User:Ganaram inukshuk/Sandbox: Difference between revisions

Ganaram inukshuk (talk | contribs)
Ganaram inukshuk (talk | contribs)
No edit summary
 
(59 intermediate revisions by the same user not shown)
Line 1: Line 1:
This is a sandbox page for me (Ganaram) to test out a few things before deploying things. (Expect some mess.)
This is a sandbox page for me (Ganaram) to test out a few things before deploying things. (Expect some mess.)


== MOS intro ==
<pre>{{subst:User:Ganaram inukshuk/JI ratios|Int Limit=50|Prime Limit=7|Equave=2/1}}</pre>
First sentence:
* Single-period 2/1-equivalent: '''xL ys''' (TAMNAMS name ''tamnams-name''), also called ''other-name'', is an octave-repeating moment of symmetry scale that divides the octave (2/1) into x large and y small steps.
* Multi-period 2/1-equivalent: '''nxL nys''' (TAMNAMS name ''tamnams-name''), also called ''other-name'', is an octave-repeating moment of symmetry scale that divides the octave (2/1) into nx large steps and ny small steps, with n periods of c cents containing x large and y small steps each.
* Single-period 3/1-equivalent: '''3/1-equivalent xL ys''', also called other-name, is a twelfth-repeating moment of symmetry scale that divides the tritave or perfect 12th (3/1, c cents) into x large and y small steps.
* Multi-period 3/1-equivalent: '''3/1-equivalent nxL nys''', also called ''other-name'', is a twelfth-repeating moment of symmetry scale that divides the tritave or perfect 12th (3/1, nc cents) into nx large steps and ny small steps, with n periods of c cents containing x large and y small steps each.
* Single-period 3/2-equivalent: '''3/2-equivalent xL ys''', also called other-name, is a fifth-repeating moment of symmetry scale that divides the perfect 5th (3/2, c cents) into x large and y small steps.
* Multi-period 3/2-equivalent: '''3/2-equivalent nxL nys''', also called ''other-name'', is a fifth-repeating moment of symmetry scale that divides the perfect 5th (3/2, nc cents) into nx large steps and ny small steps, with n periods of c cents containing x large and y small steps each.
Second sentence:


* Generators that produce this scale range from g1 cents to g2 cents, or from d1 cents to d2 cents.
produces


Octave-equivalent relational info:
1/1, 50/49, 49/48, 36/35, 28/27, 25/24, 21/20, 16/15, 15/14, 27/25, 49/45, 35/32, 10/9, 28/25, 9/8, 8/7, 7/6, 32/27, 25/21, 6/5, 49/40, 5/4, 32/25, 9/7, 35/27, 21/16, 4/3, 27/20, 49/36, 48/35, 25/18, 7/5, 45/32, 10/7, 36/25, 35/24, 40/27, 3/2, 32/21, 49/32, 14/9, 25/16, 8/5, 45/28, 49/30, 5/3, 42/25, 27/16, 12/7, 7/4, 16/9, 25/14, 9/5, 49/27, 50/27, 28/15, 15/8, 40/21, 48/25, 27/14, 35/18, 49/25, 2/1


* Parents of mosses with 6-10 steps: xL ys is the parent scale of both child-soft and child-hard.
== MOS scalesig ==
* Children of mosses with 6-10 steps: xL ys expands parent-scale by adding step-count-difference tones.
{{Infobox|Left Link=Neutral 3rd|Title=Major 3rd|Right Link=Perfect 4th|Data 1='''Interval range information'''|Header 2=Approximate range|Data 2=180{{c}} - 240{{c}}|Header 3=Complement|Data 3=Minor 6th|Data 5='''JI examples'''|Data 6=5/4, 9/7, 81/64|Data 10='''Generated scales'''|Data 11=4L 3s, 4L 7s}}


Rothenprop:
== MOS tuning spectrum (AKA, scale tree) ==


* Single-period: Scales of this form are always proper because there is only one small step.
{{MOS tuning spectrum
* Multi-period: Scales of this form, where every period is the same, are proper because there is only one small step per period.
| Scale Signature = 1L 1s
| Int Limit = 13
}}


== MOS tunings==
{{MOS tuning spectrum
NOTE: tables can be substituted, but it's at least a two-step process.
| Scale Signature= 3L 4s
{{#invoke: MOS_tunings| mos_tunings
| Int Limit = 20
| Scale Signature=5L 3s
| 6/5 = [[Mohaha]] / ptolemy↑
| MOS Prefix=
| 5/4 = Mohaha / migration / [[mohajira]]
| MOS Abbrev=
| 11/8 = Mohaha / mohamaq
| Collapsed=
| 7/5 = Mohaha / [[neutrominant]]
| Step Ratios=
| 10/7 = [[Hemif]] / [[hemififths]]
| JI Ratios=Subgroup: 2.5.9.13.21; Int Limit: 30
| 11/7 = [[Suhajira]]
| 13/8 = Golden suhajira (354.8232¢)
| 5/3 = Suhajira / [[ringo]]
| 12/7 = [[Beatles]]
| 13/5 = Unnamed golden tuning (366.2564¢)
| 7/2 = [[Sephiroth]]
| 9/2 = [[Muggles]]
| 5/1 = [[Magic]]
| 6/1 = [[Würschmidt]]↓
}}
}}


===5L 3s only===
{{MOS tuning spectrum
{{MOS tunings|Scale Signature=5L 3s}}
| Depth = 3
| Scale Signature= 3L 4s<3/2>
}}


{{MOS tunings|Scale Signature=5L 3s|Step Ratios=Soft-of-basic}}
== MOS intro==
First sentence:
*Single-period 2/1-equivalent: '''xL ys''' (TAMNAMS name ''tamnams-name''), also called ''other-name'', is an octave-repeating moment of symmetry scale that divides the octave (2/1) into x large and y small steps.
*Multi-period 2/1-equivalent: '''nxL nys''' (TAMNAMS name ''tamnams-name''), also called ''other-name'', is an octave-repeating moment of symmetry scale that divides the octave (2/1) into nx large steps and ny small steps, with n periods of c cents containing x large and y small steps each.
*Single-period 3/1-equivalent: '''3/1-equivalent xL ys''', also called other-name, is a twelfth-repeating moment of symmetry scale that divides the tritave or perfect 12th (3/1, c cents) into x large and y small steps.
*Multi-period 3/1-equivalent: '''3/1-equivalent nxL nys''', also called ''other-name'', is a twelfth-repeating moment of symmetry scale that divides the tritave or perfect 12th (3/1, nc cents) into nx large steps and ny small steps, with n periods of c cents containing x large and y small steps each.
*Single-period 3/2-equivalent: '''3/2-equivalent xL ys''', also called other-name, is a fifth-repeating moment of symmetry scale that divides the perfect 5th (3/2, c cents) into x large and y small steps.
*Multi-period 3/2-equivalent: '''3/2-equivalent nxL nys''', also called ''other-name'', is a fifth-repeating moment of symmetry scale that divides the perfect 5th (3/2, nc cents) into nx large steps and ny small steps, with n periods of c cents containing x large and y small steps each.
Second sentence:


{{MOS tunings|Scale Signature=5L 3s|Step Ratios=Hyposoft}}
*Generators that produce this scale range from g1 cents to g2 cents, or from d1 cents to d2 cents.


{{MOS tunings|Scale Signature=5L 3s|Step Ratios=Hypohard}}
Octave-equivalent relational info:


{{MOS tunings|Scale Signature=5L 3s|Step Ratios=Hard-of-basic}}
*Parents of mosses with 6-10 steps: xL ys is the parent scale of both child-soft and child-hard.
*Children of mosses with 6-10 steps: xL ys expands parent-scale by adding step-count-difference tones.


=== 6-note mosses===
Rothenprop:
 
{{MOS tunings|Scale Signature=1L 5s}}
 
{{MOS tunings|Scale Signature=2L 4s}}
 
{{MOS tunings|Scale Signature=3L 3s}}
 
{{MOS tunings|Scale Signature=4L 2s}}
 
{{MOS tunings|Scale Signature=5L 1s}}
 
=== 7-note mosses===
 
{{MOS tunings|Scale Signature=1L 6s}}
 
{{MOS tunings|Scale Signature=2L 5s}}
 
{{MOS tunings|Scale Signature=3L 4s}}
 
{{MOS tunings|Scale Signature=4L 3s}}
 
{{MOS tunings|Scale Signature=5L 2s}}
 
{{MOS tunings|Scale Signature=6L 1s}}
 
=== 8-note mosses===
 
{{MOS tunings|Scale Signature=1L 7s}}
 
{{MOS tunings|Scale Signature=2L 6s}}
 
{{MOS tunings|Scale Signature=3L 5s}}
 
{{MOS tunings|Scale Signature=4L 4s}}
 
{{MOS tunings|Scale Signature=5L 3s}}
 
{{MOS tunings|Scale Signature=6L 2s}}
 
{{MOS tunings|Scale Signature=7L 1s}}
 
=== 9-note mosses===
 
{{MOS tunings|Scale Signature=1L 8s}}
 
{{MOS tunings|Scale Signature=2L 7s}}
 
{{MOS tunings|Scale Signature=3L 6s}}
 
{{MOS tunings|Scale Signature=4L 5s}}
 
{{MOS tunings|Scale Signature=5L 4s}}
 
{{MOS tunings|Scale Signature=6L 3s}}
 
{{MOS tunings|Scale Signature=7L 2s}}
 
{{MOS tunings|Scale Signature=8L 1s}}
 
===10-note mosses===
 
{{MOS tunings|Scale Signature=1L 9s}}
 
{{MOS tunings|Scale Signature=2L 8s}}
 
{{MOS tunings|Scale Signature=3L 7s}}
 
{{MOS tunings|Scale Signature=4L 6s}}
 
{{MOS tunings|Scale Signature=5L 5s}}
 
{{MOS tunings|Scale Signature=6L 4s}}
 
{{MOS tunings|Scale Signature=7L 3s}}
 
{{MOS tunings|Scale Signature=8L 2s}}
 
{{MOS tunings|Scale Signature=9L 1s}}
 
===Misc===
 
{{MOS tunings|Scale Signature=8L 3s <3/1>|Step Ratios=17/12; 10/7; 7/5|JI Ratios=Int Limit: 25; Tenney Height: 8}}
{{MOS tunings|Scale Signature=9L 4s <7/2>|Step Ratios=Central Spectrum|JI Ratios=NONE}}
 
 
==Name==
=== 6-note mosses===
{{Template:TAMNAMS name|1L 5s}}
 
{{Template:TAMNAMS name|2L 4s}}
 
{{Template:TAMNAMS name|3L 3s}}
 
{{Template:TAMNAMS name|4L 2s}}
 
{{Template:TAMNAMS name|5L 1s}}
 
=== 7-note mosses===
{{Template:TAMNAMS name|1L 6s}}
 
{{Template:TAMNAMS name|2L 5s}}
 
{{Template:TAMNAMS name|3L 4s}}
 
{{Template:TAMNAMS name|4L 3s}}
 
{{Template:TAMNAMS name|5L 2s}}
 
{{Template:TAMNAMS name|6L 1s}}


=== 8-note mosses===
*Single-period: Scales of this form are always proper because there is only one small step.
{{Template:TAMNAMS name|1L 7s}}
*Multi-period: Scales of this form, where every period is the same, are proper because there is only one small step per period.
 
{{Template:TAMNAMS name|2L 6s}}
 
{{Template:TAMNAMS name|3L 5s}}
 
{{Template:TAMNAMS name|4L 4s}}
 
{{Template:TAMNAMS name|5L 3s}}
 
{{Template:TAMNAMS name|6L 2s}}
 
{{Template:TAMNAMS name|7L 1s}}
 
===9-note mosses===
{{Template:TAMNAMS name|1L 8s}}
 
{{Template:TAMNAMS name|2L 7s}}
 
{{Template:TAMNAMS name|3L 6s}}
 
{{Template:TAMNAMS name|4L 5s}}
 
{{Template:TAMNAMS name|5L 4s}}
 
{{Template:TAMNAMS name|6L 3s}}
 
{{Template:TAMNAMS name|7L 2s}}
 
{{Template:TAMNAMS name|8L 1s}}
 
===10-note mosses===
{{Template:TAMNAMS name|1L 9s}}
 
{{Template:TAMNAMS name|2L 8s}}
 
{{Template:TAMNAMS name|3L 7s}}
 
{{Template:TAMNAMS name|4L 6s}}
 
{{Template:TAMNAMS name|5L 5s}}
 
{{Template:TAMNAMS name|6L 4s}}
 
{{Template:TAMNAMS name|7L 3s}}
 
{{Template:TAMNAMS name|8L 2s}}
 
{{Template:TAMNAMS name|9L 1s}}


==Sandbox for proposed templates==
==Sandbox for proposed templates==
===Cent ruler===
===Cent ruler ===


<div style="height: 100px; width: 100%; background-color: powderblue; font-size: 0;">
<div style="height: 100px; width: 100%; background-color: powderblue; font-size: 0;">
Line 252: Line 108:
</div>
</div>


===MOS characteristics===
=== MOS characteristics===
NOTE: not suitable for displaying intervals or scale degrees. Repurpose for other content.<div style="  display: block;
NOTE: not suitable for displaying intervals or scale degrees. Repurpose for other content.<div style="  display: block;
   background-color: #dddddd;
   background-color: #dddddd;
Line 339: Line 195:
|Small 1-diastep
|Small 1-diastep
|s
|s
| 0.0¢ to 171.4¢
|0.0¢ to 171.4¢
|s1ms
|s1ms
|-
|-
Line 347: Line 203:
|L1ms
|L1ms
|-
|-
| rowspan="2" |2-diastep
| rowspan="2" | 2-diastep
|Small 2-diastep
|Small 2-diastep
|L + s
|L + s
Line 354: Line 210:
|-
|-
|Large 2-diastep
|Large 2-diastep
|2L
| 2L
|342.9¢ to 480.0¢
|342.9¢ to 480.0¢
|L2ms
|L2ms
Line 365: Line 221:
|-
|-
|Large 3-diastep
|Large 3-diastep
|3L
| 3L
|514.3¢ to 720.0¢
|514.3¢ to 720.0¢
|L3ms
| L3ms
|-
|-
| rowspan="2" |'''4-diastep'''
| rowspan="2" |'''4-diastep'''
Line 395: Line 251:
|4L + 2s
|4L + 2s
|960.0¢ to 1028.6¢
|960.0¢ to 1028.6¢
|s6ms
| s6ms
|-
|-
|Large 6-diastep
|Large 6-diastep
Line 405: Line 261:
|Perfect 7-diastep
|Perfect 7-diastep
|5L + 2s
|5L + 2s
|1200.0¢
| 1200.0¢
|P7ms
|P7ms
|}
|}
Line 422: Line 278:
! Rot.
! Rot.
!0
!0
! 1
!1
!2
!2
!3
!3
Line 437: Line 293:
|Perf.
|Perf.
|Lg.
|Lg.
| Lg.
|Lg.
|Lg.
|Lg.
|Lg.
|Lg.
|Lg.
|Lg.
|Lg.
|Lg.
| Perf.
|Perf.
|-
|-
|<nowiki>5L 2s 5|1</nowiki>
|<nowiki>5L 2s 5|1</nowiki>
| Ionian (major)
|Ionian (major)
|2
|2
|5
|5
Line 451: Line 307:
|Perf.
|Perf.
|Lg.
|Lg.
|Lg.
| Lg.
|Sm.
|Sm.
|Lg.
|Lg.
Line 465: Line 321:
|Perf.
|Perf.
|Lg.
|Lg.
|Lg.
| Lg.
|Sm.
|Sm.
|Lg.
|Lg.
Line 483: Line 339:
|Lg.
|Lg.
|Lg.
|Lg.
| Sm.
|Sm.
|Perf.
| Perf.
|-
|-
|<nowiki>5L 2s 2|4</nowiki>
|<nowiki>5L 2s 2|4</nowiki>
Line 493: Line 349:
|Perf.
|Perf.
|Lg.
|Lg.
|Sm.
| Sm.
|Sm.
|Sm.
|Lg.
|Lg.
Line 507: Line 363:
|Perf.
|Perf.
|Sm.
|Sm.
|Sm.
| Sm.
|Sm.
|Sm.
|Lg.
|Lg.
Line 520: Line 376:
|sLLsLLL
|sLLsLLL
|Perf.
|Perf.
| Sm.
|Sm.
|Sm.
|Sm.
| Sm.
|Sm.
|Sm.
|Sm.
|Sm.
|Sm.
Line 532: Line 388:
{| class="wikitable"
{| class="wikitable"
|+
|+
! rowspan="2" | Type
! rowspan="2" |Type
! rowspan="2" |Visualization
! rowspan="2" |Visualization
! colspan="4" |Individual steps
! colspan="4" |Individual steps
Line 538: Line 394:
|-
|-
!Start
!Start
! Large step
!Large step
!Small step
!Small step
!End
!End
|-
|-
| Small vis
|Small vis
|<pre style="line-height: 1; font-family: monospace; font-size: 1em; padding-top: 0.1em; padding-bottom: 0.1em; margin: 0.1em">┌╥╥╥┬╥╥┬┐
|<pre style="line-height: 1; font-family: monospace; font-size: 1em; padding-top: 0.1em; padding-bottom: 0.1em; margin: 0.1em">┌╥╥╥┬╥╥┬┐
│║║║│║║││
│║║║│║║││
Line 605: Line 461:
|}
|}
{| class="wikitable"
{| class="wikitable"
! rowspan="2" | Type
! rowspan="2" |Type
! rowspan="2" |Visualization
! rowspan="2" |Visualization
! colspan="7" |Individual steps
! colspan="7" |Individual steps
! rowspan="2" |Notes
! rowspan="2" | Notes
|-
|-
!Start
!Start
!Size 1
!Size 1
!Size 2
!Size 2
!Size 3
! Size 3
!Size 4
!Size 4
!Size 5
!Size 5
Line 753: Line 609:


</pre>
</pre>
|X's are placeholders for note names.
| X's are placeholders for note names.
Naturals only, as there is not enough room for accidentals.
Naturals only, as there is not enough room for accidentals.


Line 789: Line 645:
|-
|-
|Large step
|Large step
|2
| 2
|240¢
| 240¢
|3
|3
|276.9¢
| 276.9¢
|3
|3
|211.8¢
|211.8¢
Line 798: Line 654:
|-
|-
|Small step
|Small step
|1
| 1
|120¢
|120¢
|1
|1
Line 806: Line 662:
|
|
|-
|-
| Bright generator
|Bright generator
|3
|3
|360¢
|360¢
|4
|4
|369.2¢
|369.2¢
|5
| 5
|355.6¢
|355.6¢
|
|
Line 836: Line 692:
|(2x+y)L xs
|(2x+y)L xs
|-
|-
| rowspan="2" | (x+y)L xs
| rowspan="2" |(x+y)L xs
|(2x+y)L (x+y)s
|(2x+y)L (x+y)s
|-
|-
| (x+y)L (2x+y)s
|(x+y)L (2x+y)s
|}
|}


=== Navbox MOS===
<div class="wikitable mw-collapsible" style="overflow:auto">
<div style="width: 100%; background-color:#eaecf0; padding-top:0.2em; padding-bottom:0.2em;"><center><b>[[MOS scale|Moment-of-symmetry scales]]</b></center></div>
<table class="mw-collapsible-content nowraplinks" style="width: 100%; margin:0em">
<tr style="display: table-row">
<td style="width:15%; text-align:right; background-color:#eaecf0;">6- to 10-note mosses</td>
<td style="width:85%; text-align:left;">1L 5s (selenite) {{!}} 2L 4s ( {{!}} 3L 3s {{!}} 4L 2 {{!}} 5L 1s</td>
</tr>


<tr>
== Encoding scheme for module:mos==
<td style="width:15%; text-align:right; background-color:#eaecf0;">Monolarge family</td>
<td>1L 5s (selenite) {{!}} 1L 6s (onyx) {{!}} 1L 7s (spinel) {{!}} 1L 8s (agate) {{!}} 1L 9s (olivine)</td>
</tr>


<tr>
=== Mossteps as a vector of L's and s's===
<td style="width:15%; text-align:right; background-color:#eaecf0;">Diatonic mos family</td>
<td style="width:85%; text-align:left; padding:0; margin:0;">
 
<table class="nowraplinks" style="width:100%; margin:0em">
<tr>
<td style="width:15%; text-align:right; background-color:#eaecf0;">Parent mos</td>
<td style="width:85%; text-align:left;">5L 2s (diatonic)</td>
</tr>
 
<tr>
<td style="width: 15%; text-align: right; background-color:#eaecf0;">Chromatic scales</td>
<td style="width: 85%; text-align: left;">7L 5s (soft diatonic chromatic) {{!}} 5L 7s (hard diatonic chromatic)</td>
</tr>
 
<tr>
<td style="width: 15%; text-align: right; background-color:#eaecf0;">Enharmonic scales</td>
<td style="width: 85%; text-align: left;">7L 12s (soft diatonic enharmonic) {{!}} 12L 7s (hyposoft diatonic enharmonic) {{!}} 12L 5s (hypohard diatonic enharmonic) {{!}} 5L 12s (hard diatonic enharmonic)</td>
</tr>
 
<tr>
<td style="width: 15%; text-align: right; background-color:#eaecf0;">Subchromatic scales</td>
<td style="width: 85%; text-align: left;">7L 19s and 19L 7s {{!}} 19L 12s and 12L 19s {{!}} 12L 17s and 17L 12s {{!}} 17L 5s and 5L 17s</td>
</tr>
</table></td>
</tr>
</table>
 
</div>
 
==Encoding scheme for module:mos==
 
===Mossteps as a vector of L's and s's===
For an arbitrary step sequence consisting of L's and s's, the sum of the quantities of L's and s's denotes what mosstep it is. EG, "LLLsL" is a 5-mosstep since it has 5 L's and s's total. This can be expressed as a vector denoting how many L's and s's there are. EG, "LLLsL" becomes { 4, 1 }, denoting 4 large steps and 1 small step.
For an arbitrary step sequence consisting of L's and s's, the sum of the quantities of L's and s's denotes what mosstep it is. EG, "LLLsL" is a 5-mosstep since it has 5 L's and s's total. This can be expressed as a vector denoting how many L's and s's there are. EG, "LLLsL" becomes { 4, 1 }, denoting 4 large steps and 1 small step.


Line 900: Line 713:
! rowspan="2" |Value
! rowspan="2" |Value
! colspan="2" |Encoded
! colspan="2" |Encoded
! colspan="4" |Decoded
! colspan="4" | Decoded
|-
|-
!Intervals with 2 sizes
!Intervals with 2 sizes
!Intervals with 1 size
!Intervals with 1 size
!Nonperfectable intervals
!Nonperfectable intervals
! Bright gen
!Bright gen
!Dark gen
!Dark gen
!Period intervals
!Period intervals
Line 955: Line 768:
|3× Diminished
|3× Diminished
|2× Diminished
|2× Diminished
|3× Diminished
| 3× Diminished
|}
|}
Rationale:
Rationale:
Line 962: Line 775:
**Alterations by entire large steps or small steps is considered interval arithmetic.
**Alterations by entire large steps or small steps is considered interval arithmetic.


*Easy to translate values to number of chromas for mos notation. Best done with notation assigned to the brightest mode, but can be adapted for arbitrary notations by adjusting the approprite chroma offsets.
* Easy to translate values to number of chromas for mos notation. Best done with notation assigned to the brightest mode, but can be adapted for arbitrary notations by adjusting the approprite chroma offsets.


Examples of encodings for 5L 2s
Examples of encodings for 5L 2s
Line 973: Line 786:
|-
|-
!Mossteps
!Mossteps
!Chroma
! Chroma
|-
|-
|0
|0
|0
|0
|0
| 0
|Perfect 0-diastep
|Perfect 0-diastep
|F
| F
|-
|-
| s
|s
|1
|1
| -1
| -1
|Minor 1-diastep
|Minor 1-diastep
|Gb
|Gb
|-
|-
|L
| L
| 1
|1
|0
|0
| Major 1-diastep
|Major 1-diastep
|G
|G
|-
|-
|L + s
|L + s
|2
|2
| -1
| -1
| Minor 2-diastep
|Minor 2-diastep
|Ab
|Ab
|-
|-
Line 1,008: Line 821:
|3
|3
| -1
| -1
|Perfect 3-diastep
| Perfect 3-diastep
|Bb
|Bb
|-
|-
|3L
|3L
|3
| 3
|0
|0
|Augmented 3-diastep
|Augmented 3-diastep
Line 1,029: Line 842:
|C
|C
|-
|-
|3L + 2s
| 3L + 2s
|5
|5
| -1
| -1
Line 1,044: Line 857:
|6
|6
| -1
| -1
| Minor 6-diastep
|Minor 6-diastep
|Eb
|Eb
|-
|-
Line 1,050: Line 863:
|6
|6
|0
|0
|Major 6-diastep
| Major 6-diastep
|E
|E
|-
|-
Line 1,075: Line 888:
!4
!4
!5
!5
!6
! 6
!7
!7
|-
|-
|<nowiki>5L 2s 6|0</nowiki>
|<nowiki>5L 2s 6|0</nowiki>
|Lydian
|Lydian
| 1
|1
|1
|1
|LLLsLLs
|LLLsLLs
Line 1,088: Line 901:
|0
|0
|0
|0
| 0
|0
|0
|0
|0
|0
|-
|-
|<nowiki>5L 2s 5|1</nowiki>
|<nowiki>5L 2s 5|1</nowiki>
| Ionian (major)
|Ionian (major)
|2
|2
|5
|5
|LLsLLLs
|LLsLLLs
|0
|0
| 0
|0
|0
|0
| -1
| -1
Line 1,112: Line 925:
|LLsLLsL
|LLsLLsL
|0
|0
| 0
|0
|1
|1
| -1
| -1
| 0
|0
|0
|0
| -1
| -1
Line 1,129: Line 942:
| -1
| -1
| -1
| -1
| 0
|0
|0
|0
| -1
| -1
Line 1,144: Line 957:
| -1
| -1
|0
|0
| -1
| -1
| -1
| -1
|0
|0
Line 1,164: Line 977:
|<nowiki>5L 2s 0|6</nowiki>
|<nowiki>5L 2s 0|6</nowiki>
|Locrian
|Locrian
|7
| 7
|4
|4
|sLLsLLL
|sLLsLLL
|0
|0
| -1
| -1
| -1
| -1
| -1
| -1
| -1
| -1