|
|
(7 intermediate revisions by 4 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | Below are listed the [[dyadic chord]]s of 11-limit [[Unidec|unidec temperament]]. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering by [[441/440]] are labeled werckismic, and by [[385/384]] keenanismic. |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| |
| : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-12-26 15:47:37 UTC</tt>.<br>
| |
| : The original revision id was <tt>288514080</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Below are listed the [[Dyadic chord|dyadic chords]] of 11-limit [[Gamelismic clan#Unidec|unidec temperament]]. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering by 441/440 werckismicmic, and by 385/384 keenanismic.
| |
|
| |
|
| The normal mapping for unidec is uni = [<2 5 8 5 6|, <0 -6 -11 2 3|]. From this we may derive a val v = uni[1] + uni[2] = <2 -595 -1092 205 306| which we may use to sort and normalize the chords of harry. Under "Chord" is listed the chord, normalized to start from zero, in the mapping by v. If we look at the highest, rightmost, element of the chord, divide that by 100, round, and multiply by 2, we get the Graham complexity of the chord. Redundantly for the sake of convenience, the Graham complexity is listed in the last column. | | The normal mapping for unidec is uni = [{{val| 2 5 8 5 6 }}, {{val| 0 -6 -11 2 3 }}]. From this we may derive a val v = uni[1] + 100 uni[2] = {{val| 2 -595 -1092 205 306 }} which we may use to sort and normalize the chords of unidec. Under "Chord" is listed the chord, normalized to start from zero, in the mapping by v. If we look at the highest, rightmost, element of the chord, divide that by 100, round, and multiply by 2, we get the Graham complexity of the chord. Redundantly for the sake of convenience, the Graham complexity is listed in the last column. |
|
| |
|
| Unidec has MOS of size 6, 20, 26, 46, and 72. Even the six-note MOS has some werckismic triads, and there are many more in the twenty note MOS, including many of the werckismic tetrad of complexity six and the keenanismic tetrad of complexity ten, which are likely to figure large in any composition in unidec. The essentially tempered chords of unidec either temper out 441/440 or 385/384; putting these together produces portent temperament, but there are no essentially portent chords. Adding the small ragisma, 4375/4374, to the commas of portent gives unidec, with very little additional tuning damage. Unidec is, in fact, quite an accurate temperament even compared to such things as miracle, but still has enough give in it to allow for some interesting essential tempering. | | Unidec has MOS of size 6, 20, 26, 46, and 72. Even the six-note MOS has some werckismic triads, and there are many more chords in the twenty note MOS, including many of the werckismic tetrad of complexity six and the keenanismic tetrad of complexity ten, which are likely to figure large in any composition in unidec. The essentially tempered chords of unidec either temper out 441/440 or 385/384; putting these together produces portent temperament, but there are no essentially portent chords. Adding the small ragisma, 4375/4374, to the commas of portent gives unidec, with very little additional tuning damage. Unidec is, in fact, quite an accurate temperament even compared to such things as miracle, but still has enough give in it to allow for some interesting essential tempering. |
|
| |
|
| | == Triads == |
|
| |
|
| =Triads= | | {| class="wikitable" |
| || Number || Chord || Transversal || Type || Complexity || | | |- |
| || 1 || 0-100-201 || 1-10/9-7/4 || werckismic || 4 ||
| | ! Number |
| || 2 || 0-101-201 || 1-11/7-7/4 || werckismic || 4 ||
| | ! Chord |
| || 3 || 0-101-300 || 1-11/7-11/8 || utonal || 6 ||
| | ! Transversal |
| || 4 || 0-201-300 || 1-7/4-11/8 || otonal || 6 ||
| | ! Type |
| || 5 || 0-201-499 || 1-7/4-6/5 || keenanismic || 10 ||
| | ! Complexity |
| || 6 || 0-300-499 || 1-11/8-6/5 || keenanismic || 10 ||
| | |- |
| || 7 || 0-100-599 || 1-10/9-4/3 || otonal || 12 ||
| | | 1 |
| || 8 || 0-499-599 || 1-6/5-4/3 || utonal || 12 ||
| | | 0-100-201 |
| || 9 || 0-201-798 || 1-7/4-7/6 || utonal || 16 ||
| | | 1-10/9-7/4 |
| || 10 || 0-599-798 || 1-4/3-7/6 || otonal || 16 ||
| | | werckismic |
| || 11 || 0-101-899 || 1-11/7-11/6 || utonal || 18 ||
| | | 4 |
| || 12 || 0-300-899 || 1-11/8-11/6 || utonal || 18 ||
| | |- |
| || 13 || 0-599-899 || 1-4/3-11/6 || otonal || 18 ||
| | | 2 |
| || 14 || 0-798-899 || 1-7/6-11/6 || otonal || 18 ||
| | | 0-101-201 |
| || 15 || 0-201-1098 || 1-7/4-8/5 || keenanismic || 22 || | | | 1-11/7-7/4 |
| || 16 || 0-300-1098 || 1-11/8-8/5 || keenanismic || 22 ||
| | | werckismic |
| || 17 || 0-499-1098 || 1-6/5-8/5 || otonal || 22 ||
| | | 4 |
| || 18 || 0-599-1098 || 1-4/3-8/5 || utonal || 22 ||
| | |- |
| || 19 || 0-798-1098 || 1-7/6-8/5 || keenanismic || 22 ||
| | | 3 |
| || 20 || 0-899-1098 || 1-11/6-8/5 || keenanismic || 22 ||
| | | 0-101-300 |
| || 21 || 0-100-1198 || 1-10/9-16/9 || otonal || 24 ||
| | | 1-11/7-11/8 |
| || 22 || 0-599-1198 || 1-4/3-16/9 || ambitonal || 24 ||
| | | utonal |
| || 23 || 0-1098-1198 || 1-8/5-16/9 || utonal || 24 ||
| | | 6 |
| || 24 || 0-101-1297 || 1-11/7-7/5 || werckismic || 26 || | | |- |
| || 25 || 0-201-1297 || 1-7/4-7/5 || utonal || 26 ||
| | | 4 |
| || 26 || 0-499-1297 || 1-6/5-7/5 || otonal || 26 ||
| | | 0-201-300 |
| || 27 || 0-798-1297 || 1-7/6-7/5 || utonal || 26 ||
| | | 1-7/4-11/8 |
| || 28 || 0-1098-1297 || 1-8/5-7/5 || otonal || 26 ||
| | | otonal |
| || 29 || 0-1198-1297 || 1-16/9-7/5 || werckismic || 26 ||
| | | 6 |
| || 30 || 0-101-1396 || 1-11/7-11/10 || utonal || 28 ||
| | |- |
| || 31 || 0-300-1396 || 1-11/8-11/10 || utonal || 28 ||
| | | 5 |
| || 32 || 0-499-1396 || 1-6/5-11/10 || otonal || 28 ||
| | | 0-201-499 |
| || 33 || 0-899-1396 || 1-11/6-11/10 || utonal || 28 || | | | 1-7/4-6/5 |
| || 34 || 0-1098-1396 || 1-8/5-11/10 || otonal || 28 ||
| | | keenanismic |
| || 35 || 0-1297-1396 || 1-7/5-11/10 || otonal || 28 ||
| | | 10 |
| || 36 || 0-100-1397 || 1-10/9-14/9 || otonal || 28 ||
| | |- |
| || 37 || 0-201-1397 || 1-7/4-14/9 || utonal || 28 ||
| | | 6 |
| || 38 || 0-599-1397 || 1-4/3-14/9 || otonal || 28 ||
| | | 0-300-499 |
| || 39 || 0-798-1397 || 1-7/6-14/9 || utonal || 28 ||
| | | 1-11/8-6/5 |
| || 40 || 0-1198-1397 || 1-16/9-14/9 || otonal || 28 ||
| | | keenanismic |
| || 41 || 0-1297-1397 || 1-7/5-14/9 || utonal || 28 ||
| | | 10 |
| || 42 || 0-100-1496 || 1-10/9-11/9 || otonal || 30 || | | |- |
| || 43 || 0-101-1496 || 1-11/7-11/9 || utonal || 30 ||
| | | 7 |
| || 44 || 0-201-1496 || 1-7/4-11/9 || werckismic || 30 ||
| | | 0-100-599 |
| || 45 || 0-300-1496 || 1-11/8-11/9 || utonal || 30 ||
| | | 1-10/9-4/3 |
| || 46 || 0-599-1496 || 1-4/3-11/9 || otonal || 30 ||
| | | otonal |
| || 47 || 0-899-1496 || 1-11/6-11/9 || utonal || 30 ||
| | | 12 |
| || 48 || 0-1198-1496 || 1-16/9-11/9 || otonal || 30 ||
| | |- |
| || 49 || 0-1297-1496 || 1-7/5-11/9 || werckismic || 30 ||
| | | 8 |
| || 50 || 0-1396-1496 || 1-11/10-11/9 || utonal || 30 ||
| | | 0-499-599 |
| || 51 || 0-1397-1496 || 1-14/9-11/9 || otonal || 30 ||
| | | 1-6/5-4/3 |
| | | utonal |
| | | 12 |
| | |- |
| | | 9 |
| | | 0-201-798 |
| | | 1-7/4-7/6 |
| | | utonal |
| | | 16 |
| | |- |
| | | 10 |
| | | 0-599-798 |
| | | 1-4/3-7/6 |
| | | otonal |
| | | 16 |
| | |- |
| | | 11 |
| | | 0-101-899 |
| | | 1-11/7-11/6 |
| | | utonal |
| | | 18 |
| | |- |
| | | 12 |
| | | 0-300-899 |
| | | 1-11/8-11/6 |
| | | utonal |
| | | 18 |
| | |- |
| | | 13 |
| | | 0-599-899 |
| | | 1-4/3-11/6 |
| | | otonal |
| | | 18 |
| | |- |
| | | 14 |
| | | 0-798-899 |
| | | 1-7/6-11/6 |
| | | otonal |
| | | 18 |
| | |- |
| | | 15 |
| | | 0-201-1098 |
| | | 1-7/4-8/5 |
| | | keenanismic |
| | | 22 |
| | |- |
| | | 16 |
| | | 0-300-1098 |
| | | 1-11/8-8/5 |
| | | keenanismic |
| | | 22 |
| | |- |
| | | 17 |
| | | 0-499-1098 |
| | | 1-6/5-8/5 |
| | | otonal |
| | | 22 |
| | |- |
| | | 18 |
| | | 0-599-1098 |
| | | 1-4/3-8/5 |
| | | utonal |
| | | 22 |
| | |- |
| | | 19 |
| | | 0-798-1098 |
| | | 1-7/6-8/5 |
| | | keenanismic |
| | | 22 |
| | |- |
| | | 20 |
| | | 0-899-1098 |
| | | 1-11/6-8/5 |
| | | keenanismic |
| | | 22 |
| | |- |
| | | 21 |
| | | 0-100-1198 |
| | | 1-10/9-16/9 |
| | | otonal |
| | | 24 |
| | |- |
| | | 22 |
| | | 0-599-1198 |
| | | 1-4/3-16/9 |
| | | ambitonal |
| | | 24 |
| | |- |
| | | 23 |
| | | 0-1098-1198 |
| | | 1-8/5-16/9 |
| | | utonal |
| | | 24 |
| | |- |
| | | 24 |
| | | 0-101-1297 |
| | | 1-11/7-7/5 |
| | | werckismic |
| | | 26 |
| | |- |
| | | 25 |
| | | 0-201-1297 |
| | | 1-7/4-7/5 |
| | | utonal |
| | | 26 |
| | |- |
| | | 26 |
| | | 0-499-1297 |
| | | 1-6/5-7/5 |
| | | otonal |
| | | 26 |
| | |- |
| | | 27 |
| | | 0-798-1297 |
| | | 1-7/6-7/5 |
| | | utonal |
| | | 26 |
| | |- |
| | | 28 |
| | | 0-1098-1297 |
| | | 1-8/5-7/5 |
| | | otonal |
| | | 26 |
| | |- |
| | | 29 |
| | | 0-1198-1297 |
| | | 1-16/9-7/5 |
| | | werckismic |
| | | 26 |
| | |- |
| | | 30 |
| | | 0-101-1396 |
| | | 1-11/7-11/10 |
| | | utonal |
| | | 28 |
| | |- |
| | | 31 |
| | | 0-300-1396 |
| | | 1-11/8-11/10 |
| | | utonal |
| | | 28 |
| | |- |
| | | 32 |
| | | 0-499-1396 |
| | | 1-6/5-11/10 |
| | | otonal |
| | | 28 |
| | |- |
| | | 33 |
| | | 0-899-1396 |
| | | 1-11/6-11/10 |
| | | utonal |
| | | 28 |
| | |- |
| | | 34 |
| | | 0-1098-1396 |
| | | 1-8/5-11/10 |
| | | otonal |
| | | 28 |
| | |- |
| | | 35 |
| | | 0-1297-1396 |
| | | 1-7/5-11/10 |
| | | otonal |
| | | 28 |
| | |- |
| | | 36 |
| | | 0-100-1397 |
| | | 1-10/9-14/9 |
| | | otonal |
| | | 28 |
| | |- |
| | | 37 |
| | | 0-201-1397 |
| | | 1-7/4-14/9 |
| | | utonal |
| | | 28 |
| | |- |
| | | 38 |
| | | 0-599-1397 |
| | | 1-4/3-14/9 |
| | | otonal |
| | | 28 |
| | |- |
| | | 39 |
| | | 0-798-1397 |
| | | 1-7/6-14/9 |
| | | utonal |
| | | 28 |
| | |- |
| | | 40 |
| | | 0-1198-1397 |
| | | 1-16/9-14/9 |
| | | otonal |
| | | 28 |
| | |- |
| | | 41 |
| | | 0-1297-1397 |
| | | 1-7/5-14/9 |
| | | utonal |
| | | 28 |
| | |- |
| | | 42 |
| | | 0-100-1496 |
| | | 1-10/9-11/9 |
| | | otonal |
| | | 30 |
| | |- |
| | | 43 |
| | | 0-101-1496 |
| | | 1-11/7-11/9 |
| | | utonal |
| | | 30 |
| | |- |
| | | 44 |
| | | 0-201-1496 |
| | | 1-7/4-11/9 |
| | | werckismic |
| | | 30 |
| | |- |
| | | 45 |
| | | 0-300-1496 |
| | | 1-11/8-11/9 |
| | | utonal |
| | | 30 |
| | |- |
| | | 46 |
| | | 0-599-1496 |
| | | 1-4/3-11/9 |
| | | otonal |
| | | 30 |
| | |- |
| | | 47 |
| | | 0-899-1496 |
| | | 1-11/6-11/9 |
| | | utonal |
| | | 30 |
| | |- |
| | | 48 |
| | | 0-1198-1496 |
| | | 1-16/9-11/9 |
| | | otonal |
| | | 30 |
| | |- |
| | | 49 |
| | | 0-1297-1496 |
| | | 1-7/5-11/9 |
| | | werckismic |
| | | 30 |
| | |- |
| | | 50 |
| | | 0-1396-1496 |
| | | 1-11/10-11/9 |
| | | utonal |
| | | 30 |
| | |- |
| | | 51 |
| | | 0-1397-1496 |
| | | 1-14/9-11/9 |
| | | otonal |
| | | 30 |
| | |} |
|
| |
|
| =Tetrads= | | == Tetrads == |
| || Number || Chord || Transversal || Type || Complexity ||
| |
| || 1 || 0-101-201-300 || 1-11/7-7/4-11/8 || werckismic || 6 ||
| |
| || 2 || 0-201-300-499 || 1-7/4-11/8-6/5 || keenanismic || 10 ||
| |
| || 3 || 0-101-300-899 || 1-11/7-11/8-11/6 || utonal || 18 ||
| |
| || 4 || 0-599-798-899 || 1-4/3-7/6-11/6 || otonal || 18 ||
| |
| || 5 || 0-201-300-1098 || 1-7/4-11/8-8/5 || keenanismic || 22 ||
| |
| || 6 || 0-201-499-1098 || 1-7/4-6/5-8/5 || keenanismic || 22 ||
| |
| || 7 || 0-300-499-1098 || 1-11/8-6/5-8/5 || keenanismic || 22 ||
| |
| || 8 || 0-499-599-1098 || 1-6/5-4/3-8/5 || ambitonal || 22 ||
| |
| || 9 || 0-201-798-1098 || 1-7/4-7/6-8/5 || keenanismic || 22 ||
| |
| || 10 || 0-599-798-1098 || 1-4/3-7/6-8/5 || keenanismic || 22 ||
| |
| || 11 || 0-300-899-1098 || 1-11/8-11/6-8/5 || keenanismic || 22 ||
| |
| || 12 || 0-599-899-1098 || 1-4/3-11/6-8/5 || keenanismic || 22 ||
| |
| || 13 || 0-798-899-1098 || 1-7/6-11/6-8/5 || keenanismic || 22 ||
| |
| || 14 || 0-100-599-1198 || 1-10/9-4/3-16/9 || otonal || 24 ||
| |
| || 15 || 0-599-1098-1198 || 1-4/3-8/5-16/9 || utonal || 24 ||
| |
| || 16 || 0-101-201-1297 || 1-11/7-7/4-7/5 || werckismic || 26 ||
| |
| || 17 || 0-201-499-1297 || 1-7/4-6/5-7/5 || keenanismic || 26 ||
| |
| || 18 || 0-201-798-1297 || 1-7/4-7/6-7/5 || utonal || 26 ||
| |
| || 19 || 0-201-1098-1297 || 1-7/4-8/5-7/5 || keenanismic || 26 ||
| |
| || 20 || 0-499-1098-1297 || 1-6/5-8/5-7/5 || otonal || 26 ||
| |
| || 21 || 0-798-1098-1297 || 1-7/6-8/5-7/5 || keenanismic || 26 ||
| |
| || 22 || 0-1098-1198-1297 || 1-8/5-16/9-7/5 || werckismic || 26 ||
| |
| || 23 || 0-101-300-1396 || 1-11/7-11/8-11/10 || utonal || 28 ||
| |
| || 24 || 0-300-499-1396 || 1-11/8-6/5-11/10 || keenanismic || 28 ||
| |
| || 25 || 0-101-899-1396 || 1-11/7-11/6-11/10 || utonal || 28 ||
| |
| || 26 || 0-300-899-1396 || 1-11/8-11/6-11/10 || utonal || 28 ||
| |
| || 27 || 0-300-1098-1396 || 1-11/8-8/5-11/10 || keenanismic || 28 ||
| |
| || 28 || 0-499-1098-1396 || 1-6/5-8/5-11/10 || otonal || 28 ||
| |
| || 29 || 0-899-1098-1396 || 1-11/6-8/5-11/10 || keenanismic || 28 ||
| |
| || 30 || 0-101-1297-1396 || 1-11/7-7/5-11/10 || werckismic || 28 ||
| |
| || 31 || 0-499-1297-1396 || 1-6/5-7/5-11/10 || otonal || 28 ||
| |
| || 32 || 0-1098-1297-1396 || 1-8/5-7/5-11/10 || otonal || 28 ||
| |
| || 33 || 0-100-201-1397 || 1-10/9-7/4-14/9 || werckismic || 28 ||
| |
| || 34 || 0-100-599-1397 || 1-10/9-4/3-14/9 || otonal || 28 ||
| |
| || 35 || 0-201-798-1397 || 1-7/4-7/6-14/9 || utonal || 28 ||
| |
| || 36 || 0-599-798-1397 || 1-4/3-7/6-14/9 || ambitonal || 28 ||
| |
| || 37 || 0-100-1198-1397 || 1-10/9-16/9-14/9 || otonal || 28 ||
| |
| || 38 || 0-599-1198-1397 || 1-4/3-16/9-14/9 || otonal || 28 ||
| |
| || 39 || 0-201-1297-1397 || 1-7/4-7/5-14/9 || utonal || 28 ||
| |
| || 40 || 0-798-1297-1397 || 1-7/6-7/5-14/9 || utonal || 28 ||
| |
| || 41 || 0-1198-1297-1397 || 1-16/9-7/5-14/9 || werckismic || 28 ||
| |
| || 42 || 0-100-201-1496 || 1-10/9-7/4-11/9 || werckismic || 30 ||
| |
| || 43 || 0-101-201-1496 || 1-11/7-7/4-11/9 || werckismic || 30 ||
| |
| || 44 || 0-101-300-1496 || 1-11/7-11/8-11/9 || utonal || 30 ||
| |
| || 45 || 0-201-300-1496 || 1-7/4-11/8-11/9 || werckismic || 30 ||
| |
| || 46 || 0-100-599-1496 || 1-10/9-4/3-11/9 || otonal || 30 ||
| |
| || 47 || 0-101-899-1496 || 1-11/7-11/6-11/9 || utonal || 30 ||
| |
| || 48 || 0-300-899-1496 || 1-11/8-11/6-11/9 || utonal || 30 ||
| |
| || 49 || 0-599-899-1496 || 1-4/3-11/6-11/9 || ambitonal || 30 ||
| |
| || 50 || 0-100-1198-1496 || 1-10/9-16/9-11/9 || otonal || 30 ||
| |
| || 51 || 0-599-1198-1496 || 1-4/3-16/9-11/9 || otonal || 30 ||
| |
| || 52 || 0-101-1297-1496 || 1-11/7-7/5-11/9 || werckismic || 30 ||
| |
| || 53 || 0-201-1297-1496 || 1-7/4-7/5-11/9 || werckismic || 30 ||
| |
| || 54 || 0-1198-1297-1496 || 1-16/9-7/5-11/9 || werckismic || 30 ||
| |
| || 55 || 0-101-1396-1496 || 1-11/7-11/10-11/9 || utonal || 30 ||
| |
| || 56 || 0-300-1396-1496 || 1-11/8-11/10-11/9 || utonal || 30 ||
| |
| || 57 || 0-899-1396-1496 || 1-11/6-11/10-11/9 || utonal || 30 ||
| |
| || 58 || 0-1297-1396-1496 || 1-7/5-11/10-11/9 || werckismic || 30 ||
| |
| || 59 || 0-100-1397-1496 || 1-10/9-14/9-11/9 || otonal || 30 ||
| |
| || 60 || 0-201-1397-1496 || 1-7/4-14/9-11/9 || werckismic || 30 ||
| |
| || 61 || 0-599-1397-1496 || 1-4/3-14/9-11/9 || otonal || 30 ||
| |
| || 62 || 0-1198-1397-1496 || 1-16/9-14/9-11/9 || otonal || 30 ||
| |
| || 63 || 0-1297-1397-1496 || 1-7/5-14/9-11/9 || werckismic || 30 ||
| |
|
| |
|
| =Pentads= | | {| class="wikitable" |
| || Number || Chord || Transversal || Type || Complexity || | | |- |
| || 1 || 0-201-300-499-1098 || 1-7/4-11/8-6/5-8/5 || keenanismic || 22 ||
| | ! Number |
| || 2 || 0-599-798-899-1098 || 1-4/3-7/6-11/6-8/5 || keenanismic || 22 ||
| | ! Chord |
| || 3 || 0-201-499-1098-1297 || 1-7/4-6/5-8/5-7/5 || keenanismic || 26 ||
| | ! Transversal |
| || 4 || 0-201-798-1098-1297 || 1-7/4-7/6-8/5-7/5 || keenanismic || 26 ||
| | ! Type |
| || 5 || 0-101-300-899-1396 || 1-11/7-11/8-11/6-11/10 || utonal || 28 ||
| | ! Complexity |
| || 6 || 0-300-499-1098-1396 || 1-11/8-6/5-8/5-11/10 || keenanismic || 28 ||
| | |- |
| || 7 || 0-300-899-1098-1396 || 1-11/8-11/6-8/5-11/10 || keenanismic || 28 ||
| | | 1 |
| || 8 || 0-499-1098-1297-1396 || 1-6/5-8/5-7/5-11/10 || otonal || 28 ||
| | | 0-101-201-300 |
| || 9 || 0-100-599-1198-1397 || 1-10/9-4/3-16/9-14/9 || otonal || 28 ||
| | | 1-11/7-7/4-11/8 |
| || 10 || 0-201-798-1297-1397 || 1-7/4-7/6-7/5-14/9 || utonal || 28 ||
| | | werckismic |
| || 11 || 0-101-201-300-1496 || 1-11/7-7/4-11/8-11/9 || werckismic || 30 ||
| | | 6 |
| || 12 || 0-101-300-899-1496 || 1-11/7-11/8-11/6-11/9 || utonal || 30 ||
| | |- |
| || 13 || 0-100-599-1198-1496 || 1-10/9-4/3-16/9-11/9 || otonal || 30 ||
| | | 2 |
| || 14 || 0-101-201-1297-1496 || 1-11/7-7/4-7/5-11/9 || werckismic || 30 ||
| | | 0-201-300-499 |
| || 15 || 0-101-300-1396-1496 || 1-11/7-11/8-11/10-11/9 || utonal || 30 ||
| | | 1-7/4-11/8-6/5 |
| || 16 || 0-101-899-1396-1496 || 1-11/7-11/6-11/10-11/9 || utonal || 30 ||
| | | keenanismic |
| || 17 || 0-300-899-1396-1496 || 1-11/8-11/6-11/10-11/9 || utonal || 30 ||
| | | 10 |
| || 18 || 0-101-1297-1396-1496 || 1-11/7-7/5-11/10-11/9 || werckismic || 30 ||
| | |- |
| || 19 || 0-100-201-1397-1496 || 1-10/9-7/4-14/9-11/9 || werckismic || 30 ||
| | | 3 |
| || 20 || 0-100-599-1397-1496 || 1-10/9-4/3-14/9-11/9 || otonal || 30 ||
| | | 0-101-300-899 |
| || 21 || 0-100-1198-1397-1496 || 1-10/9-16/9-14/9-11/9 || otonal || 30 ||
| | | 1-11/7-11/8-11/6 |
| || 22 || 0-599-1198-1397-1496 || 1-4/3-16/9-14/9-11/9 || otonal || 30 ||
| | | utonal |
| || 23 || 0-201-1297-1397-1496 || 1-7/4-7/5-14/9-11/9 || werckismic || 30 ||
| | | 18 |
| || 24 || 0-1198-1297-1397-1496 || 1-16/9-7/5-14/9-11/9 || werckismic || 30 ||
| | |- |
| | | 4 |
| | | 0-599-798-899 |
| | | 1-4/3-7/6-11/6 |
| | | otonal |
| | | 18 |
| | |- |
| | | 5 |
| | | 0-201-300-1098 |
| | | 1-7/4-11/8-8/5 |
| | | keenanismic |
| | | 22 |
| | |- |
| | | 6 |
| | | 0-201-499-1098 |
| | | 1-7/4-6/5-8/5 |
| | | keenanismic |
| | | 22 |
| | |- |
| | | 7 |
| | | 0-300-499-1098 |
| | | 1-11/8-6/5-8/5 |
| | | keenanismic |
| | | 22 |
| | |- |
| | | 8 |
| | | 0-499-599-1098 |
| | | 1-6/5-4/3-8/5 |
| | | ambitonal |
| | | 22 |
| | |- |
| | | 9 |
| | | 0-201-798-1098 |
| | | 1-7/4-7/6-8/5 |
| | | keenanismic |
| | | 22 |
| | |- |
| | | 10 |
| | | 0-599-798-1098 |
| | | 1-4/3-7/6-8/5 |
| | | keenanismic |
| | | 22 |
| | |- |
| | | 11 |
| | | 0-300-899-1098 |
| | | 1-11/8-11/6-8/5 |
| | | keenanismic |
| | | 22 |
| | |- |
| | | 12 |
| | | 0-599-899-1098 |
| | | 1-4/3-11/6-8/5 |
| | | keenanismic |
| | | 22 |
| | |- |
| | | 13 |
| | | 0-798-899-1098 |
| | | 1-7/6-11/6-8/5 |
| | | keenanismic |
| | | 22 |
| | |- |
| | | 14 |
| | | 0-100-599-1198 |
| | | 1-10/9-4/3-16/9 |
| | | otonal |
| | | 24 |
| | |- |
| | | 15 |
| | | 0-599-1098-1198 |
| | | 1-4/3-8/5-16/9 |
| | | utonal |
| | | 24 |
| | |- |
| | | 16 |
| | | 0-101-201-1297 |
| | | 1-11/7-7/4-7/5 |
| | | werckismic |
| | | 26 |
| | |- |
| | | 17 |
| | | 0-201-499-1297 |
| | | 1-7/4-6/5-7/5 |
| | | keenanismic |
| | | 26 |
| | |- |
| | | 18 |
| | | 0-201-798-1297 |
| | | 1-7/4-7/6-7/5 |
| | | utonal |
| | | 26 |
| | |- |
| | | 19 |
| | | 0-201-1098-1297 |
| | | 1-7/4-8/5-7/5 |
| | | keenanismic |
| | | 26 |
| | |- |
| | | 20 |
| | | 0-499-1098-1297 |
| | | 1-6/5-8/5-7/5 |
| | | otonal |
| | | 26 |
| | |- |
| | | 21 |
| | | 0-798-1098-1297 |
| | | 1-7/6-8/5-7/5 |
| | | keenanismic |
| | | 26 |
| | |- |
| | | 22 |
| | | 0-1098-1198-1297 |
| | | 1-8/5-16/9-7/5 |
| | | werckismic |
| | | 26 |
| | |- |
| | | 23 |
| | | 0-101-300-1396 |
| | | 1-11/7-11/8-11/10 |
| | | utonal |
| | | 28 |
| | |- |
| | | 24 |
| | | 0-300-499-1396 |
| | | 1-11/8-6/5-11/10 |
| | | keenanismic |
| | | 28 |
| | |- |
| | | 25 |
| | | 0-101-899-1396 |
| | | 1-11/7-11/6-11/10 |
| | | utonal |
| | | 28 |
| | |- |
| | | 26 |
| | | 0-300-899-1396 |
| | | 1-11/8-11/6-11/10 |
| | | utonal |
| | | 28 |
| | |- |
| | | 27 |
| | | 0-300-1098-1396 |
| | | 1-11/8-8/5-11/10 |
| | | keenanismic |
| | | 28 |
| | |- |
| | | 28 |
| | | 0-499-1098-1396 |
| | | 1-6/5-8/5-11/10 |
| | | otonal |
| | | 28 |
| | |- |
| | | 29 |
| | | 0-899-1098-1396 |
| | | 1-11/6-8/5-11/10 |
| | | keenanismic |
| | | 28 |
| | |- |
| | | 30 |
| | | 0-101-1297-1396 |
| | | 1-11/7-7/5-11/10 |
| | | werckismic |
| | | 28 |
| | |- |
| | | 31 |
| | | 0-499-1297-1396 |
| | | 1-6/5-7/5-11/10 |
| | | otonal |
| | | 28 |
| | |- |
| | | 32 |
| | | 0-1098-1297-1396 |
| | | 1-8/5-7/5-11/10 |
| | | otonal |
| | | 28 |
| | |- |
| | | 33 |
| | | 0-100-201-1397 |
| | | 1-10/9-7/4-14/9 |
| | | werckismic |
| | | 28 |
| | |- |
| | | 34 |
| | | 0-100-599-1397 |
| | | 1-10/9-4/3-14/9 |
| | | otonal |
| | | 28 |
| | |- |
| | | 35 |
| | | 0-201-798-1397 |
| | | 1-7/4-7/6-14/9 |
| | | utonal |
| | | 28 |
| | |- |
| | | 36 |
| | | 0-599-798-1397 |
| | | 1-4/3-7/6-14/9 |
| | | ambitonal |
| | | 28 |
| | |- |
| | | 37 |
| | | 0-100-1198-1397 |
| | | 1-10/9-16/9-14/9 |
| | | otonal |
| | | 28 |
| | |- |
| | | 38 |
| | | 0-599-1198-1397 |
| | | 1-4/3-16/9-14/9 |
| | | otonal |
| | | 28 |
| | |- |
| | | 39 |
| | | 0-201-1297-1397 |
| | | 1-7/4-7/5-14/9 |
| | | utonal |
| | | 28 |
| | |- |
| | | 40 |
| | | 0-798-1297-1397 |
| | | 1-7/6-7/5-14/9 |
| | | utonal |
| | | 28 |
| | |- |
| | | 41 |
| | | 0-1198-1297-1397 |
| | | 1-16/9-7/5-14/9 |
| | | werckismic |
| | | 28 |
| | |- |
| | | 42 |
| | | 0-100-201-1496 |
| | | 1-10/9-7/4-11/9 |
| | | werckismic |
| | | 30 |
| | |- |
| | | 43 |
| | | 0-101-201-1496 |
| | | 1-11/7-7/4-11/9 |
| | | werckismic |
| | | 30 |
| | |- |
| | | 44 |
| | | 0-101-300-1496 |
| | | 1-11/7-11/8-11/9 |
| | | utonal |
| | | 30 |
| | |- |
| | | 45 |
| | | 0-201-300-1496 |
| | | 1-7/4-11/8-11/9 |
| | | werckismic |
| | | 30 |
| | |- |
| | | 46 |
| | | 0-100-599-1496 |
| | | 1-10/9-4/3-11/9 |
| | | otonal |
| | | 30 |
| | |- |
| | | 47 |
| | | 0-101-899-1496 |
| | | 1-11/7-11/6-11/9 |
| | | utonal |
| | | 30 |
| | |- |
| | | 48 |
| | | 0-300-899-1496 |
| | | 1-11/8-11/6-11/9 |
| | | utonal |
| | | 30 |
| | |- |
| | | 49 |
| | | 0-599-899-1496 |
| | | 1-4/3-11/6-11/9 |
| | | ambitonal |
| | | 30 |
| | |- |
| | | 50 |
| | | 0-100-1198-1496 |
| | | 1-10/9-16/9-11/9 |
| | | otonal |
| | | 30 |
| | |- |
| | | 51 |
| | | 0-599-1198-1496 |
| | | 1-4/3-16/9-11/9 |
| | | otonal |
| | | 30 |
| | |- |
| | | 52 |
| | | 0-101-1297-1496 |
| | | 1-11/7-7/5-11/9 |
| | | werckismic |
| | | 30 |
| | |- |
| | | 53 |
| | | 0-201-1297-1496 |
| | | 1-7/4-7/5-11/9 |
| | | werckismic |
| | | 30 |
| | |- |
| | | 54 |
| | | 0-1198-1297-1496 |
| | | 1-16/9-7/5-11/9 |
| | | werckismic |
| | | 30 |
| | |- |
| | | 55 |
| | | 0-101-1396-1496 |
| | | 1-11/7-11/10-11/9 |
| | | utonal |
| | | 30 |
| | |- |
| | | 56 |
| | | 0-300-1396-1496 |
| | | 1-11/8-11/10-11/9 |
| | | utonal |
| | | 30 |
| | |- |
| | | 57 |
| | | 0-899-1396-1496 |
| | | 1-11/6-11/10-11/9 |
| | | utonal |
| | | 30 |
| | |- |
| | | 58 |
| | | 0-1297-1396-1496 |
| | | 1-7/5-11/10-11/9 |
| | | werckismic |
| | | 30 |
| | |- |
| | | 59 |
| | | 0-100-1397-1496 |
| | | 1-10/9-14/9-11/9 |
| | | otonal |
| | | 30 |
| | |- |
| | | 60 |
| | | 0-201-1397-1496 |
| | | 1-7/4-14/9-11/9 |
| | | werckismic |
| | | 30 |
| | |- |
| | | 61 |
| | | 0-599-1397-1496 |
| | | 1-4/3-14/9-11/9 |
| | | otonal |
| | | 30 |
| | |- |
| | | 62 |
| | | 0-1198-1397-1496 |
| | | 1-16/9-14/9-11/9 |
| | | otonal |
| | | 30 |
| | |- |
| | | 63 |
| | | 0-1297-1397-1496 |
| | | 1-7/5-14/9-11/9 |
| | | werckismic |
| | | 30 |
| | |} |
|
| |
|
| =Hexads= | | == Pentads == |
| || Number || Chord || Transversal || Type || Complexity ||
| |
| || 1 || 0-101-300-899-1396-1496 || 1-11/7-11/8-11/6-11/10-11/9 || utonal || 30 ||
| |
| || 2 || 0-100-599-1198-1397-1496 || 1-10/9-4/3-16/9-14/9-11/9 || otonal || 30 ||
| |
| </pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Chords of unidec</title></head><body>Below are listed the <a class="wiki_link" href="/Dyadic%20chord">dyadic chords</a> of 11-limit <a class="wiki_link" href="/Gamelismic%20clan#Unidec">unidec temperament</a>. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering by 441/440 werckismicmic, and by 385/384 keenanismic. <br />
| |
| <br />
| |
| The normal mapping for unidec is uni = [&lt;2 5 8 5 6|, &lt;0 -6 -11 2 3|]. From this we may derive a val v = uni[1] + uni[2] = &lt;2 -595 -1092 205 306| which we may use to sort and normalize the chords of harry. Under &quot;Chord&quot; is listed the chord, normalized to start from zero, in the mapping by v. If we look at the highest, rightmost, element of the chord, divide that by 100, round, and multiply by 2, we get the Graham complexity of the chord. Redundantly for the sake of convenience, the Graham complexity is listed in the last column.<br />
| |
| <br />
| |
| Unidec has MOS of size 6, 20, 26, 46, and 72. Even the six-note MOS has some werckismic triads, and there are many more in the twenty note MOS, including many of the werckismic tetrad of complexity six and the keenanismic tetrad of complexity ten, which are likely to figure large in any composition in unidec. The essentially tempered chords of unidec either temper out 441/440 or 385/384; putting these together produces portent temperament, but there are no essentially portent chords. Adding the small ragisma, 4375/4374, to the commas of portent gives unidec, with very little additional tuning damage. Unidec is, in fact, quite an accurate temperament even compared to such things as miracle, but still has enough give in it to allow for some interesting essential tempering.<br />
| |
| <br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Triads"></a><!-- ws:end:WikiTextHeadingRule:0 -->Triads</h1>
| |
|
| |
|
| | {| class="wikitable" |
| | |- |
| | ! Number |
| | ! Chord |
| | ! Transversal |
| | ! Type |
| | ! Complexity |
| | |- |
| | | 1 |
| | | 0-201-300-499-1098 |
| | | 1-7/4-11/8-6/5-8/5 |
| | | keenanismic |
| | | 22 |
| | |- |
| | | 2 |
| | | 0-599-798-899-1098 |
| | | 1-4/3-7/6-11/6-8/5 |
| | | keenanismic |
| | | 22 |
| | |- |
| | | 3 |
| | | 0-201-499-1098-1297 |
| | | 1-7/4-6/5-8/5-7/5 |
| | | keenanismic |
| | | 26 |
| | |- |
| | | 4 |
| | | 0-201-798-1098-1297 |
| | | 1-7/4-7/6-8/5-7/5 |
| | | keenanismic |
| | | 26 |
| | |- |
| | | 5 |
| | | 0-101-300-899-1396 |
| | | 1-11/7-11/8-11/6-11/10 |
| | | utonal |
| | | 28 |
| | |- |
| | | 6 |
| | | 0-300-499-1098-1396 |
| | | 1-11/8-6/5-8/5-11/10 |
| | | keenanismic |
| | | 28 |
| | |- |
| | | 7 |
| | | 0-300-899-1098-1396 |
| | | 1-11/8-11/6-8/5-11/10 |
| | | keenanismic |
| | | 28 |
| | |- |
| | | 8 |
| | | 0-499-1098-1297-1396 |
| | | 1-6/5-8/5-7/5-11/10 |
| | | otonal |
| | | 28 |
| | |- |
| | | 9 |
| | | 0-100-599-1198-1397 |
| | | 1-10/9-4/3-16/9-14/9 |
| | | otonal |
| | | 28 |
| | |- |
| | | 10 |
| | | 0-201-798-1297-1397 |
| | | 1-7/4-7/6-7/5-14/9 |
| | | utonal |
| | | 28 |
| | |- |
| | | 11 |
| | | 0-101-201-300-1496 |
| | | 1-11/7-7/4-11/8-11/9 |
| | | werckismic |
| | | 30 |
| | |- |
| | | 12 |
| | | 0-101-300-899-1496 |
| | | 1-11/7-11/8-11/6-11/9 |
| | | utonal |
| | | 30 |
| | |- |
| | | 13 |
| | | 0-100-599-1198-1496 |
| | | 1-10/9-4/3-16/9-11/9 |
| | | otonal |
| | | 30 |
| | |- |
| | | 14 |
| | | 0-101-201-1297-1496 |
| | | 1-11/7-7/4-7/5-11/9 |
| | | werckismic |
| | | 30 |
| | |- |
| | | 15 |
| | | 0-101-300-1396-1496 |
| | | 1-11/7-11/8-11/10-11/9 |
| | | utonal |
| | | 30 |
| | |- |
| | | 16 |
| | | 0-101-899-1396-1496 |
| | | 1-11/7-11/6-11/10-11/9 |
| | | utonal |
| | | 30 |
| | |- |
| | | 17 |
| | | 0-300-899-1396-1496 |
| | | 1-11/8-11/6-11/10-11/9 |
| | | utonal |
| | | 30 |
| | |- |
| | | 18 |
| | | 0-101-1297-1396-1496 |
| | | 1-11/7-7/5-11/10-11/9 |
| | | werckismic |
| | | 30 |
| | |- |
| | | 19 |
| | | 0-100-201-1397-1496 |
| | | 1-10/9-7/4-14/9-11/9 |
| | | werckismic |
| | | 30 |
| | |- |
| | | 20 |
| | | 0-100-599-1397-1496 |
| | | 1-10/9-4/3-14/9-11/9 |
| | | otonal |
| | | 30 |
| | |- |
| | | 21 |
| | | 0-100-1198-1397-1496 |
| | | 1-10/9-16/9-14/9-11/9 |
| | | otonal |
| | | 30 |
| | |- |
| | | 22 |
| | | 0-599-1198-1397-1496 |
| | | 1-4/3-16/9-14/9-11/9 |
| | | otonal |
| | | 30 |
| | |- |
| | | 23 |
| | | 0-201-1297-1397-1496 |
| | | 1-7/4-7/5-14/9-11/9 |
| | | werckismic |
| | | 30 |
| | |- |
| | | 24 |
| | | 0-1198-1297-1397-1496 |
| | | 1-16/9-7/5-14/9-11/9 |
| | | werckismic |
| | | 30 |
| | |} |
|
| |
|
| <table class="wiki_table">
| | == Hexads == |
| <tr>
| |
| <td>Number<br />
| |
| </td>
| |
| <td>Chord<br />
| |
| </td>
| |
| <td>Transversal<br />
| |
| </td>
| |
| <td>Type<br />
| |
| </td>
| |
| <td>Complexity<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>0-100-201<br />
| |
| </td>
| |
| <td>1-10/9-7/4<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>4<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>0-101-201<br />
| |
| </td>
| |
| <td>1-11/7-7/4<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>4<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>0-101-300<br />
| |
| </td>
| |
| <td>1-11/7-11/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>6<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>0-201-300<br />
| |
| </td>
| |
| <td>1-7/4-11/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>6<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>0-201-499<br />
| |
| </td>
| |
| <td>1-7/4-6/5<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| <td>10<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>0-300-499<br />
| |
| </td>
| |
| <td>1-11/8-6/5<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| <td>10<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>0-100-599<br />
| |
| </td>
| |
| <td>1-10/9-4/3<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>12<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>0-499-599<br />
| |
| </td>
| |
| <td>1-6/5-4/3<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>12<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>0-201-798<br />
| |
| </td>
| |
| <td>1-7/4-7/6<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>16<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10<br />
| |
| </td>
| |
| <td>0-599-798<br />
| |
| </td>
| |
| <td>1-4/3-7/6<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>16<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11<br />
| |
| </td>
| |
| <td>0-101-899<br />
| |
| </td>
| |
| <td>1-11/7-11/6<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>18<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12<br />
| |
| </td>
| |
| <td>0-300-899<br />
| |
| </td>
| |
| <td>1-11/8-11/6<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>18<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13<br />
| |
| </td>
| |
| <td>0-599-899<br />
| |
| </td>
| |
| <td>1-4/3-11/6<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>18<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14<br />
| |
| </td>
| |
| <td>0-798-899<br />
| |
| </td>
| |
| <td>1-7/6-11/6<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>18<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>15<br />
| |
| </td>
| |
| <td>0-201-1098<br />
| |
| </td>
| |
| <td>1-7/4-8/5<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>16<br />
| |
| </td>
| |
| <td>0-300-1098<br />
| |
| </td>
| |
| <td>1-11/8-8/5<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17<br />
| |
| </td>
| |
| <td>0-499-1098<br />
| |
| </td>
| |
| <td>1-6/5-8/5<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18<br />
| |
| </td>
| |
| <td>0-599-1098<br />
| |
| </td>
| |
| <td>1-4/3-8/5<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>19<br />
| |
| </td>
| |
| <td>0-798-1098<br />
| |
| </td>
| |
| <td>1-7/6-8/5<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20<br />
| |
| </td>
| |
| <td>0-899-1098<br />
| |
| </td>
| |
| <td>1-11/6-8/5<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>21<br />
| |
| </td>
| |
| <td>0-100-1198<br />
| |
| </td>
| |
| <td>1-10/9-16/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>22<br />
| |
| </td>
| |
| <td>0-599-1198<br />
| |
| </td>
| |
| <td>1-4/3-16/9<br />
| |
| </td>
| |
| <td>ambitonal<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>23<br />
| |
| </td>
| |
| <td>0-1098-1198<br />
| |
| </td>
| |
| <td>1-8/5-16/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>24<br />
| |
| </td>
| |
| <td>0-101-1297<br />
| |
| </td>
| |
| <td>1-11/7-7/5<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>26<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>25<br />
| |
| </td>
| |
| <td>0-201-1297<br />
| |
| </td>
| |
| <td>1-7/4-7/5<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>26<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>26<br />
| |
| </td>
| |
| <td>0-499-1297<br />
| |
| </td>
| |
| <td>1-6/5-7/5<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>26<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>27<br />
| |
| </td>
| |
| <td>0-798-1297<br />
| |
| </td>
| |
| <td>1-7/6-7/5<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>26<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>28<br />
| |
| </td>
| |
| <td>0-1098-1297<br />
| |
| </td>
| |
| <td>1-8/5-7/5<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>26<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>29<br />
| |
| </td>
| |
| <td>0-1198-1297<br />
| |
| </td>
| |
| <td>1-16/9-7/5<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>26<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>30<br />
| |
| </td>
| |
| <td>0-101-1396<br />
| |
| </td>
| |
| <td>1-11/7-11/10<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>31<br />
| |
| </td>
| |
| <td>0-300-1396<br />
| |
| </td>
| |
| <td>1-11/8-11/10<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>32<br />
| |
| </td>
| |
| <td>0-499-1396<br />
| |
| </td>
| |
| <td>1-6/5-11/10<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>33<br />
| |
| </td>
| |
| <td>0-899-1396<br />
| |
| </td>
| |
| <td>1-11/6-11/10<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>34<br />
| |
| </td>
| |
| <td>0-1098-1396<br />
| |
| </td>
| |
| <td>1-8/5-11/10<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>35<br />
| |
| </td>
| |
| <td>0-1297-1396<br />
| |
| </td>
| |
| <td>1-7/5-11/10<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>36<br />
| |
| </td>
| |
| <td>0-100-1397<br />
| |
| </td>
| |
| <td>1-10/9-14/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>37<br />
| |
| </td>
| |
| <td>0-201-1397<br />
| |
| </td>
| |
| <td>1-7/4-14/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>38<br />
| |
| </td>
| |
| <td>0-599-1397<br />
| |
| </td>
| |
| <td>1-4/3-14/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>39<br />
| |
| </td>
| |
| <td>0-798-1397<br />
| |
| </td>
| |
| <td>1-7/6-14/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>40<br />
| |
| </td>
| |
| <td>0-1198-1397<br />
| |
| </td>
| |
| <td>1-16/9-14/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>41<br />
| |
| </td>
| |
| <td>0-1297-1397<br />
| |
| </td>
| |
| <td>1-7/5-14/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>42<br />
| |
| </td>
| |
| <td>0-100-1496<br />
| |
| </td>
| |
| <td>1-10/9-11/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>43<br />
| |
| </td>
| |
| <td>0-101-1496<br />
| |
| </td>
| |
| <td>1-11/7-11/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>44<br />
| |
| </td>
| |
| <td>0-201-1496<br />
| |
| </td>
| |
| <td>1-7/4-11/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>45<br />
| |
| </td>
| |
| <td>0-300-1496<br />
| |
| </td>
| |
| <td>1-11/8-11/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>46<br />
| |
| </td>
| |
| <td>0-599-1496<br />
| |
| </td>
| |
| <td>1-4/3-11/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>47<br />
| |
| </td>
| |
| <td>0-899-1496<br />
| |
| </td>
| |
| <td>1-11/6-11/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>48<br />
| |
| </td>
| |
| <td>0-1198-1496<br />
| |
| </td>
| |
| <td>1-16/9-11/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>49<br />
| |
| </td>
| |
| <td>0-1297-1496<br />
| |
| </td>
| |
| <td>1-7/5-11/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>50<br />
| |
| </td>
| |
| <td>0-1396-1496<br />
| |
| </td>
| |
| <td>1-11/10-11/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>51<br />
| |
| </td>
| |
| <td>0-1397-1496<br />
| |
| </td>
| |
| <td>1-14/9-11/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| <br />
| | {| class="wikitable" |
| <!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Tetrads"></a><!-- ws:end:WikiTextHeadingRule:2 -->Tetrads</h1>
| | |- |
| | ! Number |
| | ! Chord |
| | ! Transversal |
| | ! Type |
| | ! Complexity |
| | |- |
| | | 1 |
| | | 0-101-300-899-1396-1496 |
| | | 1-11/7-11/8-11/6-11/10-11/9 |
| | | utonal |
| | | 30 |
| | |- |
| | | 2 |
| | | 0-100-599-1198-1397-1496 |
| | | 1-10/9-4/3-16/9-14/9-11/9 |
| | | otonal |
| | | 30 |
| | |} |
|
| |
|
| | | [[Category:Lists of chords]] |
| <table class="wiki_table">
| | [[Category:Unidec]] |
| <tr>
| | [[Category:Triads]] |
| <td>Number<br />
| | [[Category:Tetrads]] |
| </td>
| | [[Category:Pentads]] |
| <td>Chord<br />
| | [[Category:Hexads]] |
| </td>
| |
| <td>Transversal<br />
| |
| </td>
| |
| <td>Type<br />
| |
| </td>
| |
| <td>Complexity<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>0-101-201-300<br />
| |
| </td>
| |
| <td>1-11/7-7/4-11/8<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>6<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>0-201-300-499<br />
| |
| </td>
| |
| <td>1-7/4-11/8-6/5<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| <td>10<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>0-101-300-899<br />
| |
| </td>
| |
| <td>1-11/7-11/8-11/6<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>18<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>0-599-798-899<br />
| |
| </td>
| |
| <td>1-4/3-7/6-11/6<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>18<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>0-201-300-1098<br />
| |
| </td>
| |
| <td>1-7/4-11/8-8/5<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>0-201-499-1098<br />
| |
| </td>
| |
| <td>1-7/4-6/5-8/5<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>0-300-499-1098<br />
| |
| </td>
| |
| <td>1-11/8-6/5-8/5<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>0-499-599-1098<br />
| |
| </td>
| |
| <td>1-6/5-4/3-8/5<br />
| |
| </td>
| |
| <td>ambitonal<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>0-201-798-1098<br />
| |
| </td>
| |
| <td>1-7/4-7/6-8/5<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10<br />
| |
| </td>
| |
| <td>0-599-798-1098<br />
| |
| </td>
| |
| <td>1-4/3-7/6-8/5<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11<br />
| |
| </td>
| |
| <td>0-300-899-1098<br />
| |
| </td>
| |
| <td>1-11/8-11/6-8/5<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12<br />
| |
| </td>
| |
| <td>0-599-899-1098<br />
| |
| </td>
| |
| <td>1-4/3-11/6-8/5<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13<br />
| |
| </td>
| |
| <td>0-798-899-1098<br />
| |
| </td>
| |
| <td>1-7/6-11/6-8/5<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14<br />
| |
| </td>
| |
| <td>0-100-599-1198<br />
| |
| </td>
| |
| <td>1-10/9-4/3-16/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>15<br />
| |
| </td>
| |
| <td>0-599-1098-1198<br />
| |
| </td>
| |
| <td>1-4/3-8/5-16/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>16<br />
| |
| </td>
| |
| <td>0-101-201-1297<br />
| |
| </td>
| |
| <td>1-11/7-7/4-7/5<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>26<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17<br />
| |
| </td>
| |
| <td>0-201-499-1297<br />
| |
| </td>
| |
| <td>1-7/4-6/5-7/5<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| <td>26<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18<br />
| |
| </td>
| |
| <td>0-201-798-1297<br />
| |
| </td>
| |
| <td>1-7/4-7/6-7/5<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>26<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>19<br />
| |
| </td>
| |
| <td>0-201-1098-1297<br />
| |
| </td>
| |
| <td>1-7/4-8/5-7/5<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| <td>26<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20<br />
| |
| </td>
| |
| <td>0-499-1098-1297<br />
| |
| </td>
| |
| <td>1-6/5-8/5-7/5<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>26<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>21<br />
| |
| </td>
| |
| <td>0-798-1098-1297<br />
| |
| </td>
| |
| <td>1-7/6-8/5-7/5<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| <td>26<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>22<br />
| |
| </td>
| |
| <td>0-1098-1198-1297<br />
| |
| </td>
| |
| <td>1-8/5-16/9-7/5<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>26<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>23<br />
| |
| </td>
| |
| <td>0-101-300-1396<br />
| |
| </td>
| |
| <td>1-11/7-11/8-11/10<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>24<br />
| |
| </td>
| |
| <td>0-300-499-1396<br />
| |
| </td>
| |
| <td>1-11/8-6/5-11/10<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>25<br />
| |
| </td>
| |
| <td>0-101-899-1396<br />
| |
| </td>
| |
| <td>1-11/7-11/6-11/10<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>26<br />
| |
| </td>
| |
| <td>0-300-899-1396<br />
| |
| </td>
| |
| <td>1-11/8-11/6-11/10<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>27<br />
| |
| </td>
| |
| <td>0-300-1098-1396<br />
| |
| </td>
| |
| <td>1-11/8-8/5-11/10<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>28<br />
| |
| </td>
| |
| <td>0-499-1098-1396<br />
| |
| </td>
| |
| <td>1-6/5-8/5-11/10<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>29<br />
| |
| </td>
| |
| <td>0-899-1098-1396<br />
| |
| </td>
| |
| <td>1-11/6-8/5-11/10<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>30<br />
| |
| </td>
| |
| <td>0-101-1297-1396<br />
| |
| </td>
| |
| <td>1-11/7-7/5-11/10<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>31<br />
| |
| </td>
| |
| <td>0-499-1297-1396<br />
| |
| </td>
| |
| <td>1-6/5-7/5-11/10<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>32<br />
| |
| </td>
| |
| <td>0-1098-1297-1396<br />
| |
| </td>
| |
| <td>1-8/5-7/5-11/10<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>33<br />
| |
| </td>
| |
| <td>0-100-201-1397<br />
| |
| </td>
| |
| <td>1-10/9-7/4-14/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>34<br />
| |
| </td>
| |
| <td>0-100-599-1397<br />
| |
| </td>
| |
| <td>1-10/9-4/3-14/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>35<br />
| |
| </td>
| |
| <td>0-201-798-1397<br />
| |
| </td>
| |
| <td>1-7/4-7/6-14/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>36<br />
| |
| </td>
| |
| <td>0-599-798-1397<br />
| |
| </td>
| |
| <td>1-4/3-7/6-14/9<br />
| |
| </td>
| |
| <td>ambitonal<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>37<br />
| |
| </td>
| |
| <td>0-100-1198-1397<br />
| |
| </td>
| |
| <td>1-10/9-16/9-14/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>38<br />
| |
| </td>
| |
| <td>0-599-1198-1397<br />
| |
| </td>
| |
| <td>1-4/3-16/9-14/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>39<br />
| |
| </td>
| |
| <td>0-201-1297-1397<br />
| |
| </td>
| |
| <td>1-7/4-7/5-14/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>40<br />
| |
| </td>
| |
| <td>0-798-1297-1397<br />
| |
| </td>
| |
| <td>1-7/6-7/5-14/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>41<br />
| |
| </td>
| |
| <td>0-1198-1297-1397<br />
| |
| </td>
| |
| <td>1-16/9-7/5-14/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>42<br />
| |
| </td>
| |
| <td>0-100-201-1496<br />
| |
| </td>
| |
| <td>1-10/9-7/4-11/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>43<br />
| |
| </td>
| |
| <td>0-101-201-1496<br />
| |
| </td>
| |
| <td>1-11/7-7/4-11/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>44<br />
| |
| </td>
| |
| <td>0-101-300-1496<br />
| |
| </td>
| |
| <td>1-11/7-11/8-11/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>45<br />
| |
| </td>
| |
| <td>0-201-300-1496<br />
| |
| </td>
| |
| <td>1-7/4-11/8-11/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>46<br />
| |
| </td>
| |
| <td>0-100-599-1496<br />
| |
| </td>
| |
| <td>1-10/9-4/3-11/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>47<br />
| |
| </td>
| |
| <td>0-101-899-1496<br />
| |
| </td>
| |
| <td>1-11/7-11/6-11/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>48<br />
| |
| </td>
| |
| <td>0-300-899-1496<br />
| |
| </td>
| |
| <td>1-11/8-11/6-11/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>49<br />
| |
| </td>
| |
| <td>0-599-899-1496<br />
| |
| </td>
| |
| <td>1-4/3-11/6-11/9<br />
| |
| </td>
| |
| <td>ambitonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>50<br />
| |
| </td>
| |
| <td>0-100-1198-1496<br />
| |
| </td>
| |
| <td>1-10/9-16/9-11/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>51<br />
| |
| </td>
| |
| <td>0-599-1198-1496<br />
| |
| </td>
| |
| <td>1-4/3-16/9-11/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>52<br />
| |
| </td>
| |
| <td>0-101-1297-1496<br />
| |
| </td>
| |
| <td>1-11/7-7/5-11/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>53<br />
| |
| </td>
| |
| <td>0-201-1297-1496<br />
| |
| </td>
| |
| <td>1-7/4-7/5-11/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>54<br />
| |
| </td>
| |
| <td>0-1198-1297-1496<br />
| |
| </td>
| |
| <td>1-16/9-7/5-11/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>55<br />
| |
| </td>
| |
| <td>0-101-1396-1496<br />
| |
| </td>
| |
| <td>1-11/7-11/10-11/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>56<br />
| |
| </td>
| |
| <td>0-300-1396-1496<br />
| |
| </td>
| |
| <td>1-11/8-11/10-11/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>57<br />
| |
| </td>
| |
| <td>0-899-1396-1496<br />
| |
| </td>
| |
| <td>1-11/6-11/10-11/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>58<br />
| |
| </td>
| |
| <td>0-1297-1396-1496<br />
| |
| </td>
| |
| <td>1-7/5-11/10-11/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>59<br />
| |
| </td>
| |
| <td>0-100-1397-1496<br />
| |
| </td>
| |
| <td>1-10/9-14/9-11/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>60<br />
| |
| </td>
| |
| <td>0-201-1397-1496<br />
| |
| </td>
| |
| <td>1-7/4-14/9-11/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>61<br />
| |
| </td>
| |
| <td>0-599-1397-1496<br />
| |
| </td>
| |
| <td>1-4/3-14/9-11/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>62<br />
| |
| </td>
| |
| <td>0-1198-1397-1496<br />
| |
| </td>
| |
| <td>1-16/9-14/9-11/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>63<br />
| |
| </td>
| |
| <td>0-1297-1397-1496<br />
| |
| </td>
| |
| <td>1-7/5-14/9-11/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| | |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Pentads"></a><!-- ws:end:WikiTextHeadingRule:4 -->Pentads</h1>
| |
| | |
| | |
| <table class="wiki_table">
| |
| <tr>
| |
| <td>Number<br />
| |
| </td>
| |
| <td>Chord<br />
| |
| </td>
| |
| <td>Transversal<br />
| |
| </td>
| |
| <td>Type<br />
| |
| </td>
| |
| <td>Complexity<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>0-201-300-499-1098<br />
| |
| </td>
| |
| <td>1-7/4-11/8-6/5-8/5<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>0-599-798-899-1098<br />
| |
| </td>
| |
| <td>1-4/3-7/6-11/6-8/5<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>0-201-499-1098-1297<br />
| |
| </td>
| |
| <td>1-7/4-6/5-8/5-7/5<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| <td>26<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>0-201-798-1098-1297<br />
| |
| </td>
| |
| <td>1-7/4-7/6-8/5-7/5<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| <td>26<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>0-101-300-899-1396<br />
| |
| </td>
| |
| <td>1-11/7-11/8-11/6-11/10<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>0-300-499-1098-1396<br />
| |
| </td>
| |
| <td>1-11/8-6/5-8/5-11/10<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>0-300-899-1098-1396<br />
| |
| </td>
| |
| <td>1-11/8-11/6-8/5-11/10<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>0-499-1098-1297-1396<br />
| |
| </td>
| |
| <td>1-6/5-8/5-7/5-11/10<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>0-100-599-1198-1397<br />
| |
| </td>
| |
| <td>1-10/9-4/3-16/9-14/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10<br />
| |
| </td>
| |
| <td>0-201-798-1297-1397<br />
| |
| </td>
| |
| <td>1-7/4-7/6-7/5-14/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11<br />
| |
| </td>
| |
| <td>0-101-201-300-1496<br />
| |
| </td>
| |
| <td>1-11/7-7/4-11/8-11/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12<br />
| |
| </td>
| |
| <td>0-101-300-899-1496<br />
| |
| </td>
| |
| <td>1-11/7-11/8-11/6-11/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13<br />
| |
| </td>
| |
| <td>0-100-599-1198-1496<br />
| |
| </td>
| |
| <td>1-10/9-4/3-16/9-11/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14<br />
| |
| </td>
| |
| <td>0-101-201-1297-1496<br />
| |
| </td>
| |
| <td>1-11/7-7/4-7/5-11/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>15<br />
| |
| </td>
| |
| <td>0-101-300-1396-1496<br />
| |
| </td>
| |
| <td>1-11/7-11/8-11/10-11/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>16<br />
| |
| </td>
| |
| <td>0-101-899-1396-1496<br />
| |
| </td>
| |
| <td>1-11/7-11/6-11/10-11/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17<br />
| |
| </td>
| |
| <td>0-300-899-1396-1496<br />
| |
| </td>
| |
| <td>1-11/8-11/6-11/10-11/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18<br />
| |
| </td>
| |
| <td>0-101-1297-1396-1496<br />
| |
| </td>
| |
| <td>1-11/7-7/5-11/10-11/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>19<br />
| |
| </td>
| |
| <td>0-100-201-1397-1496<br />
| |
| </td>
| |
| <td>1-10/9-7/4-14/9-11/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20<br />
| |
| </td>
| |
| <td>0-100-599-1397-1496<br />
| |
| </td>
| |
| <td>1-10/9-4/3-14/9-11/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>21<br />
| |
| </td>
| |
| <td>0-100-1198-1397-1496<br />
| |
| </td>
| |
| <td>1-10/9-16/9-14/9-11/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>22<br />
| |
| </td>
| |
| <td>0-599-1198-1397-1496<br />
| |
| </td>
| |
| <td>1-4/3-16/9-14/9-11/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>23<br />
| |
| </td>
| |
| <td>0-201-1297-1397-1496<br />
| |
| </td>
| |
| <td>1-7/4-7/5-14/9-11/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>24<br />
| |
| </td>
| |
| <td>0-1198-1297-1397-1496<br />
| |
| </td>
| |
| <td>1-16/9-7/5-14/9-11/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| | |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Hexads"></a><!-- ws:end:WikiTextHeadingRule:6 -->Hexads</h1>
| |
| | |
| | |
| <table class="wiki_table">
| |
| <tr>
| |
| <td>Number<br />
| |
| </td>
| |
| <td>Chord<br />
| |
| </td>
| |
| <td>Transversal<br />
| |
| </td>
| |
| <td>Type<br />
| |
| </td>
| |
| <td>Complexity<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>0-101-300-899-1396-1496<br />
| |
| </td>
| |
| <td>1-11/7-11/8-11/6-11/10-11/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>0-100-599-1198-1397-1496<br />
| |
| </td>
| |
| <td>1-10/9-4/3-16/9-14/9-11/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| | |
| </body></html></pre></div>
| |