Convex scale: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 266530940 - Original comment: Reverted to Oct 19, 2011 12:27 pm**
Hkm (talk | contribs)
No edit summary
 
(10 intermediate revisions by 6 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Todo|inline=1|expand|comment=explain musical application --[[User:Hkm|hkm]] ([[User talk:Hkm|talk]]) 20:39, 25 June 2025 (UTC)}}[[File:Lattice Marvel Convex12.png|400px|thumb|A convex set of 12 tones from the marvel lattice.]]
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-10-19 15:48:45 UTC</tt>.<br>
: The original revision id was <tt>266530940</tt>.<br>
: The revision comment was: <tt>Reverted to Oct 19, 2011 12:27 pm</tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">In a [[Regular Temperaments|regular temperament]], a **convex scale** is a set of pitches that form a **convex set** in the interval lattice of the temperament. The "regular temperament" is often [[Just intonation|JI]], in which case the lattice is the familiar JI lattice, but convex scales exist for any regular temperament.


A simple, easy-to-understand definition of a "convex set" in a lattice is the intersection of the lattice with any [[http://en.wikipedia.org/wiki/Convex_set|convex region]] of continuous space. See below for a more formal definition.
In a [[regular temperament]], a '''convex scale''' is a set of pitches that form a '''convex set''' (also called a Z-polytope) in the interval lattice of the temperament. The "regular temperament" is often [[Just intonation|JI]], in which case the lattice is the familiar JI lattice, but convex scales exist for any regular temperament.


The **convex hull** or **convex closure** of a scale is the smallest convex scale that contains it. See [[Gallery of Z-polygon transversals]] for many scales that are the convex closures of interesting sets of pitches.
A simple, easy-to-understand definition of a "convex set" in a lattice is the intersection of the lattice with any [https://en.wikipedia.org/wiki/Convex_set convex region] of continuous space. Alternatively, a convex set in a lattice is a set where any weighted average of elements (where no element has negative weight) is within the set if it is on the lattice.


==Formal definition==
The '''convex hull''' or '''convex closure''' of a scale is the smallest convex scale that contains it. (Every scale has a unique convex hull.) See [[Gallery of Z-polygon transversals]] for many scales that are the convex closures of interesting sets of pitches.
The following definitions make sense in the context of any Z-[[http://en.wikipedia.org/wiki/Module_%28mathematics%29|module]], which is the same concept as an [[http://en.wikipedia.org/wiki/Abelian_group|abelian group]].


===Convex combination===
==Examples==
A **convex combination** of a set of vectors is, intuitively, a weighted average of the vectors where all the weights are non-negative. Formally, b is a convex combination of a1, a2... whenever there exist non-negative integers c1, c2... such that
[[math]]
$(c_1 + c_2 + \dots + c_k) b = c_1 a_1 + c_2 a_2 + \dots + c_k a_k$
[[math]]


Note that in this definition, a1, a2.. and b are elements of the Z-module, and c1, c2... are integers, so the only operations used are those defined for every Z-module. An equivalent definition can be given in terms of the [[http://en.wikipedia.org/wiki/Injective_hull|injective hull]] of the Z-module, which extends n-tuples of integers to n-tuples of rational numbers (a vector space over the rational numbers Q) and allows for the c_i to be rational numbers. By dividing through by
* Every [[MOSScales|MOS]] is convex.
[[math]]
*In fact, every [[distributionally even]] scale is convex.
$c = c_1 + c_2 + \dots + c_k$
* Every [[Fokker block]] is convex.
[[math]]
* Every untempered [[tonality diamond]] is convex.
we obtain
[[math]]
$b = d_1 a_1 + d_2 a_2 + \dots + d_k a_k$
[[math]]
where d_i = c_i/c. Note that while the coefficients d_i are allowed to be positive rational numbers (now summing to 1), b is still an integral vector, ie an n-tuple of integers.


===Convex set===
[[Category:Scale]]
A convex set (sometimes called a Z-polytope) in a lattice is a set that includes all convex combinations of its elements. The convex closure of a set of lattice elements is the smallest convex set containing the set.
[[Category:Math]]
 
[[Category:Todo:clarify]]
==Examples==
* Every [[MOSScales|MOS]] is convex.
* In fact, every [[distributionally even]] scale is convex.
* Every [[Fokker blocks|Fokker block]] is convex.
* Every untempered [[Tonality diamond|tonality diamond]] is convex.
* [[Gallery of Z-polygon transversals]]</pre></div>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Convex scale&lt;/title&gt;&lt;/head&gt;&lt;body&gt;In a &lt;a class="wiki_link" href="/Regular%20Temperaments"&gt;regular temperament&lt;/a&gt;, a &lt;strong&gt;convex scale&lt;/strong&gt; is a set of pitches that form a &lt;strong&gt;convex set&lt;/strong&gt; in the interval lattice of the temperament. The &amp;quot;regular temperament&amp;quot; is often &lt;a class="wiki_link" href="/Just%20intonation"&gt;JI&lt;/a&gt;, in which case the lattice is the familiar JI lattice, but convex scales exist for any regular temperament.&lt;br /&gt;
&lt;br /&gt;
A simple, easy-to-understand definition of a &amp;quot;convex set&amp;quot; in a lattice is the intersection of the lattice with any &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Convex_set" rel="nofollow"&gt;convex region&lt;/a&gt; of continuous space. See below for a more formal definition.&lt;br /&gt;
&lt;br /&gt;
The &lt;strong&gt;convex hull&lt;/strong&gt; or &lt;strong&gt;convex closure&lt;/strong&gt; of a scale is the smallest convex scale that contains it. See &lt;a class="wiki_link" href="/Gallery%20of%20Z-polygon%20transversals"&gt;Gallery of Z-polygon transversals&lt;/a&gt; for many scales that are the convex closures of interesting sets of pitches.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:3:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-Formal definition"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:3 --&gt;Formal definition&lt;/h2&gt;
The following definitions make sense in the context of any Z-&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Module_%28mathematics%29" rel="nofollow"&gt;module&lt;/a&gt;, which is the same concept as an &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Abelian_group" rel="nofollow"&gt;abelian group&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:5:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc1"&gt;&lt;a name="x-Formal definition-Convex combination"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:5 --&gt;Convex combination&lt;/h3&gt;
A &lt;strong&gt;convex combination&lt;/strong&gt; of a set of vectors is, intuitively, a weighted average of the vectors where all the weights are non-negative. Formally, b is a convex combination of a1, a2... whenever there exist non-negative integers c1, c2... such that&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:0:
[[math]]&amp;lt;br/&amp;gt;
$(c_1 + c_2 + \dots + c_k) b = c_1 a_1 + c_2 a_2 + \dots + c_k a_k$&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;$(c_1 + c_2 + \dots + c_k) b = c_1 a_1 + c_2 a_2 + \dots + c_k a_k$&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:0 --&gt;&lt;br /&gt;
&lt;br /&gt;
Note that in this definition, a1, a2.. and b are elements of the Z-module, and c1, c2... are integers, so the only operations used are those defined for every Z-module. An equivalent definition can be given in terms of the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Injective_hull" rel="nofollow"&gt;injective hull&lt;/a&gt; of the Z-module, which extends n-tuples of integers to n-tuples of rational numbers (a vector space over the rational numbers Q) and allows for the c_i to be rational numbers. By dividing through by &lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:1:
[[math]]&amp;lt;br/&amp;gt;
$c = c_1 + c_2 + \dots + c_k$&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;$c = c_1 + c_2 + \dots + c_k$&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:1 --&gt;&lt;br /&gt;
we obtain&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:2:
[[math]]&amp;lt;br/&amp;gt;
$b = d_1 a_1 + d_2 a_2 + \dots + d_k a_k$&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;$b = d_1 a_1 + d_2 a_2 + \dots + d_k a_k$&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:2 --&gt;&lt;br /&gt;
where d_i = c_i/c. Note that while the coefficients d_i are allowed to be positive rational numbers (now summing to 1), b is still an integral vector, ie an n-tuple of integers.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:7:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc2"&gt;&lt;a name="x-Formal definition-Convex set"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:7 --&gt;Convex set&lt;/h3&gt;
A convex set (sometimes called a Z-polytope) in a lattice is a set that includes all convex combinations of its elements. The convex closure of a set of lattice elements is the smallest convex set containing the set.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:9:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc3"&gt;&lt;a name="x-Examples"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:9 --&gt;Examples&lt;/h2&gt;
&lt;ul&gt;&lt;li&gt;Every &lt;a class="wiki_link" href="/MOSScales"&gt;MOS&lt;/a&gt; is convex.&lt;/li&gt;&lt;li&gt;In fact, every &lt;a class="wiki_link" href="/distributionally%20even"&gt;distributionally even&lt;/a&gt; scale is convex.&lt;/li&gt;&lt;li&gt;Every &lt;a class="wiki_link" href="/Fokker%20blocks"&gt;Fokker block&lt;/a&gt; is convex.&lt;/li&gt;&lt;li&gt;Every untempered &lt;a class="wiki_link" href="/Tonality%20diamond"&gt;tonality diamond&lt;/a&gt; is convex.&lt;/li&gt;&lt;li&gt;&lt;a class="wiki_link" href="/Gallery%20of%20Z-polygon%20transversals"&gt;Gallery of Z-polygon transversals&lt;/a&gt;&lt;/li&gt;&lt;/ul&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>