| 17cee, 19 }}
[[Optimal tuning]]s:
* [[WE]]: ~2 = 1200.1640{{c}}, ~54/49 = 139.3624{{c}}
: [[error map]]: {{val| +0.164 -4.979 +0.934 +7.039 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~54/49 = 139.3528{{c}}
: error map: {{val| 0.000 -5.191 +0.741 +6.643 }}


Badness: 0.054829
{{Optimal ET sequence|legend=1| 17c, 26, 43 }}


==== 13-limit ====
[[Badness]] (Sintel): 2.75
Subgroup: 2.3.5.7.11.13


Comma list: 45/44, 81/80, 91/88, 147/143
=== 11-limit ===
Subgroup: 2.3.5.7.11


Mapping: [{{val| 1 0 -4 -3 -6 0 }}, {{val| 0 3 12 11 18 7 }}]
Comma list: 81/80, 99/98, 864/847


Optimal tuning (POTE): ~2 = 1\1, ~10/7 = 631.221
Mapping: {{mapping| 1 1 0 2 3 | 0 5 20 7 4 }}


{{Optimal ET sequence|legend=1| 17cee, 19 }}
Optimal tunings:
* WE: ~2 = 1201.4436{{c}}, ~12/11 = 139.3714{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~12/11 = 139.4038{{c}}


Badness: 0.036144
{{Optimal ET sequence|legend=0| 17c, 26, 43 }}


== Superpine ==
Badness (Sintel): 1.58
The superpine temperament is generated by 1/3 of a fourth, represented by [[35/32]], which resembles [[porcupine]], but it favors flat fifths instead of sharp ones. Unlike in porcupine, the minor third reached by 2 generators up is strongly neutral-flavored and does not represent [[6/5]]–harmonics other than 3 all require the 15-tone mos to properly utilize. This temperament has an obvious 11-limit interpretation by treating the generator as [[11/10]] as in porcupine, which makes [[11/8]] high-[[complexity]] like the other harmonics, but in the 13-limit 5 generators up closely approximates [[13/8]]. [[43edo]] is a good tuning especially for the higher-limit extensions.


[[Subgroup]]: 2.3.5.7
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


[[Comma list]]: 81/80, 1119744/1071875
Comma list: 78/77, 81/80, 99/98, 144/143


{{Mapping|legend=1| 1 2 4 1 | 0 -3 -12 13 }}
Mapping: {{mapping| 1 1 0 2 3 3 | 0 5 20 7 4 6 }}


[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~35/32 = 167.279
Optimal tunings:
* WE: ~2 = 1199.8860{{c}}, ~13/12 = 139.3737{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~13/12 = 139.3817{{c}}


{{Optimal ET sequence|legend=1| 7, 36, 43, 79c }}
{{Optimal ET sequence|legend=0| 17c, 26, 43 }}


[[Badness]]: 0.137
Badness (Sintel): 1.21


=== 11-limit ===
=== 17-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11.13.17


Comma list: 81/80, 176/175, 864/847
Comma list: 78/77, 81/80, 99/98, 144/143, 189/187


Mapping: {{mapping| 1 2 4 1 5 | 0 -3 -12 13 -11 }}
Mapping: {{mapping| 1 1 0 2 3 3 2 | 0 5 20 7 4 6 18 }}


Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 167.407
Optimal tunings:
* WE: ~2 = 1199.8346{{c}}, ~13/12 = 139.3431{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~13/12 = 139.3544{{c}}


Optimal ET sequence: {{Optimal ET sequence| 7, 36, 43 }}
{{Optimal ET sequence|legend=0| 17cg, 26, 43 }}


Badness: 0.0576
Badness (Sintel): 1.06


=== 13-limit ===
=== 19-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 78/77, 81/80, 144/143, 176/175
Comma list: 78/77, 81/80, 99/98, 120/119, 135/133, 144/143


Mapping: {{mapping| 1 2 4 1 5 3 | 0 -3 -12 13 -11 5 }}
Mapping: {{mapping| 1 1 0 2 3 3 2 1 | 0 5 20 7 4 6 18 28 }}


Optimal tuning (CTE): ~2 = 1\1, ~11/10 = 167.427
Optimal tunings:
* WE: ~2 = 1199.8891{{c}}, ~13/12 = 139.3001{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~13/12 = 139.3080{{c}}


Optimal ET sequence: {{Optimal ET sequence| 7, 36, 43 }}
{{Optimal ET sequence|legend=0| 17cgh, 26, 43, 69 }}


Badness: 0.0368
Badness (Sintel): 1.11


== Lithium ==
== Meantritone ==
Lithium is named after the 3rd element for being period-3, and also for lithium's molar mass of 6.9 g/mol since 69edo supports it. It supports a [[3L 6s]] scale and thus intuitively can be thought of as "tcherepnin meantone" in that context.
The meantritone temperament tempers out the [[mirkwai comma]] (16875/16807) and [[trimyna comma]] (50421/50000) in the 7-limit. In this temperament, the 6th harmonic is split into five generators of ~10/7; the ploidacot of this temperament is beta-pentacot. The name ''meantritone'' is a portmanteau of ''meantone'' and ''tritone'', the latter is a generator of this temperament.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 81/80, 3125/3087
[[Comma list]]: 81/80, 16875/16807


[[Mapping]]: [{{val| 3 0 -12 -20 }}, {{val| 0 1 4 6 }}]
{{Mapping|legend=1| 1 -1 -8 -7 | 0 5 20 19 }}


: mapping generators: ~56/45, ~3
: mapping generators: ~2, ~10/7


[[Optimal tuning]] ([[CTE]]): ~56/45 = 1\3, ~3/2 = 695.827
[[Optimal tuning]]s:
* [[WE]]: ~2 = 1201.3832{{c}}, ~10/7 = 619.9478{{c}}
: [[error map]]: {{val| +1.383 -3.599 +1.576 +0.499 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~10/7 = 619.3176{{c}}
: error map: {{val| 0.000 -5.367 +0.038 -1.791 }}


{{Optimal ET sequence|legend=1| 12, 33cd, 45, 57 }}
{{Optimal ET sequence|legend=1| 29cd, 31, 188bcd, 219bbcd }}


[[Badness]]: 0.0692
[[Badness]] (Sintel): 2.08


== Squares ==
=== 11-limit ===
{{Main| Squares }}
Subgroup: 2.3.5.7.11


Squares splits the interval of an eleventh, or 8/3, into four supermajor third ([[9/7]]) intervals, and uses it for a generator. [[31edo]], with a generator of 11/31, makes for a good squares tuning, with 8, 11, and 14 note MOS available. Squares tempers out [[2401/2400]], the breedsma, as well as [[2430/2401]].
Comma list: 81/80, 99/98, 2541/2500


[[Subgroup]]: 2.3.5.7
Mapping: {{mapping| 1 -1 -8 -7 -11 | 0 5 20 19 28 }}


[[Comma list]]: 81/80, 2401/2400
Optimal tunings:  
* WE: ~2 = 1201.2054{{c}}, ~10/7 = 619.9752{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~10/7 = 619.4223{{c}}


[[Mapping]]: [{{val| 1 3 8 6 }}, {{val| 0 -4 -16 -9 }}]
{{Optimal ET sequence|legend=0| 29cde, 31 }}


: mapping generators: ~2, ~9/7
Badness (Sintel): 1.42


{{Multival|legend=1| 4 16 9 16 3 -24 }}
== Injera ==
Injera has a half-octave period and a generator which can be taken as a fifth or fourth, but also as a ~15/14 semitone difference between a half-octave and a perfect fifth. Injera may be described as {{nowrap| 12 & 26 }}; its ploidacot is diploid monocot. It tempers out 50/49, equating 7/5 with 10/7 and giving a tritone of half an octave. A major third up from this tritone is the 7/4. [[38edo]], which is two parallel [[19edo]]s, is an excellent tuning for injera.


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~9/7 = 425.942
[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_3091.html#3091 Origin of the name]
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 50/49, 81/80
 
{{Mapping|legend=1| 2 0 -8 -7 | 0 1 4 4 }}
 
: mapping generators: ~7/5, ~3


[[Minimax tuning]]:  
[[Optimal tuning]]s:  
* [[7-odd-limit|7-]] and [[9-odd-limit]]: ~9/7 = {{monzo| 1/2 0 -1/16 }}
* [[WE]]: ~7/5 = 600.6662{{c}}, ~3/2 = 695.1463{{c}} (~21/20 = 94.4801{{c}})
: [{{Monzo| 1 0 0 0 }}, {{monzo| 1 0 1/4 0 }}, {{monzo| 0 0 1 0 }}, {{monzo| 3/2 0 9/16 0 }}]
: [[error map]]: {{val| +1.332 -5.476 -5.729 +12.425 }}
: [[Eigenmonzo basis|Eigenmonzo (unchanged-interval) basis]]: 2.5
* [[CWE]]: ~7/5 = 600.0000{{c}}, ~3/2 = 694.7712{{c}} (~21/20 = 94.7712{{c}})
: error map: {{val| 0.000 -7.184 -7.229 +10.259 }}


[[Algebraic generator]]: Sceptre2, the positive root of 9''x''<sup>2</sup> + ''x'' - 16, or (sqrt (577) - 1)/18, which is 425.9311 cents.
[[Tuning ranges]]:  
* 7- and 9-odd-limit [[diamond monotone]]: ~3/2 = [685.714, 700.000] (8\14 to 7\12)
* 7-odd-limit [[diamond tradeoff]]: ~3/2 = [688.957, 701.955]
* 9-odd-limit diamond tradeoff: ~3/2 = [682.458, 701.955]


{{Optimal ET sequence|legend=1| 14c, 17c, 31 }}
{{Optimal ET sequence|legend=1| 12, 26, 38 }}


[[Badness]]: 0.045993
[[Badness]] (Sintel): 0.788


Scales: [[skwares8]], [[skwares11]], [[skwares14]]
; Music
* [https://web.archive.org/web/20201127013520/http://micro.soonlabel.com/gene_ward_smith/Others/Igs/Two%20Pairs%20of%20Socks.mp3 ''Two Pairs of Socks''] by [[Igliashon Jones]] – in [[26edo]] tuning


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 81/80, 99/98, 121/120
Comma list: 45/44, 50/49, 81/80


Mapping: [{{val| 1 3 8 6 7 }}, {{val| 0 -4 -16 -9 -10 }}]
Mapping: {{mapping| 2 0 -8 -7 -12 | 0 1 4 4 6 }}


{{Multival|legend=1| 4 16 9 10 16 3 2 -24 -32 -3 }}
Optimal tunings:
* WE: ~7/5 = 600.9350{{c}}, ~3/2 = 693.9198{{c}} (~21/20 = 92.9848{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 693.3539{{c}} (~21/20 = 93.3539{{c}})


Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 425.957
Tuning ranges:
* 11-odd-limit diamond monotone: ~3/2 = [685.714, 700.000] (8\14 to 7\12)
* 11-odd-limit diamond tradeoff: ~3/2 = [682.458, 701.955]


{{Optimal ET sequence|legend=1| 14c, 17c, 31 }}
{{Optimal ET sequence|legend=0| 12, 26 }}


Badness: 0.021636
Badness (Sintel): 0.764


==== 13-limit ====
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 66/65, 81/80, 99/98, 121/120
Comma list: 45/44, 50/49, 78/77, 81/80


Mapping: [{{val| 1 3 8 6 7 3 }}, {{val| 0 -4 -16 -9 -10 2 }}]
Mapping: {{mapping| 2 0 -8 -7 -12 -21 | 0 1 4 4 6 9 }}


Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 425.550
Optimal tunings:
* WE: ~7/5 = 600.9982{{c}}, ~3/2 = 693.8249{{c}} (~21/20 = 92.8267{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 693.0992{{c}} (~21/20 = 93.0992{{c}})


{{Optimal ET sequence|legend=1| 14c, 17c, 31, 79cf }}
Tuning ranges:
 
* 13- and 15-odd-limit diamond monotone: ~3/2 = 692.308 (15\26)
Badness: 0.025514
* 13- and 15-odd-limit diamond tradeoff: ~3/2 = [682.458, 701.955]


==== Squad ====
{{Optimal ET sequence|legend=0| 12f, 14cf, 26 }}
Subgroup: 2.3.5.7.11.13


Comma list: 78/77, 81/80, 91/90, 99/98
Badness (Sintel): 0.891


Mapping: [{{val| 1 3 8 6 7 9 }}, {{val| 0 -4 -16 -9 -10 -15 }}]
===== 17-limit =====
Subgroup: 2.3.5.7.11.13.17


Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 425.7516
Comma list: 45/44, 50/49, 78/77, 81/80, 85/84


{{Optimal ET sequence|legend=1| 14cf, 17c, 31f }}
Mapping: {{mapping| 2 0 -8 -7 -12 -21 5 | 0 1 4 4 6 9 1 }}


Badness: 0.026877
Optimal tunings:  
* WE: ~7/5 = 601.1757{{c}}, ~3/2 = 693.8441{{c}} (~21/20 = 92.6684{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 692.8879{{c}} (~21/20 = 92.8879{{c}})


==== Agora ====
{{Optimal ET sequence|legend=0| 12f, 14cf, 26 }}
Subgroup: 2.3.5.7.11.13


Comma list: 81/80, 99/98, 105/104, 121/120
Badness (Sintel): 0.935


Mapping: [{{val| 1 3 8 6 7 14 }}, {{val| 0 -4 -16 -9 -10 -29 }}]
===== 19-limit =====
Subgroup: 2.3.5.7.11.13.17.19


Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 426.276
Comma list: 45/44, 50/49, 57/56, 78/77, 81/80, 85/84


{{Optimal ET sequence|legend=1| 14cf, 31, 45ef, 76e }}
Mapping: {{mapping| 2 0 -8 -7 -12 -21 5 -1 | 0 1 4 4 6 9 1 3 }}


Badness: 0.024522
Optimal tunings:  
* WE: ~7/5 = 601.4245{{c}}, ~3/2 = 693.9426{{c}} (~21/20 = 92.5181{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 692.7606{{c}} (~21/20 = 92.7606{{c}})


===== 17-limit =====
{{Optimal ET sequence|legend=0| 12f, 14cf, 26 }}
Subgroup: 2.3.5.7.11.13.17


Comma list: 81/80, 99/98, 105/104, 120/119, 121/119
Badness (Sintel): 0.920


Mapping: [{{val| 1 3 8 6 7 14 8 }}, {{val| 0 -4 -16 -9 -10 -29 -11 }}]
==== Enjera ====
Subgroup: 2.3.5.7.11.13


Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 426.187
Comma list: 27/26, 40/39, 45/44, 50/49


{{Optimal ET sequence|legend=1| 14cf, 31, 76e }}
Mapping: {{mapping| 2 0 -8 -7 -12 -2 | 0 1 4 4 6 3 }}


Badness: 0.022573
Optimal tunings:  
* WE: ~7/5 = 599.1863{{c}}, ~3/2 = 693.1791{{c}} (~21/20 = 93.9929{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 693.6809{{c}} (~21/20 = 93.6809{{c}})


===== 19-limit =====
{{Optimal ET sequence|legend=0| 10cdeef, 12f }}
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 77/76, 81/80, 99/98, 105/104, 120/119, 121/119
Badness (Sintel): 1.10


Mapping: [{{val| 1 3 8 6 7 14 8 11 }}, {{val| 0 -4 -16 -9 -10 -29 -11 -19 }}]
=== Injerous ===
Subgroup: 2.3.5.7.11


Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 426.225
Comma list: 33/32, 50/49, 55/54


{{Optimal ET sequence|legend=1| 14cf, 31, 76e }}
Mapping: {{mapping| 2 0 -8 -7 10 | 0 1 4 4 -1 }}


Badness: 0.018839
Optimal tunings:
* WE: ~7/5 = 603.1682{{c}}, ~3/2 = 694.1945{{c}} (~21/20 = 91.0264{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 691.6107{{c}} (~21/20 = 91.6107{{c}})
 
{{Optimal ET sequence|legend=0| 12e, 14c, 26e, 40cee }}
 
Badness (Sintel): 1.28


=== Cuboctahedra ===
=== Lahoh ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 81/80, 385/384, 1375/1372
Comma list: 50/49, 56/55, 81/77


Mapping: [{{val| 1 3 8 6 -4 }}, {{val| 0 -4 -16 -9 21 }}]
Mapping: {{mapping| 2 0 -8 -7 7 | 0 1 4 4 0 }}


{{Multival|legend=1| 4 16 9 -21 16 3 -47 -24 -104 -90 }}
Optimal tunings:
* WE: ~7/5 = 597.3179{{c}}, ~3/2 = 695.8759{{c}} (~21/20 = 98.5581{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~3/2 = 697.8757{{c}} (~21/20 = 97.8757{{c}})


Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 425.993
{{Optimal ET sequence|legend=0| 10cd, 12 }}


{{Optimal ET sequence|legend=1| 14ce, 17ce, 31, 107b, 138b, 169be, 200be }}
Badness (Sintel): 1.42


Badness: 0.056826
=== Teff ===
{{Main| Teff }}


== Jerome ==
Teff, found and named by [[Mason Green]], is to injera what mohajira is to meantone; it splits the generator in halves in order to accommodate higher-limit intervals, creating a half-octave quartertone temperament. Its ploidacot is diploid alpha-dicot.  
Jerome is related to [[20ed5|Hieronymus' tuning]]; the Hieronymus generator is 5<sup>1/20</sup>, or 139.316 cents. While the generator represents both 13/12 and 12/11, the POTE and Hieronymus generators are close to 13/12 in size.


[[Subgroup]]: 2.3.5.7
Subgroup: 2.3.5.7.11


[[Comma list]]: 81/80, 17280/16807
Comma list: 50/49, 81/80, 864/847


[[Mapping]]: [{{val| 1 1 0 2 }}, {{val| 0 5 20 7 }}]
Mapping: {{mapping| 2 1 -4 -3 8 | 0 2 8 8 -1 }}


: mapping generators: ~2, ~54/49
: mapping generators: ~7/5, ~16/11


{{Multival|legend=1| 5 20 7 20 -3 -40 }}
Optimal tunings:
* WE: ~7/5 = 600.2802{{c}}, ~16/11 = 647.7720{{c}} (~33/32 = 47.4918{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 647.5224{{c}} (~33/32 = 47.5224{{c}})


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~54/49 = 139.343
{{Optimal ET sequence|legend=0| 24d, 26, 50d }}


{{Optimal ET sequence|legend=1| 17c, 26, 43, 69, 112bd }}
Badness (Sintel): 2.34


[[Badness]]: 0.108656
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


=== 11-limit ===
Comma list: 50/49, 78/77, 81/80, 144/143
Subgroup: 2.3.5.7.11


Comma list: 81/80, 99/98, 864/847
Mapping: {{mapping| 2 1 -4 -3 8 2 | 0 2 8 8 -1 5 }}


Mapping: [{{val| 1 1 0 2 3 }}, {{val| 0 5 20 7 4 }}]
Optimal tunings:  
* WE: ~7/5 = 600.3037{{c}}, ~16/11 = 647.7954{{c}} (~33/32 = 47.4917{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 647.5256{{c}} (~33/32 = 47.5256{{c}})


{{Multival|legend=1| 5 20 7 4 20 -3 -11 -40 -60 -13 }}
{{Optimal ET sequence|legend=0| 24d, 26, 50d }}


Optimal tuning (POTE): ~2 = 1\1, ~12/11 = 139.428
Badness (Sintel): 1.65


{{Optimal ET sequence|legend=1| 17c, 26, 43, 69 }}
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17


Badness: 0.047914
Comma list: 50/49, 78/77, 81/80, 85/84, 144/143


=== 13-limit ===
Mapping: {{mapping| 2 1 -4 -3 8 2 6 | 0 2 8 8 -1 5 2 }}
Subgroup: 2.3.5.7.11.13


Comma list: 78/77, 81/80, 99/98, 144/143
Optimal tunings:  
* WE: ~7/5 = 600.5123{{c}}, ~16/11 = 647.8970{{c}} (~34/33 = 47.3846{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 647.4314{{c}} (~34/33 = 47.4314{{c}})


Mapping: [{{val| 1 1 0 2 3 3 }}, {{val| 0 5 20 7 4 6 }}]
{{Optimal ET sequence|legend=0| 24d, 26 }}


Optimal tuning (POTE): ~2 = 1\1, ~12/11 = 139.387
Badness (Sintel): 1.50


{{Optimal ET sequence|legend=1| 17c, 26, 43, 69 }}
==== 19-limit ====
 
Badness: 0.029285
 
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 78/77, 81/80, 99/98, 144/143, 189/187
 
Mapping: [{{val| 1 1 0 2 3 3 2 }}, {{val| 0 5 20 7 4 6 18 }}]
 
Optimal tuning (POTE): ~2 = 1\1, ~12/11 = 139.362
 
{{Optimal ET sequence|legend=1| 17cg, 26, 43, 69 }}
 
Badness: 0.020878
 
=== 19-limit ===
Subgroup: 2.3.5.7.11.13.17.19
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 78/77, 81/80, 99/98, 120/119, 135/133, 144/143
Comma list: 50/49, 57/56, 78/77, 81/80, 85/84, 144/143


Mapping: [{{val| 1 1 0 2 3 3 2 1 }}, {{val| 0 5 20 7 4 6 18 28 }}]
Mapping: {{mapping| 2 1 -4 -3 8 2 6 2 | 0 2 8 8 -1 5 2 6 }}


Optimal tuning (POTE): ~2 = 1\1, ~12/11 = 139.313
Optimal tunings:
* WE: ~7/5 = 600.6308{{c}}, ~16/11 = 648.0424{{c}} (~34/33 = 47.4116{{c}})
* CWE: ~7/5 = 600.0000{{c}}, ~16/11 = 647.4715{{c}} (~34/33 = 47.4715{{c}})


{{Optimal ET sequence|legend=1| 17cgh, 26, 43, 69 }}
{{Optimal ET sequence|legend=0| 24d, 26 }}


Badness: 0.018229
Badness (Sintel): 1.41


== Meantritone ==
== Pombe ==
The ''meantritone'' temperament tempers out the mirkwai comma (16875/16807) and trimyna comma (50421/50000) in the 7-limit. In this temperament, three septimal tritones equals ~30/11 (an octave plus [[15/11]]-wide super-fourth) and five of them equals ~[[16/3]] (double-compound fourth). The name "meantritone" is a portmanteau of meantone and tritone, the latter is a generator of this temperament.
Pombe (named after the African millet beer) is a variant of [[#Teff]] by [[User:Kaiveran|Kaiveran Lugheidh]] that eschews the tempering of 50/49 to attain more accuracy in the 7-limit. Its ploidacot is diploid alpha-dicot, the same as teff. Oddly, the 7th harmonic has a lesser generator distance than in teff (-5 vs +8), but this combined with the fact that other harmonics are in the opposite direction means that the 7-limit diamond is more complex overall.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 81/80, 16875/16807
[[Comma list]]: 81/80, 300125/294912


[[Mapping]]: [{{val| 1 4 12 12 }}, {{val| 0 -5 -20 -19 }}]
{{Mapping|legend=1| 2 1 -4 11 | 0 2 8 -5 }}


{{Multival|legend=1| 5 20 19 20 16 -12 }}
: mapping generators: ~735/512, ~35/24


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~7/5 = 580.766
[[Optimal tuning]]s:
* [[WE]]: ~735/512 = 601.0652{{c}}, ~35/24 = 648.9295{{c}} (~36/35 = 47.8642{{c}})
: [[error map]]: {{val| +2.130 -3.031 +0.861 -1.756 }}
* [[CWE]]: ~735/512 = 600.0000{{c}}, ~35/24 = 647.8628{{c}} (~36/35 = 47.8628{{c}})
: error map: {{val| 0.000 -6.229 -3.411 -8.140 }}


{{Optimal ET sequence|legend=1| 2cd, 29cd, 31 }}
{{Optimal ET sequence|legend=1| 24, 26, 50, 126bcd, 176bcdd, 226bbcdd }}


[[Badness]]: 0.082239
[[Badness]] (Sintel): 2.94


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 81/80, 99/98, 2541/2500
Comma list: 81/80, 245/242, 385/384


Mapping: [{{val| 1 4 12 12 17 }}, {{val| 0 -5 -20 -19 -28 }}]
Mapping: {{mapping| 2 1 -4 11 8 | 0 2 8 -5 -1 }}


Optimal tuning (POTE): ~2 = 1\1, ~7/5 = 580.647
Optimal tunings:
* WE: ~99/70 = 600.7890{{c}}, ~16/11 = 648.7592{{c}} (~36/35 = 47.9701{{c}})
* CWE: ~99/70 = 600.0000{{c}}, ~16/11 = 647.9516{{c}} (~36/35 = 47.9516{{c}})


{{Optimal ET sequence|legend=1| 2cde, 29cde, 31 }}
{{Optimal ET sequence|legend=0| 24, 26, 50 }}


Badness: 0.042869
Badness (Sintel): 1.72


== Injera ==
=== 13-limit ===
Injera has a half-octave period and a generator which can be taken as a fifth or fourth, but also as a 15/14 semitone difference between a half-octave and a perfect fifth. Injera tempers out 50/49, equating 7/5 with 10/7 and giving a tritone of half an octave. A major third up from this tritone is the 7/4. [[38edo|38EDO]], which is two parallel [[19edo]]s, is an excellent tuning for injera.
Subgroup: 2.3.5.7.11.13


[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_3091.html#3091 Origin of the name]
Comma list: 81/80, 105/104, 144/143, 245/242


[[Subgroup]]: 2.3.5.7
Mapping: {{mapping| 2 1 -4 11 8 2 | 0 2 8 -5 -1 5 }}


[[Comma list]]: 50/49, 81/80
Optimal tunings:  
* WE: ~99/70 = 600.6971{{c}}, ~16/11 = 648.6029{{c}} (~36/35 = 47.9058{{c}})
* CWE: ~99/70 = 600.0000{{c}}, ~16/11 = 647.8990{{c}} (~36/35 = 47.8990{{c}})


[[Mapping]]: [{{val| 2 0 -8 -7 }}, {{val| 0 1 4 4 }}]
{{Optimal ET sequence|legend=0| 24, 26, 50 }}


: mapping generators: ~7/5, ~3
Badness (Sintel): 1.28


{{Multival|legend=1| 2 8 8 8 7 -4 }}
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17


[[Optimal tuning]] ([[POTE]]): ~7/5 = 1\2, ~3/2 = 694.375
Comma list: 81/80, 105/104, 144/143, 245/242, 273/272


[[Tuning ranges]]:  
Mapping: {{mapping| 2 1 -4 11 8 2 6 | 0 2 8 -5 -1 5 2 }}
* 7- and 9-odd-limit [[diamond monotone]]: ~3/2 = [685.714, 700.000] (8\14 to 7\12)
* 7-odd-limit [[diamond tradeoff]]: ~3/2 = [688.957, 701.955]
* 9-odd-limit diamond tradeoff: ~3/2 = [682.458, 701.955]


{{Optimal ET sequence|legend=1| 12, 26, 38, 102bcd, 140bccd, 178bbccdd }}
Optimal tunings:
* WE: ~17/12 = 600.7610{{c}}, ~16/11 = 648.6638{{c}} (~36/35 = 47.9028{{c}})
* CWE: ~17/12 = 600.0000{{c}}, ~16/11 = 647.8990{{c}} (~36/35 = 47.8990{{c}})


[[Badness]]: 0.031130
{{Optimal ET sequence|legend=0| 24, 26, 50 }}


; Music
Badness (Sintel): 1.08
* [http://micro.soonlabel.com/gene_ward_smith/Others/Igs/Two%20Pairs%20of%20Socks.mp3 Two Pairs of Socks] (in [[26edo|26EDO]]) by [[Igliashon Jones]]


=== 11-limit ===
=== 19-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 45/44, 50/49, 81/80
Comma list: 81/80, 105/104, 133/132, 144/143, 171/170, 210/209


Mapping: [{{val| 2 0 -8 -7 -12 }}, {{val| 0 1 4 4 6 }}]
Mapping: {{mapping| 2 1 -4 11 8 2 6 2 | 0 2 8 -5 -1 5 2 6 }}


{{Multival|legend=1| 2 8 8 12 8 7 12 -4 0 6 }}
Optimal tunings:
* WE: ~17/12 = 600.8048{{c}}, ~16/11 = 648.7494{{c}} (~36/35 = 47.9446{{c}})
* CWE: ~17/12 = 600.0000{{c}}, ~16/11 = 647.9425{{c}} (~36/35 = 47.9425{{c}})


Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 692.840
{{Optimal ET sequence|legend=0| 24, 26, 50 }}


Tuning ranges:
Badness (Sintel): 1.01
* 11-odd-limit diamond monotone: ~3/2 = [685.714, 700.000] (8\14 to 7\12)
* 11-odd-limit diamond tradeoff: ~3/2 = [682.458, 701.955]


{{Optimal ET sequence|legend=1| 12, 14c, 26, 90bce, 116bcce }}
== Orphic ==
Orphic has a semi-octave period and four generators plus a period gives the 3rd harmonic; its ploidacot is diploid alpha-tetracot.


Badness: 0.023124
[[Subgroup]]: 2.3.5.7


==== 13-limit ====
[[Comma list]]: 81/80, 5898240/5764801
Subgroup: 2.3.5.7.11.13


Comma list: 45/44, 50/49, 78/77, 81/80
{{Mapping|legend=1| 2 1 -4 4 | 0 4 16 3 }}


Mapping: [{{val| 2 0 -8 -7 -12 -21 }}, {{val| 0 1 4 4 6 9 }}]
: mapping generators: ~2401/1728, ~343/288


Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 692.673
[[Optimal tuning]]s:
* [[WE]]: ~2401/1728 = 600.1767{{c}}, ~343/288 = 324.3015{{c}} (~7/6 = 275.8751{{c}})
: [[error map]]: {{val| +0.353 -4.572 +1.804 +4.785 }}
* [[CWE]]: ~2401/1728 = 600.0000{{c}}, ~343/288 = 324.2285{{c}} (~7/6 = 275.7715{{c}})
: error map: {{val| 0.000 -5.041 +1.342 +3.860 }}


Tuning ranges:
{{Optimal ET sequence|legend=1| 26, 48c, 74 }}
* 13- and 15-odd-limit diamond monotone: ~3/2 = 692.308 (15\26)
* 13- and 15-odd-limit diamond tradeoff: ~3/2 = [682.458, 701.955]


{{Optimal ET sequence|legend=1| 12f, 14cf, 26, 38e }}
[[Badness]] (Sintel): 6.55


Badness: 0.021565
=== 11-limit ===
Subgroup: 2.3.5.7.11


===== 17-limit =====
Comma list: 81/80, 99/98, 73728/73205
Subgroup: 2.3.5.7.11.13.17


Comma list: 45/44, 50/49, 78/77, 81/80, 85/84
Mapping: {{mapping| 2 1 -4 4 8 | 0 4 16 3 -2 }}


Mapping: [{{val| 2 0 -8 -7 -12 -21 5 }}, {{val| 0 1 4 4 6 9 1 }}]
Optimal tunings:  
* WE: ~363/256 = 600.1011{{c}}, ~77/64 = 324.2923{{c}} (~7/6 = 275.8088{{c}})
* CWE: ~363/256 = 600.0000{{c}}, ~77/64 = 324.2463{{c}} (~7/6 = 275.7537{{c}})


Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 692.487
{{Optimal ET sequence|legend=0| 26, 48c, 74 }}


{{Optimal ET sequence|legend=1| 12f, 14cf, 26 }}
Badness (Sintel): 3.36


Badness: 0.018358
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


===== 19-limit =====
Comma list: 81/80, 99/98, 144/143, 2200/2197
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 45/44, 50/49, 57/56, 78/77, 81/80, 85/84
Mapping: {{mapping| 2 1 -4 4 8 2 | 0 4 16 3 -2 10 }}


Mapping: [{{val| 2 0 -8 -7 -12 -21 5 -1 }}, {{val| 0 1 4 4 6 9 1 3 }}]
Optimal tunings:  
* WE: ~55/39 = 600.0540{{c}}, ~77/64 = 324.2551{{c}} (~7/6 = 275.7989{{c}})
* CWE: ~55/39 = 600.0000{{c}}, ~77/64 = 324.2307{{c}} (~7/6 = 275.7693{{c}})


Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 692.299
{{Optimal ET sequence|legend=0| 26, 48c, 74 }}


{{Optimal ET sequence|legend=1| 12f, 14cf, 26 }}
Badness (Sintel): 2.21


Badness: 0.015118
== Cloudtone ==
The cloudtone temperament tempers out the [[cloudy comma]], 16807/16384 and the [[syntonic comma]], 81/80 in the 7-limit. It may be described as {{nowrap| 5 & 50 }}; its ploidacot is pentaploid monocot. It can be extended to the 11- and 13-limit by adding 385/384 and 105/104 to the comma list in this order.


==== Enjera ====
[[Subgroup]]: 2.3.5.7
Subgroup: 2.3.5.7.11.13


Comma list: 27/26, 40/39, 45/44, 50/49
[[Comma list]]: 81/80, 16807/16384


Mapping: [{{val| 2 0 -8 -7 -12 -2 }}, {{val| 0 1 4 4 6 3 }}]
{{Mapping|legend=1| 5 0 -20 14 | 0 1 4 0 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 694.121
: mapping generators: ~8/7, ~3
 
[[Optimal tuning]]s:
* [[WE]]: ~8/7 = 240.4267{{c}}, ~3/2 = 696.9566{{c}} (~49/48 = 24.3235{{c}})
: [[error map]]: {{val| +2.133 -2.865 +1.513 -2.852 }}
* [[CWE]]: ~8/7 = 240.0000{{c}}, ~3/2 = 696.1637{{c}} (~49/48 = 23.8373{{c}})
: error map: {{val| 0.000 -5.791 -1.659 -8.826 }}


{{Optimal ET sequence|legend=1| 12f, 14c, 26f, 38eff }}
{{Optimal ET sequence|legend=1| 5, 40c, 45, 50 }}


Badness: 0.026542
[[Badness]] (Sintel): 2.59


=== Injerous ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 33/32, 50/49, 55/54
Comma list: 81/80, 385/384, 2401/2376


Mapping: [{{val| 2 0 -8 -7 10 }}, {{val| 0 1 4 4 -1 }}]
Mapping: {{mapping| 5 0 -20 14 41 | 0 1 4 0 -3 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 690.548
Optimal tunings:
* WE: ~8/7 = 240.2740{{c}}, ~3/2 = 697.3317{{c}} (~56/55 = 23.4904{{c}})
* CWE: ~8/7 = 240.0000{{c}}, ~3/2 = 696.6269{{c}} (~56/55 = 23.3731{{c}})


{{Optimal ET sequence|legend=1| 12e, 14c, 26e, 40cee }}
{{Optimal ET sequence|legend=0| 5, 45, 50 }}


Badness: 0.038577
Badness (Sintel): 2.33


=== Lahoh ===
=== 13-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11.13


Comma list: 50/49, 56/55, 81/77
Comma list: 81/80, 105/104, 144/143, 2401/2376


Mapping: [{{val| 2 0 -8 -7 7 }}, {{val| 0 1 4 4 0 }}]
Mapping: {{mapping| 5 0 -20 14 41 -21 | 0 1 4 0 -3 5 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 699.001
Optimal tunings:
* WE: ~8/7 = 240.2435{{c}}, ~3/2 = 696.8686{{c}} (~91/90 = 23.8618{{c}})
* CWE: ~8/7 = 240.0000{{c}}, ~3/2 = 696.2653{{c}} (~91/90 = 23.7347{{c}})


{{Optimal ET sequence|legend=1| 2cd, 10cd, 12 }}
{{Optimal ET sequence|legend=0| 5, 45f, 50 }}


Badness: 0.043062
Badness (Sintel): 2.02


=== Teff ===
== Subgroup extensions ==
{{Main| Teff }}
=== Stützel (2.3.5.19) ===
[[Subgroup]]: 2.3.5.19


Teff (found by [[Mason Green]]) is to injera what mohajira is to meantone; it splits the generator in half in order to accommodate higher limit intervals, creating a half-octave quarter-tone temperament.
[[Comma list]]: 81/80, 96/95


Subgroup: 2.3.5.7.11
{{Mapping|legend=2| 1 0 -4 9 | 0 1 4 -3 }}


Comma list: 50/49, 81/80, 864/847
{{Mapping|legend=3| 1 0 -4 0 0 0 0 9 | 0 1 4 0 0 0 0 -3 }}


Mapping: [{{val| 2 1 -4 -3 8 }}, {{val| 0 2 8 8 -1 }}]
: mapping generators: ~2, ~3


: mapping generators: ~7/5, ~16/11
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1199.5513{{c}}, ~3/2 = 697.6058{{c}}
: [[error map]]: {{val| -0.448 -4.798 +4.110 +6.977 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 697.8222{{c}}
: error map: {{val| 0.000 -4.133 +4.975 +9.020 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~11/8 = 552.5303
{{Optimal ET sequence|legend=1| 5, 7, 12, 31, 43, 98h }}


{{Optimal ET sequence|legend=1| 24d, 26, 50d }}
[[Badness]] (Sintel): 0.324


Badness: 0.070689
=== Hypnotone ===
Hypnotone is no-sevens [[#Flattone|flattone]].


==== 13-limit ====
[[Subgroup]]: 2.3.5.11
Subgroup: 2.3.5.7.11.13


Comma list: 50/49, 78/77, 81/80, 144/143
[[Comma list]]: 45/44, 81/80


Mapping: [{{val| 2 1 -4 -3 8 2 }}, {{val| 0 2 8 8 -1 5 }}]
{{Mapping|legend=2| 1 0 -4 -6 | 0 1 4 6 }}


Optimal tuning (POTE): ~7/5 = 1\2, ~11/8 = 552.5324
{{Mapping|legend=3| 1 0 -4 0 -6 | 0 1 4 0 6 }}


{{Optimal ET sequence|legend=1| 24d, 26, 50d }}
: mapping generators: ~2, ~3


Badness: 0.040047
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1202.0621{{c}}, ~3/2 = 694.5448{{c}}
: [[error map]]: {{val| +2.062 -5.348 -8.135 +15.951 }}
* [[CWE]]: ~2 = 1200.0000{{c}}, ~3/2 = 693.9085{{c}}
: error map: {{val| 0.000 -8.047 -10.680 +12.133 }}


==== 17-limit ====
{{Optimal ET sequence|legend=1| 7, 12, 19, 26, 45 }}
Subgroup: 2.3.5.7.11.13.17


Comma list: 50/49, 78/77, 81/80, 85/84, 144/143
[[Badness]] (Sintel): 0.326


Mapping: [{{val| 2 1 -4 -3 8 2 6 }}, {{val| 0 2 8 8 -1 5 2 }}]
==== 2.3.5.11.13 subgroup ====
Subgroup: 2.3.5.11.13


Optimal tuning (POTE): ~7/5 = 1\2, ~11/8 = 552.6558
Comma list: 45/44, 65/64, 81/80


{{Optimal ET sequence|legend=1| 24d, 26 }}
Subgroup-val mapping: {{mapping| 1 0 -4 -6 10 | 0 1 4 6 -4 }}


Badness: 0.029499
Gencom mapping: {{mapping| 1 0 -4 0 -6 10 | 0 1 4 0 6 -4 }}


==== 19-limit ====
Optimal tunings:
Subgroup: 2.3.5.7.11.13.17.19
* WE: ~2 = 1202.6916{{c}}, ~3/2 = 694.4181{{c}}
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 693.0870{{c}}


Comma list: 50/49, 57/56, 78/77, 81/80, 85/84, 144/143
{{Optimal ET sequence|legend=0| 7, 12, 19, 26, 45f }}


Mapping: [{{val| 2 1 -4 -3 8 2 6 2 }}, {{val| 0 2 8 8 -1 5 2 6 }}]
Badness (Sintel): 0.561


Optimal tuning (POTE): ~7/5 = 1\2, ~11/8 = 552.6382
=== Dequarter ===
[[Subgroup]]: 2.3.5.11


{{Optimal ET sequence|legend=1| 24d, 26 }}
[[Comma list]]: 33/32, 55/54


Badness: 0.023133
{{Mapping|legend=2| 1 0 -4 5 | 0 1 4 -1 }}


== Pombe ==
{{Mapping|legend=3| 1 0 -4 0 5 | 0 1 4 0 -1 }}
Pombe (named after the African millet beer) is a variant of [[#Teff]] by [[User:Kaiveran|Kaiveran Lugheidh]] that eschews the tempering of 50/49 to attain more accuracy in the 7-limit. Oddly, the 7th harmonic has a lesser generator distance than in teff (-5 vs +8), but this combined with the fact that other harmonics are in the opposite direction means that the 7-limit diamond is more complex overall.


[[Subgroup]]: 2.3.5.7
: mapping generators: ~2, ~3


[[Comma list]]: 81/80, 300125/294912
[[Optimal tuning]]s:  
* [[WE]]: ~2 = 1206.5832{{c}}, ~3/2 = 695.8763{{c}}
: [[error map]]: {{val| +6.583 +0.504 -2.809 -20.862 }}
* [[CWE]]: ~2 = 1200.000{{c}}, ~3/2 = 693.1206{{c}}
: error map: {{val| 0.000 -8.834 -13.831 -44.439 }}


[[Mapping]]: [{{val| 2 1 -4 11 }}, {{val| 0 2 8 -5 }}]
{{Optimal ET sequence|legend=1| 5, 7, 19e, 26e }}


: mapping generators: ~735/512, ~35/24
[[Badness]] (Sintel): 0.451


{{Multival|legend=1| 4 16 -10 16 -27 -68 }}
==== Dreamtone ====
Subgroup: 2.3.5.11.13


[[Optimal tuning]] ([[POTE]]): ~735/512 = 1\2, ~48/35 = 552.2206
Comma list: 33/32, 55/54, 975/968


{{Optimal ET sequence|legend=1| 24, 26, 50, 126bcd, 176bcdd, 226bbcdd }}
Subgroup-val mapping: {{mapping| 1 0 -4 5 21 | 0 1 4 -1 -11 }}


[[Badness]]: 0.116104
Gencom mapping: {{mapping| 1 0 -4 0 5 21 | 0 1 4 0 -1 -11 }}


=== 11-limit ===
Optimal tunings:  
Subgroup: 2.3.5.7.11
* WE: ~2 = 1207.8248{{c}}, ~3/2 = 694.7806{{c}}
 
* CWE: ~2 = 1200.0000{{c}}, ~3/2 = 690.1826{{c}}
Comma list: 81/80, 245/242, 385/384
 
Mapping: [{{val| 2 1 -4 11 8 }}, {{val| 0 2 8 -5 -1 }}]
 
Optimal tuning (POTE): ~99/70 = 1\2, ~11/8 = 552.0929
 
{{Optimal ET sequence|legend=1| 24, 26, 50 }}
 
Badness: 0.052099
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 81/80, 105/104, 144/143, 245/242
 
Mapping: [{{val| 2 1 -4 11 8 2 }}, {{val| 0 2 8 -5 -1 5 }}]
 
Optimal tuning (POTE): ~99/70 = 1\2, ~11/8 = 552.1498
 
{{Optimal ET sequence|legend=1| 24, 26, 50 }}
 
Badness: 0.031039
 
=== 17-limit ===
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 81/80, 105/104, 144/143, 245/242, 273/272
 
Mapping: [{{val| 2 1 -4 11 8 2 6 }}, {{val| 0 2 8 -5 -1 5 2 }}]
 
Optimal tuning (POTE): ~17/12 = 1\2, ~11/8 = 552.1579
 
{{Optimal ET sequence|legend=1| 24, 26, 50 }}
 
Badness: 0.021260
 
=== 19-limit ===
Subgroup: 2.3.5.7.11.13.17.19
 
Comma list: 81/80, 105/104, 133/132, 144/143, 171/170, 210/209
 
Mapping: [{{val| 2 1 -4 11 8 2 6 2 }}, {{val| 0 2 8 -5 -1 5 2 6 }}]
 
Optimal tuning (POTE): ~17/12 = 1\2, ~11/8 = 552.1196
 
{{Optimal ET sequence|legend=1| 24, 26, 50 }}
 
Badness: 0.016548
 
== Orphic ==
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 81/80, 5898240/5764801
 
[[Mapping]]: [{{val| 2 5 12 7 }}, {{val| 0 -4 -16 -3 }}]
 
Mapping generators: ~2401/1728, ~7/6
 
{{Multival|legend=1| 8 32 6 32 -13 -76 }}
 
[[Optimal tuning]] ([[POTE]]): ~2401/1728 = 1\2, ~7/6 = 275.794
 
{{Optimal ET sequence|legend=1| 26, 48c, 74, 174bd, 248bbd }}
 
[[Badness]]: 0.258825
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 81/80, 99/98, 73728/73205
 
Mapping: [{{val| 2 5 12 7 6 }}, {{val| 0 -4 -16 -3 2 }}]
 
Optimal tuning (POTE): ~363/256 = 1\2, ~7/6 = 275.762
 
{{Optimal ET sequence|legend=1| 26, 48c, 74, 248bbd, 322bbdd }}
 
Badness: 0.101499
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 81/80, 99/98, 144/143, 2200/2197
 
Mapping: [{{val| 2 5 12 7 6 12 }}, {{val| 0 -4 -16 -3 2 -10 }}]
 
Optimal tuning (POTE): ~55/39 = 1\2, ~7/6 = 275.774
 
{{Optimal ET sequence|legend=1| 26, 48c, 74, 174bd, 248bbd, 322bbdd }}
 
Badness: 0.053482
 
== Cloudtone ==
The ''cloudtone'' temperament (5&amp;50) tempers out the [[cloudy comma]], 16807/16384 and the [[81/80|syntonic comma]], 81/80 in the 7-limit. It can be extended to the 11- and 13-limit by adding 385/384 and 105/104 to the comma list in this order.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 81/80, 16807/16384
 
[[Mapping]]: [{{val| 5 0 -20 14 }}, {{val| 0 1 4 0 }}]
 
: mapping generators: ~8/7, ~3
 
{{Multival|legend=1| 5 20 0 20 -14 -56 }}
 
[[Optimal tuning]] ([[POTE]]): ~8/7 = 1\5, ~3/2 = 695.720
 
{{Optimal ET sequence|legend=1| 5, 45, 50 }}
 
[[Badness]]: 0.102256
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 81/80, 385/384, 2401/2376
 
Mapping: [{{val| 5 0 -20 14 41 }}, {{val| 0 1 4 0 -3 }}]
 
Optimal tuning (POTE): ~8/7 = 1\5, ~3/2 = 696.536
 
{{Optimal ET sequence|legend=1| 5, 45, 50, 155bdd, 205bddd }}
 
Badness: 0.070378
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 81/80, 105/104, 144/143, 2401/2376
 
Mapping: [{{val| 5 0 -20 14 41 -21 }}, {{val| 0 1 4 0 -3 5 }}]
 
Optimal tuning (POTE): ~8/7 = 1\5, ~3/2 = 696.162
 
{{Optimal ET sequence|legend=1| 5, 45f, 50 }}
 
Badness: 0.048829
 
== Subgroup extensions ==
=== Stützel (2.3.5.19) ===
Subgroup: 2.3.5.19
 
[[Comma list]]: 81/80, 96/95
 
[[Gencom]]: [2 4/3; 81/80 96/95]
 
[[Gencom|Gencom mapping]]: [{{val|1 2 4 0 0 0 0 3}}, {{val|0 -1 -4 0 0 0 0 3}}]
 
[[Mapping|Sval mapping]]: [{{val|1 2 4 3}}, {{val|0 -1 -4 3}}]
 
[[Tp tuning|POL2 generator]]: ~3/2 = 697.867
 
{{Optimal ET sequence|legend=1| 5, 7, 12, 31, 43 }}
 
[[Tp tuning #T2 tuning|RMS error]]: 1.378 cents
 
=== Hypnotone ===
[[Subgroup]]: 2.3.5.11
 
[[Comma list]]: 45/44, 81/80
 
{{Mapping|legend=2| 1 0 -4 -6 | 0 1 4 6 }}
 
: sval mapping generators: ~2, ~3
 
[[Optimal tuning]] ([[CTE]]): ~2/1 = 1\1, ~3/2 = 694.6998
 
{{Optimal ET sequence|legend=1| 7, 12, 19, 26, 45 }}
 
[[Badness]]: 0.0104
 
==== 2.3.5.11.13 subgroup ====
Subgroup: 2.3.5.11.13
 
Comma list: 45/44, 65/64, 81/80
 
Sval mapping: {{mapping| 1 0 -4 -6 10 | 0 1 4 6 -4 }}
 
: sval mapping generators: ~2, ~3
 
Optimal tuning (CTE): ~2/1 = 1\1, ~3/2 = 693.9513
 
Optimal ET sequence: {{Optimal ET sequence| 7, 12, 19, 26, 45f }}
 
Badness: 0.0141
 
=== Dequarter ===
[[Subgroup]]: 2.3.5.11
 
[[Comma list]]: 33/32, 55/54
 
{{Mapping|legend=2| 1 0 -4 5 | 0 1 4 -1 }}
 
: sval mapping generators: ~2, ~3
 
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~3/2 = 696.0387
 
{{Optimal ET sequence|legend=1| 5, 7, 19e, 26e }}
 
[[Badness]]: 0.0145
 
==== Dreamtone ====
Subgroup: 2.3.5.11.13
 
Comma list: 33/32, 55/54, 975/968
 
Sval mapping: {{mapping| 1 0 -4 5 21 | 0 1 4 -1 -11 }}
 
: sval mapping generators: ~2, ~3


Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 689.6993
{{Optimal ET sequence|legend=0| 7, 19eff, 26eff, 33ceeff, 40ceeff }}


Optimal ET sequence: {{Optimal ET sequence| 7, 19eff, 26eff, 33ceeff, 40ceeff }}
Badness (Sintel): 1.40


Badness: 0.0353
== References ==
<references/>


[[Category:Temperament families]]
[[Category:Temperament families]]
[[Category:Pages with mostly numerical content]]
[[Category:Meantone family| ]] <!-- main article -->
[[Category:Meantone family| ]] <!-- main article -->
[[Category:Meantone| ]] <!-- key article -->
[[Category:Meantone| ]] <!-- key article -->
[[Category:Rank 2]]
[[Category:Rank 2]]
[[Category:Listen]]
[[Category:Listen]]