User:Ganaram inukshuk/Sandbox: Difference between revisions

Ganaram inukshuk (talk | contribs)
m Some cleanup
Ganaram inukshuk (talk | contribs)
No edit summary
 
(105 intermediate revisions by the same user not shown)
Line 1: Line 1:
This is a sandbox page for me (Ganaram) to test out a few things before deploying things. (Expect some mess.)
This is a sandbox page for me (Ganaram) to test out a few things before deploying things. (Expect some mess.)


{{MOS scale properties|Scale Signature=5L 3s}}
<pre>{{subst:User:Ganaram inukshuk/JI ratios|Int Limit=50|Prime Limit=7|Equave=2/1}}</pre>


== 5L 2s modes and modmos modes==
produces
{{MOS mode degrees|Scale Signature=5L 2s|MODMOS Step Pattern=cscscsscscss}}
{{MOS mode degrees|Scale Signature=5L 2s|MODMOS Step Pattern=LsLLsAs}}
{{MOS mode degrees|Scale Signature=5L 2s|MODMOS Step Pattern=LsLLLLs}}
{{MOS mode degrees|Scale Signature=5L 2s|MODMOS Step Pattern=LLsLsAs}}
{{MOS mode degrees|Scale Signature=5L 2s|MODMOS Step Pattern=AAdAdAd}}
{{MOS mode degrees|Scale Signature=5L 2s|MODMOS Step Pattern=LLLLLLd}}
{{MOS mode degrees|Scale Signature=5L 2s|MODMOS Step Pattern=LALdLAd}}


== 4L 4s modes and modmos modes ==
1/1, 50/49, 49/48, 36/35, 28/27, 25/24, 21/20, 16/15, 15/14, 27/25, 49/45, 35/32, 10/9, 28/25, 9/8, 8/7, 7/6, 32/27, 25/21, 6/5, 49/40, 5/4, 32/25, 9/7, 35/27, 21/16, 4/3, 27/20, 49/36, 48/35, 25/18, 7/5, 45/32, 10/7, 36/25, 35/24, 40/27, 3/2, 32/21, 49/32, 14/9, 25/16, 8/5, 45/28, 49/30, 5/3, 42/25, 27/16, 12/7, 7/4, 16/9, 25/14, 9/5, 49/27, 50/27, 28/15, 15/8, 40/21, 48/25, 27/14, 35/18, 49/25, 2/1
{{MOS mode degrees|Scale Signature=4L 4s}}
 
{{MOS mode degrees|Scale Signature=4L 4s|MODMOS Step Pattern=LLssLLss}}
== MOS scalesig ==
{{MOS mode degrees|Scale Signature=4L 4s|MODMOS Step Pattern=LLssLsLs}}
{{Infobox|Left Link=Neutral 3rd|Title=Major 3rd|Right Link=Perfect 4th|Data 1='''Interval range information'''|Header 2=Approximate range|Data 2=180{{c}} - 240{{c}}|Header 3=Complement|Data 3=Minor 6th|Data 5='''JI examples'''|Data 6=5/4, 9/7, 81/64|Data 10='''Generated scales'''|Data 11=4L 3s, 4L 7s}}
 
== MOS tuning spectrum (AKA, scale tree) ==
 
{{MOS tuning spectrum
| Scale Signature = 1L 1s
| Int Limit = 13
}}
 
{{MOS tuning spectrum
| Scale Signature= 3L 4s
| Int Limit = 20
| 6/5 = [[Mohaha]] / ptolemy↑
| 5/4 = Mohaha / migration / [[mohajira]]
| 11/8 = Mohaha / mohamaq
| 7/5 = Mohaha / [[neutrominant]]
| 10/7 = [[Hemif]] / [[hemififths]]
| 11/7 = [[Suhajira]]
| 13/8 = Golden suhajira (354.8232¢)
| 5/3 = Suhajira / [[ringo]]
| 12/7 = [[Beatles]]
| 13/5 = Unnamed golden tuning (366.2564¢)
| 7/2 = [[Sephiroth]]
| 9/2 = [[Muggles]]
| 5/1 = [[Magic]]
| 6/1 = [[Würschmidt]]↓
}}
 
{{MOS tuning spectrum
| Depth = 3
| Scale Signature= 3L 4s<3/2>
}}
 
== MOS intro==
First sentence:
*Single-period 2/1-equivalent: '''xL ys''' (TAMNAMS name ''tamnams-name''), also called ''other-name'', is an octave-repeating moment of symmetry scale that divides the octave (2/1) into x large and y small steps.
*Multi-period 2/1-equivalent: '''nxL nys''' (TAMNAMS name ''tamnams-name''), also called ''other-name'', is an octave-repeating moment of symmetry scale that divides the octave (2/1) into nx large steps and ny small steps, with n periods of c cents containing x large and y small steps each.
*Single-period 3/1-equivalent: '''3/1-equivalent xL ys''', also called other-name, is a twelfth-repeating moment of symmetry scale that divides the tritave or perfect 12th (3/1, c cents) into x large and y small steps.
*Multi-period 3/1-equivalent: '''3/1-equivalent nxL nys''', also called ''other-name'', is a twelfth-repeating moment of symmetry scale that divides the tritave or perfect 12th (3/1, nc cents) into nx large steps and ny small steps, with n periods of c cents containing x large and y small steps each.
*Single-period 3/2-equivalent: '''3/2-equivalent xL ys''', also called other-name, is a fifth-repeating moment of symmetry scale that divides the perfect 5th (3/2, c cents) into x large and y small steps.
*Multi-period 3/2-equivalent: '''3/2-equivalent nxL nys''', also called ''other-name'', is a fifth-repeating moment of symmetry scale that divides the perfect 5th (3/2, nc cents) into nx large steps and ny small steps, with n periods of c cents containing x large and y small steps each.
Second sentence:
 
*Generators that produce this scale range from g1 cents to g2 cents, or from d1 cents to d2 cents.
 
Octave-equivalent relational info:
 
*Parents of mosses with 6-10 steps: xL ys is the parent scale of both child-soft and child-hard.
*Children of mosses with 6-10 steps: xL ys expands parent-scale by adding step-count-difference tones.
 
Rothenprop:
 
*Single-period: Scales of this form are always proper because there is only one small step.
*Multi-period: Scales of this form, where every period is the same, are proper because there is only one small step per period.


==Sandbox for proposed templates==
==Sandbox for proposed templates==
===Cent ruler===
===Cent ruler ===


<div style="height: 100px; width: 100%; background-color: powderblue; font-size: 0;">
<div style="height: 100px; width: 100%; background-color: powderblue; font-size: 0;">
Line 62: Line 108:
</div>
</div>


===MOS characteristics===
=== MOS characteristics===
NOTE: not suitable for displaying intervals or scale degrees. Repurpose for other content.<div style="  display: block;
NOTE: not suitable for displaying intervals or scale degrees. Repurpose for other content.<div style="  display: block;
   background-color: #dddddd;
   background-color: #dddddd;
Line 149: Line 195:
|Small 1-diastep
|Small 1-diastep
|s
|s
| 0.0¢ to 171.4¢
|0.0¢ to 171.4¢
|s1ms
|s1ms
|-
|-
Line 157: Line 203:
|L1ms
|L1ms
|-
|-
| rowspan="2" |2-diastep
| rowspan="2" | 2-diastep
|Small 2-diastep
|Small 2-diastep
|L + s
|L + s
Line 164: Line 210:
|-
|-
|Large 2-diastep
|Large 2-diastep
|2L
| 2L
|342.9¢ to 480.0¢
|342.9¢ to 480.0¢
|L2ms
|L2ms
Line 175: Line 221:
|-
|-
|Large 3-diastep
|Large 3-diastep
|3L
| 3L
|514.3¢ to 720.0¢
|514.3¢ to 720.0¢
|L3ms
| L3ms
|-
|-
| rowspan="2" |'''4-diastep'''
| rowspan="2" |'''4-diastep'''
Line 186: Line 232:
|-
|-
|'''Large 4-diastep'''
|'''Large 4-diastep'''
| 3L + s
|3L + s
|685.7¢ to 720.0¢
|685.7¢ to 720.0¢
|L4ms
|L4ms
Line 192: Line 238:
| rowspan="2" |5-diastep
| rowspan="2" |5-diastep
|Small 5-diastep
|Small 5-diastep
| 3L + 2s
|3L + 2s
|720.0¢ to 857.1¢
|720.0¢ to 857.1¢
|s5ms
|s5ms
Line 205: Line 251:
|4L + 2s
|4L + 2s
|960.0¢ to 1028.6¢
|960.0¢ to 1028.6¢
|s6ms
| s6ms
|-
|-
| Large 6-diastep
|Large 6-diastep
|5L + s
|5L + s
|1028.6¢ to 1200.0¢
|1028.6¢ to 1200.0¢
Line 215: Line 261:
|Perfect 7-diastep
|Perfect 7-diastep
|5L + 2s
|5L + 2s
|1200.0¢
| 1200.0¢
|P7ms
|P7ms
|}
|}
Line 230: Line 276:
!Names
!Names
!Bri.
!Bri.
!Rot.
! Rot.
!0
!0
!1
!1
Line 247: Line 293:
|Perf.
|Perf.
|Lg.
|Lg.
| Lg.
|Lg.
|Lg.
|Lg.
|Lg.
|Lg.
|Lg.
|Lg.
|Lg.
|Lg.
| Perf.
|Perf.
|-
|-
|<nowiki>5L 2s 5|1</nowiki>
|<nowiki>5L 2s 5|1</nowiki>
Line 261: Line 307:
|Perf.
|Perf.
|Lg.
|Lg.
|Lg.
| Lg.
|Sm.
|Sm.
|Lg.
|Lg.
|Lg.
|Lg.
|Lg.
|Lg.
| Perf.
|Perf.
|-
|-
|<nowiki>5L 2s 4|2</nowiki>
|<nowiki>5L 2s 4|2</nowiki>
Line 275: Line 321:
|Perf.
|Perf.
|Lg.
|Lg.
|Lg.
| Lg.
|Sm.
|Sm.
|Lg.
|Lg.
Line 294: Line 340:
|Lg.
|Lg.
|Sm.
|Sm.
|Perf.
| Perf.
|-
|-
|<nowiki>5L 2s 2|4</nowiki>
|<nowiki>5L 2s 2|4</nowiki>
Line 303: Line 349:
|Perf.
|Perf.
|Lg.
|Lg.
|Sm.
| Sm.
|Sm.
|Sm.
|Lg.
|Lg.
|Sm.
|Sm.
|Sm.
|Sm.
| Perf.
|Perf.
|-
|-
|<nowiki>5L 2s 1|5</nowiki>
|<nowiki>5L 2s 1|5</nowiki>
Line 317: Line 363:
|Perf.
|Perf.
|Sm.
|Sm.
| Sm.
|Sm.
|Sm.
| Sm.
|Lg.
|Lg.
|Sm.
|Sm.
|Sm.
|Sm.
| Perf.
|Perf.
|-
|-
|<nowiki>5L 2s 0|6</nowiki>
|<nowiki>5L 2s 0|6</nowiki>
Line 330: Line 376:
|sLLsLLL
|sLLsLLL
|Perf.
|Perf.
| Sm.
|Sm.
|Sm.
| Sm.
|Sm.
|Sm.
|Sm.
|Sm.
|Sm.
| Sm.
|Sm.
|Sm.
|Perf.
|Perf.
Line 345: Line 391:
! rowspan="2" |Visualization
! rowspan="2" |Visualization
! colspan="4" |Individual steps
! colspan="4" |Individual steps
! rowspan="2" | Notes
! rowspan="2" |Notes
|-
|-
!Start
!Start
!Large step
!Large step
!Small step
!Small step
! End
!End
|-
|-
|Small vis
|Small vis
Line 418: Line 464:
! rowspan="2" |Visualization
! rowspan="2" |Visualization
! colspan="7" |Individual steps
! colspan="7" |Individual steps
! rowspan="2" |Notes
! rowspan="2" | Notes
|-
|-
!Start
!Start
!Size 1
!Size 1
!Size 2
!Size 2
!Size 3
! Size 3
!Size 4
!Size 4
!Size 5
!Size 5
Line 563: Line 609:


</pre>
</pre>
|X's are placeholders for note names.
| X's are placeholders for note names.
Naturals only, as there is not enough room for accidentals.
Naturals only, as there is not enough room for accidentals.


Line 583: Line 629:
|+3L 4s step sizes
|+3L 4s step sizes
! rowspan="2" |Interval
! rowspan="2" |Interval
! colspan="2" |Basic 3L 4s
! colspan="2" | Basic 3L 4s
(10edo, L:s = 2:1)
(10edo, L:s = 2:1)
! colspan="2" |Hard 3L 4s
! colspan="2" |Hard 3L 4s
Line 599: Line 645:
|-
|-
|Large step
|Large step
|2
| 2
|240¢
| 240¢
|3
|3
|276.9¢
| 276.9¢
|3
|3
|211.8¢
|211.8¢
Line 608: Line 654:
|-
|-
|Small step
|Small step
|1
| 1
|120¢
|120¢
|1
|1
| 92.3¢
|92.3¢
|2
|2
| 141.2¢
|141.2¢
|
|
|-
|-
Line 621: Line 667:
|4
|4
|369.2¢
|369.2¢
|5
| 5
|355.6¢
|355.6¢
|
|
Line 652: Line 698:
|}
|}


===Navbox MOS===
<div class="wikitable mw-collapsible" style="overflow:auto">
<div style="width: 100%; background-color:#eaecf0; padding-top:0.2em; padding-bottom:0.2em;"><center><b>[[MOS scale|Moment-of-symmetry scales]]</b></center></div>
<table class="mw-collapsible-content nowraplinks" style="width: 100%; margin:0em">
<tr style="display: table-row">
<td style="width:15%; text-align:right; background-color:#eaecf0;">6- to 10-note mosses</td>
<td style="width:85%; text-align:left;">1L 5s (selenite) {{!}} 2L 4s ( {{!}} 3L 3s {{!}} 4L 2 {{!}} 5L 1s</td>
</tr>
<tr>
<td style="width:15%; text-align:right; background-color:#eaecf0;">Monolarge family</td>
<td>1L 5s (selenite) {{!}} 1L 6s (onyx) {{!}} 1L 7s (spinel) {{!}} 1L 8s (agate) {{!}} 1L 9s (olivine)</td>
</tr>
<tr>
<td style="width:15%; text-align:right; background-color:#eaecf0;">Diatonic mos family</td>
<td style="width:85%; text-align:left; padding:0; margin:0;">


<table class="nowraplinks" style="width:100%; margin:0em">
== Encoding scheme for module:mos==
<tr>
<td style="width:15%; text-align:right; background-color:#eaecf0;">Parent mos</td>
<td style="width:85%; text-align:left;">5L 2s (diatonic)</td>
</tr>
 
<tr>
<td style="width: 15%; text-align: right; background-color:#eaecf0;">Chromatic scales</td>
<td style="width: 85%; text-align: left;">7L 5s (soft diatonic chromatic) {{!}} 5L 7s (hard diatonic chromatic)</td>
</tr>
 
<tr>
<td style="width: 15%; text-align: right; background-color:#eaecf0;">Enharmonic scales</td>
<td style="width: 85%; text-align: left;">7L 12s (soft diatonic enharmonic) {{!}} 12L 7s (hyposoft diatonic enharmonic) {{!}} 12L 5s (hypohard diatonic enharmonic) {{!}} 5L 12s (hard diatonic enharmonic)</td>
</tr>
 
<tr>
<td style="width: 15%; text-align: right; background-color:#eaecf0;">Subchromatic scales</td>
<td style="width: 85%; text-align: left;">7L 19s and 19L 7s {{!}} 19L 12s and 12L 19s {{!}} 12L 17s and 17L 12s {{!}} 17L 5s and 5L 17s</td>
</tr>
</table></td>
</tr>
</table>
 
</div>
 
==Encoding scheme for module:mos==


=== Mossteps as a vector of L's and s's===
=== Mossteps as a vector of L's and s's===
Line 710: Line 713:
! rowspan="2" |Value
! rowspan="2" |Value
! colspan="2" |Encoded
! colspan="2" |Encoded
! colspan="4" |Decoded
! colspan="4" | Decoded
|-
|-
!Intervals with 2 sizes
!Intervals with 2 sizes
Line 743: Line 746:
|'''Perfect'''
|'''Perfect'''
|-
|-
| -1
| -1
|'''Small'''
|'''Small'''
|Perfect minus 1 chroma
|Perfect minus 1 chroma
Line 765: Line 768:
|3× Diminished
|3× Diminished
|2× Diminished
|2× Diminished
|3× Diminished
| 3× Diminished
|}
|}
Rationale:
Rationale:


* Vectors of L's and s's can always be translated back to the original ''k''-mosstep, no matter how many chromas were added. The "unmodified" vector (the large ''k''-mosstep, or perfect ''k''-mosstep for period intervals) can be compared with the mosstep vector to produce the number of chromas.
*Vectors of L's and s's can always be translated back to the original ''k''-mosstep, no matter how many chromas were added. The "unmodified" vector (the large ''k''-mosstep, or perfect ''k''-mosstep for period intervals) can be compared with the mosstep vector to produce the number of chromas.
**Alterations by entire large steps or small steps is considered interval arithmetic.
**Alterations by entire large steps or small steps is considered interval arithmetic.


*Easy to translate values to number of chromas for mos notation. Best done with notation assigned to the brightest mode, but can be adapted for arbitrary notations by adjusting the approprite chroma offsets.
* Easy to translate values to number of chromas for mos notation. Best done with notation assigned to the brightest mode, but can be adapted for arbitrary notations by adjusting the approprite chroma offsets.


Examples of encodings for 5L 2s
Examples of encodings for 5L 2s
Line 783: Line 786:
|-
|-
!Mossteps
!Mossteps
!Chroma
! Chroma
|-
|-
| 0
|0
|0
|0
|0
| 0
|Perfect 0-diastep
|Perfect 0-diastep
|F
| F
|-
|-
| s
|s
|1
|1
| -1
| -1
|Minor 1-diastep
|Minor 1-diastep
|Gb
|Gb
|-
|-
|L
| L
|1
|1
|0
|0
Line 818: Line 821:
|3
|3
| -1
| -1
|Perfect 3-diastep
| Perfect 3-diastep
|Bb
|Bb
|-
|-
Line 828: Line 831:
|-
|-
|2L + 2s
|2L + 2s
| 4
|4
| -1
| -1
|Diminished 4-diastep
|Diminished 4-diastep
Line 839: Line 842:
|C
|C
|-
|-
|3L + 2s
| 3L + 2s
|5
|5
| -1
| -1
Line 859: Line 862:
|5L + s
|5L + s
|6
|6
| 0
|0
|Major 6-diastep
| Major 6-diastep
|E
|E
|-
|-
Line 885: Line 888:
!4
!4
!5
!5
!6
! 6
!7
!7
|-
|-
Line 894: Line 897:
|LLLsLLs
|LLLsLLs
|0
|0
| 0
|0
| 0
|0
|0
|0
|0
|0
Line 908: Line 911:
|LLsLLLs
|LLsLLLs
|0
|0
| 0
|0
| 0
|0
| -1
| -1
|0
|0
Line 922: Line 925:
|LLsLLsL
|LLsLLsL
|0
|0
| 0
|0
| 1
|1
| -1
| -1
|0
|0
Line 934: Line 937:
|4
|4
|6
|6
| LsLLLsL
|LsLLLsL
|0
|0
|0
|0
Line 953: Line 956:
| -1
| -1
| -1
| -1
| 0
|0
| -1
| -1
| -1
| -1
Line 959: Line 962:
|-
|-
|<nowiki>5L 2s 1|5</nowiki>
|<nowiki>5L 2s 1|5</nowiki>
| Phrygian
|Phrygian
| 6
|6
|7
|7
|sLLLsLL
|sLLLsLL
Line 974: Line 977:
|<nowiki>5L 2s 0|6</nowiki>
|<nowiki>5L 2s 0|6</nowiki>
|Locrian
|Locrian
|7
| 7
|4
|4
|sLLsLLL
|sLLsLLL