Chords of meanpop: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 288830279 - Original comment: **
 
mNo edit summary
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
Below are listed the [[Dyadic_chord|dyadic chords]] of 11-limit [[Meantone_family#Meanpop|meanpop temperament]]. Meanpop is one of the two extensions of septimal meantone, which itself is the main extension of 5-limit meantone; this is the temperament tempering out 81/80, 126/125 and 385/384. Typing the chords requires consideration of the fact that meanpop conflates 9/8 and 10/9; if a transversal can be found which shows the chord to be essentially just, that transversal is listed along with a typing as otonal, utonal, or ambitonal. If the chord is essentially tempered, it is analyzed in terms of the transversal which employs 9/8 and 16/9.
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-12-30 11:12:37 UTC</tt>.<br>
: The original revision id was <tt>288830279</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Below are listed the [[Dyadic chord|dyadic chords]] of 11-limit [[Meantone+family#Septimal meantone-Meanpop|meanpop temperament]]. Meanpop is one of the two extensions of septimal meantone, which itself is the main extension of 5-limit meantone; this is the temperament tempering out 81/80, 126/125 and 385/384. Typing the chords requires consideration of the fact that meanpop conflates 9/8 and 10/9; if a transversal can be found which shows the chord to be essentially just, that transversal is listed along with a typing as otonal, utonal, or ambitonal. If the chord is essentially tempered, it is analyzed in terms of the transversal which employs 9/8 and 16/9.


Chords requiring tempering only by 81/80 are labeled didymic, by 126/125 starling, by 225/224 marvel, by 385/384 keenanismic and by 540/539 swetismic. Chords which require any two of 81/80, 126/125 or 225/224 are labeled erato, and any two of 225/224, 385/384 or 540/539 unimarv. A chord requiring both of 81/80  and 540/539 is labeled terpsichore, and a chord requiring any three independent commas from those discussed above is labeled meanpop.
Chords requiring tempering only by 81/80 are labeled didymic, by 126/125 starling, by 225/224 marvel, by 385/384 keenanismic and by 540/539 swetismic. Chords which require any two of 81/80, 126/125 or 225/224 are labeled erato, and any two of 225/224, 385/384 or 540/539 unimarv (undecimal marvel). A chord requiring both of 81/80  and 540/539 is labeled terpsichore, and a chord requiring any three independent commas from those discussed above is labeled meanpop.


Meanpop has MOS of size 5, 7, 12, 19, 31, 50 and 81. While 5-limit meantone has been thoroughly explored, the same is not true of meanpop. The 19 note MOS would seem to be a good place to start such explorations.
Meanpop has MOS of size 5, 7, 12, 19, 31, 50 and 81. While 5-limit meantone has been thoroughly explored, the same is not true of meanpop. The 19 note MOS would seem to be a good place to start such explorations.


=Triads=
=Triads=
|| Number || Chord || Transversal || Type ||


|| 1 || 0-1-2 || 1-3/2-9/8 || ambitonal ||
{| class="wikitable"
|| 2 || 0-1-3 || 1-3/2-5/3 || otonal ||
|-
|| 3 || 0-2-3 || 1-10/9-5/3 || utonal ||
| | Number
|| 4 || 0-1-4 || 1-3/2-5/4 || otonal ||
| | Chord
|| 5 || 0-2-4 || 1-9/8-5/4 || otonal ||
| | Transversal
|| 6 || 0-3-4 || 1-5/3-5/4 || utonal ||
| | Type
|| 7 || 0-2-6 || 1-9/8-7/5 || marvel ||
|-
|| 8 || 0-3-6 || 1-5/3-7/5 || starling ||
| | 1
|| 9 || 0-4-6 || 1-5/4-7/5 || marvel ||
| | 0-1-2
|| 10 || 0-2-8 || 1-10/9-14/9 || otonal ||
| | 1-3/2-9/8
|| 11 || 0-4-8 || 1-5/4-14/9 || marvel ||
| | ambitonal
|| 12 || 0-6-8 || 1-7/5-14/9 || utonal ||
|-
|| 13 || 0-1-9 || 1-3/2-7/6 || otonal ||
| | 2
|| 14 || 0-3-9 || 1-5/3-7/6 || otonal ||
| | 0-1-3
|| 15 || 0-6-9 || 1-7/5-7/6 || utonal ||
| | 1-3/2-5/3
|| 16 || 0-8-9 || 1-14/9-7/6 || utonal ||
| | otonal
|| 17 || 0-1-10 || 1-3/2-7/4 || otonal ||
|-
|| 18 || 0-2-10 || 1-9/8-7/4 || otonal ||
| | 3
|| 19 || 0-4-10 || 1-5/4-7/4 || otonal ||
| | 0-2-3
|| 20 || 0-6-10 || 1-7/5-7/4 || utonal ||
| | 1-10/9-5/3
|| 21 || 0-8-10 || 1-14/9-7/4 || utonal ||
| | utonal
|| 22 || 0-9-10 || 1-7/6-7/4 || utonal ||
|-
|| 23 || 0-3-13 || 1-5/3-16/11 || keenanismic ||
| | 4
|| 24 || 0-4-13 || 1-5/4-16/11 || keenanismic ||
| | 0-1-4
|| 25 || 0-9-13 || 1-7/6-16/11 || keenanismic ||
| | 1-3/2-5/4
|| 26 || 0-10-13 || 1-7/4-16/11 || keenanismic ||
| | otonal
|| 27 || 0-1-14 || 1-3/2-12/11 || utonal ||
|-
|| 28 || 0-4-14 || 1-5/4-12/11 || keenanismic ||
| | 5
|| 29 || 0-6-14 || 1-7/5-12/11 || swetismic ||
| | 0-2-4
|| 30 || 0-8-14 || 1-14/9-12/11 || swetismic ||
| | 1-9/8-5/4
|| 31 || 0-10-14 || 1-7/4-12/11 || keenanismic ||
| | otonal
|| 32 || 0-13-14 || 1-16/11-12/11 || otonal ||
|-
|| 33 || 0-1-15 || 1-3/2-18/11 || utonal ||
| | 6
|| 34 || 0-2-15 || 1-9/8-18/11 || utonal ||
| | 0-3-4
|| 35 || 0-6-15 || 1-7/5-18/11 || swetismic ||
| | 1-5/3-5/4
|| 36 || 0-9-15 || 1-7/6-18/11 || swetismic ||
| | utonal
|| 37 || 0-13-15 || 1-16/11-18/11 || otonal ||
|-
|| 38 || 0-14-15 || 1-12/11-18/11 || otonal ||
| | 7
|| 39 || 0-2-17 || 1-10/9-20/11 || utonal ||
| | 0-2-6
|| 40 || 0-3-17 || 1-5/3-20/11 || utonal ||
| | 1-9/8-7/5
|| 41 || 0-4-17 || 1-5/4-20/11 || utonal ||
| | marvel
|| 42 || 0-8-17 || 1-14/9-20/11 || swetismic ||
|-
|| 43 || 0-9-17 || 1-7/6-20/11 || swetismic ||
| | 8
|| 44 || 0-13-17 || 1-16/11-20/11 || otonal ||
| | 0-3-6
|| 45 || 0-14-17 || 1-12/11-20/11 || otonal ||
| | 1-5/3-7/5
|| 46 || 0-15-17 || 1-18/11-20/11 || otonal ||
| | starling
|| 47 || 0-6-23 || 1-7/5-14/11 || utonal ||
|-
|| 48 || 0-8-23 || 1-14/9-14/11 || utonal ||
| | 9
|| 49 || 0-9-23 || 1-7/6-14/11 || utonal ||
| | 0-4-6
|| 50 || 0-10-23 || 1-7/4-14/11 || utonal ||
| | 1-5/4-7/5
|| 51 || 0-13-23 || 1-16/11-14/11 || otonal ||
| | marvel
|| 52 || 0-14-23 || 1-12/11-14/11 || otonal ||
|-
|| 53 || 0-15-23 || 1-18/11-14/11 || otonal ||
| | 10
|| 54 || 0-17-23 || 1-20/11-14/11 || otonal ||
| | 0-2-8
| | 1-10/9-14/9
| | otonal
|-
| | 11
| | 0-4-8
| | 1-5/4-14/9
| | marvel
|-
| | 12
| | 0-6-8
| | 1-7/5-14/9
| | utonal
|-
| | 13
| | 0-1-9
| | 1-3/2-7/6
| | otonal
|-
| | 14
| | 0-3-9
| | 1-5/3-7/6
| | otonal
|-
| | 15
| | 0-6-9
| | 1-7/5-7/6
| | utonal
|-
| | 16
| | 0-8-9
| | 1-14/9-7/6
| | utonal
|-
| | 17
| | 0-1-10
| | 1-3/2-7/4
| | otonal
|-
| | 18
| | 0-2-10
| | 1-9/8-7/4
| | otonal
|-
| | 19
| | 0-4-10
| | 1-5/4-7/4
| | otonal
|-
| | 20
| | 0-6-10
| | 1-7/5-7/4
| | utonal
|-
| | 21
| | 0-8-10
| | 1-14/9-7/4
| | utonal
|-
| | 22
| | 0-9-10
| | 1-7/6-7/4
| | utonal
|-
| | 23
| | 0-3-13
| | 1-5/3-16/11
| | keenanismic
|-
| | 24
| | 0-4-13
| | 1-5/4-16/11
| | keenanismic
|-
| | 25
| | 0-9-13
| | 1-7/6-16/11
| | keenanismic
|-
| | 26
| | 0-10-13
| | 1-7/4-16/11
| | keenanismic
|-
| | 27
| | 0-1-14
| | 1-3/2-12/11
| | utonal
|-
| | 28
| | 0-4-14
| | 1-5/4-12/11
| | keenanismic
|-
| | 29
| | 0-6-14
| | 1-7/5-12/11
| | swetismic
|-
| | 30
| | 0-8-14
| | 1-14/9-12/11
| | swetismic
|-
| | 31
| | 0-10-14
| | 1-7/4-12/11
| | keenanismic
|-
| | 32
| | 0-13-14
| | 1-16/11-12/11
| | otonal
|-
| | 33
| | 0-1-15
| | 1-3/2-18/11
| | utonal
|-
| | 34
| | 0-2-15
| | 1-9/8-18/11
| | utonal
|-
| | 35
| | 0-6-15
| | 1-7/5-18/11
| | swetismic
|-
| | 36
| | 0-9-15
| | 1-7/6-18/11
| | swetismic
|-
| | 37
| | 0-13-15
| | 1-16/11-18/11
| | otonal
|-
| | 38
| | 0-14-15
| | 1-12/11-18/11
| | otonal
|-
| | 39
| | 0-2-17
| | 1-10/9-20/11
| | utonal
|-
| | 40
| | 0-3-17
| | 1-5/3-20/11
| | utonal
|-
| | 41
| | 0-4-17
| | 1-5/4-20/11
| | utonal
|-
| | 42
| | 0-8-17
| | 1-14/9-20/11
| | swetismic
|-
| | 43
| | 0-9-17
| | 1-7/6-20/11
| | swetismic
|-
| | 44
| | 0-13-17
| | 1-16/11-20/11
| | otonal
|-
| | 45
| | 0-14-17
| | 1-12/11-20/11
| | otonal
|-
| | 46
| | 0-15-17
| | 1-18/11-20/11
| | otonal
|-
| | 47
| | 0-6-23
| | 1-7/5-14/11
| | utonal
|-
| | 48
| | 0-8-23
| | 1-14/9-14/11
| | utonal
|-
| | 49
| | 0-9-23
| | 1-7/6-14/11
| | utonal
|-
| | 50
| | 0-10-23
| | 1-7/4-14/11
| | utonal
|-
| | 51
| | 0-13-23
| | 1-16/11-14/11
| | otonal
|-
| | 52
| | 0-14-23
| | 1-12/11-14/11
| | otonal
|-
| | 53
| | 0-15-23
| | 1-18/11-14/11
| | otonal
|-
| | 54
| | 0-17-23
| | 1-20/11-14/11
| | otonal
|}


=Tetrads=
=Tetrads=
|| Number || Chord || Transversal || Type ||
 
|| 1 || 0-1-2-3 || 1-3/2-9/8-5/3 || didymic ||
{| class="wikitable"
|| 2 || 0-1-2-4 || 1-3/2-9/8-5/4 || otonal ||
|-
|| 3 || 0-1-3-4 || 1-3/2-5/3-5/4 || ambitonal ||
| | Number
|| 4 || 0-2-3-4 || 1-10/9-5/3-5/4 || utonal ||
| | Chord
|| 5 || 0-2-3-6 || 1-9/8-5/3-7/5 || erato ||
| | Transversal
|| 6 || 0-2-4-6 || 1-9/8-5/4-7/5 || erato ||
| | Type
|| 7 || 0-3-4-6 || 1-5/3-5/4-7/5 || erato ||
|-
|| 8 || 0-2-4-8 || 1-9/8-5/4-14/9 || erato ||
| | 1
|| 9 || 0-2-6-8 || 1-9/8-7/5-14/9 || erato ||
| | 0-1-2-3
|| 10 || 0-4-6-8 || 1-5/4-7/5-14/9 || erato ||
| | 1-3/2-9/8-5/3
|| 11 || 0-1-3-9 || 1-3/2-5/3-7/6 || otonal ||
| | didymic
|| 12 || 0-3-6-9 || 1-5/3-7/5-7/6 || starling ||
|-
|| 13 || 0-6-8-9 || 1-7/5-14/9-7/6 || utonal ||
| | 2
|| 14 || 0-1-2-10 || 1-3/2-9/8-7/4 || otonal ||
| | 0-1-2-4
|| 15 || 0-1-4-10 || 1-3/2-5/4-7/4 || otonal ||
| | 1-3/2-9/8-5/4
|| 16 || 0-2-4-10 || 1-9/8-5/4-7/4 || otonal ||
| | otonal
|| 17 || 0-2-6-10 || 1-9/8-7/5-7/4 || marvel ||
|-
|| 18 || 0-4-6-10 || 1-5/4-7/5-7/4 || marvel ||
| | 3
|| 19 || 0-2-8-10 || 1-9/8-14/9-7/4 || didymic ||
| | 0-1-3-4
|| 20 || 0-4-8-10 || 1-5/4-14/9-7/4 || marvel ||
| | 1-3/2-5/3-5/4
|| 21 || 0-6-8-10 || 1-7/5-14/9-7/4 || utonal ||
| | ambitonal
|| 22 || 0-1-9-10 || 1-3/2-7/6-7/4 || ambitonal ||
|-
|| 23 || 0-6-9-10 || 1-7/5-7/6-7/4 || utonal ||
| | 4
|| 24 || 0-8-9-10 || 1-14/9-7/6-7/4 || utonal ||
| | 0-2-3-4
|| 25 || 0-3-4-13 || 1-5/3-5/4-16/11 || keenanismic ||
| | 1-10/9-5/3-5/4
|| 26 || 0-3-9-13 || 1-5/3-7/6-16/11 || keenanismic ||
| | utonal
|| 27 || 0-4-10-13 || 1-5/4-7/4-16/11 || keenanismic ||
|-
|| 28 || 0-9-10-13 || 1-7/6-7/4-16/11 || keenanismic ||
| | 5
|| 29 || 0-1-4-14 || 1-3/2-5/4-12/11 || keenanismic ||
| | 0-2-3-6
|| 30 || 0-4-6-14 || 1-5/4-7/5-12/11 || unimarv ||
| | 1-9/8-5/3-7/5
|| 31 || 0-4-8-14 || 1-5/4-14/9-12/11 || unimarv ||
| | erato
|| 32 || 0-6-8-14 || 1-7/5-14/9-12/11 || terpsichore ||
|-
|| 33 || 0-1-10-14 || 1-3/2-7/4-12/11 || keenanismic ||
| | 6
|| 34 || 0-4-10-14 || 1-5/4-7/4-12/11 || keenanismic ||
| | 0-2-4-6
|| 35 || 0-6-10-14 || 1-7/5-7/4-12/11 || unimarv ||
| | 1-9/8-5/4-7/5
|| 36 || 0-8-10-14 || 1-14/9-7/4-12/11 || unimarv ||
| | erato
|| 37 || 0-4-13-14 || 1-5/4-16/11-12/11 || keenanismic ||
|-
|| 38 || 0-10-13-14 || 1-7/4-16/11-12/11 || keenanismic ||
| | 7
|| 39 || 0-1-2-15 || 1-3/2-9/8-18/11 || utonal ||
| | 0-3-4-6
|| 40 || 0-2-6-15 || 1-9/8-7/5-18/11 || unimarv ||
| | 1-5/3-5/4-7/5
|| 41 || 0-1-9-15 || 1-3/2-7/6-18/11 || swetismic ||
| | erato
|| 42 || 0-6-9-15 || 1-7/5-7/6-18/11 || swetismic ||
|-
|| 43 || 0-9-13-15 || 1-7/6-16/11-18/11 || unimarv ||
| | 8
|| 44 || 0-1-14-15 || 1-3/2-12/11-18/11 || ambitonal ||
| | 0-2-4-8
|| 45 || 0-6-14-15 || 1-7/5-12/11-18/11 || swetismic ||
| | 1-9/8-5/4-14/9
|| 46 || 0-13-14-15 || 1-16/11-12/11-18/11 || otonal ||
| | erato
|| 47 || 0-2-3-17 || 1-10/9-5/3-20/11 || utonal ||
|-
|| 48 || 0-2-4-17 || 1-10/9-5/4-20/11 || utonal ||
| | 9
|| 49 || 0-3-4-17 || 1-5/3-5/4-20/11 || utonal ||
| | 0-2-6-8
|| 50 || 0-2-8-17 || 1-9/8-14/9-20/11 || terpsichore ||
| | 1-9/8-7/5-14/9
|| 51 || 0-4-8-17 || 1-5/4-14/9-20/11 || unimarv ||
| | erato
|| 52 || 0-3-9-17 || 1-5/3-7/6-20/11 || swetismic ||
|-
|| 53 || 0-8-9-17 || 1-14/9-7/6-20/11 || swetismic ||
| | 10
|| 54 || 0-3-13-17 || 1-5/3-16/11-20/11 || keenanismic ||
| | 0-4-6-8
|| 55 || 0-4-13-17 || 1-5/4-16/11-20/11 || keenanismic ||
| | 1-5/4-7/5-14/9
|| 56 || 0-9-13-17 || 1-7/6-16/11-20/11 || unimarv ||
| | erato
|| 57 || 0-4-14-17 || 1-5/4-12/11-20/11 || keenanismic ||
|-
|| 58 || 0-8-14-17 || 1-14/9-12/11-20/11 || swetismic ||
| | 11
|| 59 || 0-13-14-17 || 1-16/11-12/11-20/11 || otonal ||
| | 0-1-3-9
|| 60 || 0-2-15-17 || 1-9/8-18/11-20/11 || didymic ||
| | 1-3/2-5/3-7/6
|| 61 || 0-9-15-17 || 1-7/6-18/11-20/11 || terpsichore ||
| | otonal
|| 62 || 0-13-15-17 || 1-16/11-18/11-20/11 || otonal ||
|-
|| 63 || 0-14-15-17 || 1-12/11-18/11-20/11 || otonal ||
| | 12
|| 64 || 0-6-8-23 || 1-7/5-14/9-14/11 || utonal ||
| | 0-3-6-9
|| 65 || 0-6-9-23 || 1-7/5-7/6-14/11 || utonal ||
| | 1-5/3-7/5-7/6
|| 66 || 0-8-9-23 || 1-14/9-7/6-14/11 || utonal ||
| | starling
|| 67 || 0-6-10-23 || 1-7/5-7/4-14/11 || utonal ||
|-
|| 68 || 0-8-10-23 || 1-14/9-7/4-14/11 || utonal ||
| | 13
|| 69 || 0-9-10-23 || 1-7/6-7/4-14/11 || utonal ||
| | 0-6-8-9
|| 70 || 0-9-13-23 || 1-7/6-16/11-14/11 || keenanismic ||
| | 1-7/5-14/9-7/6
|| 71 || 0-10-13-23 || 1-7/4-16/11-14/11 || keenanismic ||
| | utonal
|| 72 || 0-6-14-23 || 1-7/5-12/11-14/11 || swetismic ||
|-
|| 73 || 0-8-14-23 || 1-14/9-12/11-14/11 || swetismic ||
| | 14
|| 74 || 0-10-14-23 || 1-7/4-12/11-14/11 || keenanismic ||
| | 0-1-2-10
|| 75 || 0-13-14-23 || 1-16/11-12/11-14/11 || otonal ||
| | 1-3/2-9/8-7/4
|| 76 || 0-6-15-23 || 1-7/5-18/11-14/11 || swetismic ||
| | otonal
|| 77 || 0-9-15-23 || 1-7/6-18/11-14/11 || swetismic ||
|-
|| 78 || 0-13-15-23 || 1-16/11-18/11-14/11 || otonal ||
| | 15
|| 79 || 0-14-15-23 || 1-12/11-18/11-14/11 || otonal ||
| | 0-1-4-10
|| 80 || 0-8-17-23 || 1-14/9-20/11-14/11 || swetismic ||
| | 1-3/2-5/4-7/4
|| 81 || 0-9-17-23 || 1-7/6-20/11-14/11 || swetismic ||
| | otonal
|| 82 || 0-13-17-23 || 1-16/11-20/11-14/11 || otonal ||
|-
|| 83 || 0-14-17-23 || 1-12/11-20/11-14/11 || otonal ||
| | 16
|| 84 || 0-15-17-23 || 1-18/11-20/11-14/11 || otonal ||
| | 0-2-4-10
| | 1-9/8-5/4-7/4
| | otonal
|-
| | 17
| | 0-2-6-10
| | 1-9/8-7/5-7/4
| | marvel
|-
| | 18
| | 0-4-6-10
| | 1-5/4-7/5-7/4
| | marvel
|-
| | 19
| | 0-2-8-10
| | 1-9/8-14/9-7/4
| | didymic
|-
| | 20
| | 0-4-8-10
| | 1-5/4-14/9-7/4
| | marvel
|-
| | 21
| | 0-6-8-10
| | 1-7/5-14/9-7/4
| | utonal
|-
| | 22
| | 0-1-9-10
| | 1-3/2-7/6-7/4
| | ambitonal
|-
| | 23
| | 0-6-9-10
| | 1-7/5-7/6-7/4
| | utonal
|-
| | 24
| | 0-8-9-10
| | 1-14/9-7/6-7/4
| | utonal
|-
| | 25
| | 0-3-4-13
| | 1-5/3-5/4-16/11
| | keenanismic
|-
| | 26
| | 0-3-9-13
| | 1-5/3-7/6-16/11
| | keenanismic
|-
| | 27
| | 0-4-10-13
| | 1-5/4-7/4-16/11
| | keenanismic
|-
| | 28
| | 0-9-10-13
| | 1-7/6-7/4-16/11
| | keenanismic
|-
| | 29
| | 0-1-4-14
| | 1-3/2-5/4-12/11
| | keenanismic
|-
| | 30
| | 0-4-6-14
| | 1-5/4-7/5-12/11
| | unimarv
|-
| | 31
| | 0-4-8-14
| | 1-5/4-14/9-12/11
| | unimarv
|-
| | 32
| | 0-6-8-14
| | 1-7/5-14/9-12/11
| | terpsichore
|-
| | 33
| | 0-1-10-14
| | 1-3/2-7/4-12/11
| | keenanismic
|-
| | 34
| | 0-4-10-14
| | 1-5/4-7/4-12/11
| | keenanismic
|-
| | 35
| | 0-6-10-14
| | 1-7/5-7/4-12/11
| | unimarv
|-
| | 36
| | 0-8-10-14
| | 1-14/9-7/4-12/11
| | unimarv
|-
| | 37
| | 0-4-13-14
| | 1-5/4-16/11-12/11
| | keenanismic
|-
| | 38
| | 0-10-13-14
| | 1-7/4-16/11-12/11
| | keenanismic
|-
| | 39
| | 0-1-2-15
| | 1-3/2-9/8-18/11
| | utonal
|-
| | 40
| | 0-2-6-15
| | 1-9/8-7/5-18/11
| | unimarv
|-
| | 41
| | 0-1-9-15
| | 1-3/2-7/6-18/11
| | swetismic
|-
| | 42
| | 0-6-9-15
| | 1-7/5-7/6-18/11
| | swetismic
|-
| | 43
| | 0-9-13-15
| | 1-7/6-16/11-18/11
| | unimarv
|-
| | 44
| | 0-1-14-15
| | 1-3/2-12/11-18/11
| | ambitonal
|-
| | 45
| | 0-6-14-15
| | 1-7/5-12/11-18/11
| | swetismic
|-
| | 46
| | 0-13-14-15
| | 1-16/11-12/11-18/11
| | otonal
|-
| | 47
| | 0-2-3-17
| | 1-10/9-5/3-20/11
| | utonal
|-
| | 48
| | 0-2-4-17
| | 1-10/9-5/4-20/11
| | utonal
|-
| | 49
| | 0-3-4-17
| | 1-5/3-5/4-20/11
| | utonal
|-
| | 50
| | 0-2-8-17
| | 1-9/8-14/9-20/11
| | terpsichore
|-
| | 51
| | 0-4-8-17
| | 1-5/4-14/9-20/11
| | unimarv
|-
| | 52
| | 0-3-9-17
| | 1-5/3-7/6-20/11
| | swetismic
|-
| | 53
| | 0-8-9-17
| | 1-14/9-7/6-20/11
| | swetismic
|-
| | 54
| | 0-3-13-17
| | 1-5/3-16/11-20/11
| | keenanismic
|-
| | 55
| | 0-4-13-17
| | 1-5/4-16/11-20/11
| | keenanismic
|-
| | 56
| | 0-9-13-17
| | 1-7/6-16/11-20/11
| | unimarv
|-
| | 57
| | 0-4-14-17
| | 1-5/4-12/11-20/11
| | keenanismic
|-
| | 58
| | 0-8-14-17
| | 1-14/9-12/11-20/11
| | swetismic
|-
| | 59
| | 0-13-14-17
| | 1-16/11-12/11-20/11
| | otonal
|-
| | 60
| | 0-2-15-17
| | 1-9/8-18/11-20/11
| | didymic
|-
| | 61
| | 0-9-15-17
| | 1-7/6-18/11-20/11
| | terpsichore
|-
| | 62
| | 0-13-15-17
| | 1-16/11-18/11-20/11
| | otonal
|-
| | 63
| | 0-14-15-17
| | 1-12/11-18/11-20/11
| | otonal
|-
| | 64
| | 0-6-8-23
| | 1-7/5-14/9-14/11
| | utonal
|-
| | 65
| | 0-6-9-23
| | 1-7/5-7/6-14/11
| | utonal
|-
| | 66
| | 0-8-9-23
| | 1-14/9-7/6-14/11
| | utonal
|-
| | 67
| | 0-6-10-23
| | 1-7/5-7/4-14/11
| | utonal
|-
| | 68
| | 0-8-10-23
| | 1-14/9-7/4-14/11
| | utonal
|-
| | 69
| | 0-9-10-23
| | 1-7/6-7/4-14/11
| | utonal
|-
| | 70
| | 0-9-13-23
| | 1-7/6-16/11-14/11
| | keenanismic
|-
| | 71
| | 0-10-13-23
| | 1-7/4-16/11-14/11
| | keenanismic
|-
| | 72
| | 0-6-14-23
| | 1-7/5-12/11-14/11
| | swetismic
|-
| | 73
| | 0-8-14-23
| | 1-14/9-12/11-14/11
| | swetismic
|-
| | 74
| | 0-10-14-23
| | 1-7/4-12/11-14/11
| | keenanismic
|-
| | 75
| | 0-13-14-23
| | 1-16/11-12/11-14/11
| | otonal
|-
| | 76
| | 0-6-15-23
| | 1-7/5-18/11-14/11
| | swetismic
|-
| | 77
| | 0-9-15-23
| | 1-7/6-18/11-14/11
| | swetismic
|-
| | 78
| | 0-13-15-23
| | 1-16/11-18/11-14/11
| | otonal
|-
| | 79
| | 0-14-15-23
| | 1-12/11-18/11-14/11
| | otonal
|-
| | 80
| | 0-8-17-23
| | 1-14/9-20/11-14/11
| | swetismic
|-
| | 81
| | 0-9-17-23
| | 1-7/6-20/11-14/11
| | swetismic
|-
| | 82
| | 0-13-17-23
| | 1-16/11-20/11-14/11
| | otonal
|-
| | 83
| | 0-14-17-23
| | 1-12/11-20/11-14/11
| | otonal
|-
| | 84
| | 0-15-17-23
| | 1-18/11-20/11-14/11
| | otonal
|}


=Pentads=
=Pentads=
|| Number || Chord || Transversal || Type ||
 
|| 1 || 0-1-2-3-4 || 1-3/2-9/8-5/3-5/4 || didymic ||
{| class="wikitable"
|| 2 || 0-2-3-4-6 || 1-9/8-5/3-5/4-7/5 || erato ||
|-
|| 3 || 0-2-4-6-8 || 1-9/8-5/4-7/5-14/9 || erato ||
| | Number
|| 4 || 0-1-2-4-10 || 1-3/2-9/8-5/4-7/4 || otonal ||
| | Chord
|| 5 || 0-2-4-6-10 || 1-9/8-5/4-7/5-7/4 || erato ||
| | Transversal
|| 6 || 0-2-4-8-10 || 1-9/8-5/4-14/9-7/4 || erato ||
| | Type
|| 7 || 0-2-6-8-10 || 1-9/8-7/5-14/9-7/4 || erato ||
|-
|| 8 || 0-4-6-8-10 || 1-5/4-7/5-14/9-7/4 || erato ||
| | 1
|| 9 || 0-6-8-9-10 || 1-7/5-14/9-7/6-7/4 || utonal ||
| | 0-1-2-3-4
|| 10 || 0-4-6-8-14 || 1-5/4-7/5-14/9-12/11 || meanpop ||
| | 1-3/2-9/8-5/3-5/4
|| 11 || 0-1-4-10-14 || 1-3/2-5/4-7/4-12/11 || keenanismic ||
| | didymic
|| 12 || 0-4-6-10-14 || 1-5/4-7/5-7/4-12/11 || unimarv ||
|-
|| 13 || 0-4-8-10-14 || 1-5/4-14/9-7/4-12/11 || unimarv ||
| | 2
|| 14 || 0-6-8-10-14 || 1-7/5-14/9-7/4-12/11 || meanpop ||
| | 0-2-3-4-6
|| 15 || 0-4-10-13-14 || 1-5/4-7/4-16/11-12/11 || keenanismic ||
| | 1-9/8-5/3-5/4-7/5
|| 16 || 0-2-3-4-17 || 1-10/9-5/3-5/4-20/11 || utonal ||
| | erato
|| 17 || 0-2-4-8-17 || 1-9/8-5/4-14/9-20/11 || meanpop ||
|-
|| 18 || 0-3-4-13-17 || 1-5/3-5/4-16/11-20/11 || keenanismic ||
| | 3
|| 19 || 0-3-9-13-17 || 1-5/3-7/6-16/11-20/11 || unimarv ||
| | 0-2-4-6-8
|| 20 || 0-4-8-14-17 || 1-5/4-14/9-12/11-20/11 || unimarv ||
| | 1-9/8-5/4-7/5-14/9
|| 21 || 0-4-13-14-17 || 1-5/4-16/11-12/11-20/11 || keenanismic ||
| | erato
|| 22 || 0-9-13-15-17 || 1-7/6-16/11-18/11-20/11 || meanpop ||
|-
|| 23 || 0-13-14-15-17 || 1-16/11-12/11-18/11-20/11 || otonal ||
| | 4
|| 24 || 0-6-8-9-23 || 1-7/5-14/9-7/6-14/11 || utonal ||
| | 0-1-2-4-10
|| 25 || 0-6-8-10-23 || 1-7/5-14/9-7/4-14/11 || utonal ||
| | 1-3/2-9/8-5/4-7/4
|| 26 || 0-6-9-10-23 || 1-7/5-7/6-7/4-14/11 || utonal ||
| | otonal
|| 27 || 0-8-9-10-23 || 1-14/9-7/6-7/4-14/11 || utonal ||
|-
|| 28 || 0-9-10-13-23 || 1-7/6-7/4-16/11-14/11 || keenanismic ||
| | 5
|| 29 || 0-6-8-14-23 || 1-7/5-14/9-12/11-14/11 || terpsichore ||
| | 0-2-4-6-10
|| 30 || 0-6-10-14-23 || 1-7/5-7/4-12/11-14/11 || unimarv ||
| | 1-9/8-5/4-7/5-7/4
|| 31 || 0-8-10-14-23 || 1-14/9-7/4-12/11-14/11 || unimarv ||
| | erato
|| 32 || 0-10-13-14-23 || 1-7/4-16/11-12/11-14/11 || keenanismic ||
|-
|| 33 || 0-6-9-15-23 || 1-7/5-7/6-18/11-14/11 || swetismic ||
| | 6
|| 34 || 0-9-13-15-23 || 1-7/6-16/11-18/11-14/11 || unimarv ||
| | 0-2-4-8-10
|| 35 || 0-6-14-15-23 || 1-7/5-12/11-18/11-14/11 || swetismic ||
| | 1-9/8-5/4-14/9-7/4
|| 36 || 0-13-14-15-23 || 1-16/11-12/11-18/11-14/11 || otonal ||
| | erato
|| 37 || 0-8-9-17-23 || 1-14/9-7/6-20/11-14/11 || swetismic ||
|-
|| 38 || 0-9-13-17-23 || 1-7/6-16/11-20/11-14/11 || unimarv ||
| | 7
|| 39 || 0-8-14-17-23 || 1-14/9-12/11-20/11-14/11 || swetismic ||
| | 0-2-6-8-10
|| 40 || 0-13-14-17-23 || 1-16/11-12/11-20/11-14/11 || otonal ||
| | 1-9/8-7/5-14/9-7/4
|| 41 || 0-9-15-17-23 || 1-7/6-18/11-20/11-14/11 || terpsichore ||
| | erato
|| 42 || 0-13-15-17-23 || 1-16/11-18/11-20/11-14/11 || otonal ||
|-
|| 43 || 0-14-15-17-23 || 1-12/11-18/11-20/11-14/11 || otonal ||
| | 8
| | 0-4-6-8-10
| | 1-5/4-7/5-14/9-7/4
| | erato
|-
| | 9
| | 0-6-8-9-10
| | 1-7/5-14/9-7/6-7/4
| | utonal
|-
| | 10
| | 0-4-6-8-14
| | 1-5/4-7/5-14/9-12/11
| | meanpop
|-
| | 11
| | 0-1-4-10-14
| | 1-3/2-5/4-7/4-12/11
| | keenanismic
|-
| | 12
| | 0-4-6-10-14
| | 1-5/4-7/5-7/4-12/11
| | unimarv
|-
| | 13
| | 0-4-8-10-14
| | 1-5/4-14/9-7/4-12/11
| | unimarv
|-
| | 14
| | 0-6-8-10-14
| | 1-7/5-14/9-7/4-12/11
| | meanpop
|-
| | 15
| | 0-4-10-13-14
| | 1-5/4-7/4-16/11-12/11
| | keenanismic
|-
| | 16
| | 0-2-3-4-17
| | 1-10/9-5/3-5/4-20/11
| | utonal
|-
| | 17
| | 0-2-4-8-17
| | 1-9/8-5/4-14/9-20/11
| | meanpop
|-
| | 18
| | 0-3-4-13-17
| | 1-5/3-5/4-16/11-20/11
| | keenanismic
|-
| | 19
| | 0-3-9-13-17
| | 1-5/3-7/6-16/11-20/11
| | unimarv
|-
| | 20
| | 0-4-8-14-17
| | 1-5/4-14/9-12/11-20/11
| | unimarv
|-
| | 21
| | 0-4-13-14-17
| | 1-5/4-16/11-12/11-20/11
| | keenanismic
|-
| | 22
| | 0-9-13-15-17
| | 1-7/6-16/11-18/11-20/11
| | meanpop
|-
| | 23
| | 0-13-14-15-17
| | 1-16/11-12/11-18/11-20/11
| | otonal
|-
| | 24
| | 0-6-8-9-23
| | 1-7/5-14/9-7/6-14/11
| | utonal
|-
| | 25
| | 0-6-8-10-23
| | 1-7/5-14/9-7/4-14/11
| | utonal
|-
| | 26
| | 0-6-9-10-23
| | 1-7/5-7/6-7/4-14/11
| | utonal
|-
| | 27
| | 0-8-9-10-23
| | 1-14/9-7/6-7/4-14/11
| | utonal
|-
| | 28
| | 0-9-10-13-23
| | 1-7/6-7/4-16/11-14/11
| | keenanismic
|-
| | 29
| | 0-6-8-14-23
| | 1-7/5-14/9-12/11-14/11
| | terpsichore
|-
| | 30
| | 0-6-10-14-23
| | 1-7/5-7/4-12/11-14/11
| | unimarv
|-
| | 31
| | 0-8-10-14-23
| | 1-14/9-7/4-12/11-14/11
| | unimarv
|-
| | 32
| | 0-10-13-14-23
| | 1-7/4-16/11-12/11-14/11
| | keenanismic
|-
| | 33
| | 0-6-9-15-23
| | 1-7/5-7/6-18/11-14/11
| | swetismic
|-
| | 34
| | 0-9-13-15-23
| | 1-7/6-16/11-18/11-14/11
| | unimarv
|-
| | 35
| | 0-6-14-15-23
| | 1-7/5-12/11-18/11-14/11
| | swetismic
|-
| | 36
| | 0-13-14-15-23
| | 1-16/11-12/11-18/11-14/11
| | otonal
|-
| | 37
| | 0-8-9-17-23
| | 1-14/9-7/6-20/11-14/11
| | swetismic
|-
| | 38
| | 0-9-13-17-23
| | 1-7/6-16/11-20/11-14/11
| | unimarv
|-
| | 39
| | 0-8-14-17-23
| | 1-14/9-12/11-20/11-14/11
| | swetismic
|-
| | 40
| | 0-13-14-17-23
| | 1-16/11-12/11-20/11-14/11
| | otonal
|-
| | 41
| | 0-9-15-17-23
| | 1-7/6-18/11-20/11-14/11
| | terpsichore
|-
| | 42
| | 0-13-15-17-23
| | 1-16/11-18/11-20/11-14/11
| | otonal
|-
| | 43
| | 0-14-15-17-23
| | 1-12/11-18/11-20/11-14/11
| | otonal
|}


=Hexads=
=Hexads=
|| Number || Chord || Transversal || Type ||
|| 1 || 0-2-4-6-8-10 || 1-9/8-5/4-7/5-14/9-7/4 || erato ||
|| 2 || 0-4-6-8-10-14 || 1-5/4-7/5-14/9-7/4-12/11 || meanpop ||
|| 3 || 0-6-8-9-10-23 || 1-7/5-14/9-7/6-7/4-14/11 || utonal ||
|| 4 || 0-6-8-10-14-23 || 1-7/5-14/9-7/4-12/11-14/11 || meanpop ||
|| 5 || 0-9-13-15-17-23 || 1-7/6-16/11-18/11-20/11-14/11 || meanpop ||
|| 6 || 0-13-14-15-17-23 || 1-16/11-12/11-18/11-20/11-14/11 || otonal ||
</pre></div>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Chords of meanpop&lt;/title&gt;&lt;/head&gt;&lt;body&gt;Below are listed the &lt;a class="wiki_link" href="/Dyadic%20chord"&gt;dyadic chords&lt;/a&gt; of 11-limit [[Meantone+family#Septimal meantone-Meanpop|meanpop temperament]]. Meanpop is one of the two extensions of septimal meantone, which itself is the main extension of 5-limit meantone; this is the temperament tempering out 81/80, 126/125 and 385/384. Typing the chords requires consideration of the fact that meanpop conflates 9/8 and 10/9; if a transversal can be found which shows the chord to be essentially just, that transversal is listed along with a typing as otonal, utonal, or ambitonal. If the chord is essentially tempered, it is analyzed in terms of the transversal which employs 9/8 and 16/9.&lt;br /&gt;
&lt;br /&gt;
Chords requiring tempering only by 81/80 are labeled didymic, by 126/125 starling, by 225/224 marvel, by 385/384 keenanismic and by 540/539 swetismic. Chords which require any two of 81/80, 126/125 or 225/224 are labeled erato, and any two of 225/224, 385/384 or 540/539 unimarv. A chord requiring both of 81/80  and 540/539 is labeled terpsichore, and a chord requiring any three independent commas from those discussed above is labeled meanpop.&lt;br /&gt;
&lt;br /&gt;
Meanpop has MOS of size 5, 7, 12, 19, 31, 50 and 81. While 5-limit meantone has been thoroughly explored, the same is not true of meanpop. The 19 note MOS would seem to be a good place to start such explorations.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Triads"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Triads&lt;/h1&gt;
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;td&gt;Number&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Chord&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Transversal&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Type&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
&lt;br /&gt;
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;ambitonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/9-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/3-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-7/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;marvel&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/3-7/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;starling&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/4-7/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;marvel&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/9-14/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/4-14/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;marvel&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-14/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/3-7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/4-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/3-16/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;keenanismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/4-16/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;keenanismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-16/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;keenanismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-10-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/4-16/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;keenanismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-12/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/4-12/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;keenanismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-12/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-12/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-10-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/4-12/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;keenanismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-13-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-16/11-12/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;34&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;36&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-13-15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-16/11-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;38&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-14-15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-12/11-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;39&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/9-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;40&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/3-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;41&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/4-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;42&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;43&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;44&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-13-17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-16/11-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;45&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-14-17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-12/11-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;46&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-15-17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-18/11-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;47&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;48&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;49&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;50&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-10-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/4-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;51&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-13-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-16/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;52&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-14-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-12/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;53&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-15-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-18/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;54&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-17-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-20/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Tetrads"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Tetrads&lt;/h1&gt;
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;td&gt;Number&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Chord&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Transversal&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Type&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-2-3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-9/8-5/3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;didymic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-2-4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-9/8-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-3-4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-5/3-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;ambitonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-3-4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/9-5/3-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-3-6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-5/3-7/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;erato&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-4-6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-5/4-7/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;erato&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-4-6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/3-5/4-7/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;erato&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-4-8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-5/4-14/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;erato&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-6-8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-7/5-14/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;erato&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-6-8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/4-7/5-14/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;erato&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-3-9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-5/3-7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-6-9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/3-7/5-7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;starling&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-8-9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-14/9-7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-2-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-9/8-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-4-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-5/4-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-4-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-5/4-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-6-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-7/5-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;marvel&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-6-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/4-7/5-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;marvel&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-8-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-14/9-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;didymic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-8-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/4-14/9-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;marvel&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-8-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-14/9-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-9-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-7/6-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;ambitonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-9-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-7/6-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-7/6-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-4-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/3-5/4-16/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;keenanismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-9-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/3-7/6-16/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;keenanismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-10-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/4-7/4-16/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;keenanismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-10-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-7/4-16/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;keenanismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-4-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-5/4-12/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;keenanismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-6-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/4-7/5-12/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;unimarv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-8-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/4-14/9-12/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;unimarv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-8-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-14/9-12/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;terpsichore&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-10-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-7/4-12/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;keenanismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;34&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-10-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/4-7/4-12/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;keenanismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-10-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-7/4-12/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;unimarv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;36&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-10-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-7/4-12/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;unimarv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-13-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/4-16/11-12/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;keenanismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;38&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-10-13-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/4-16/11-12/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;keenanismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;39&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-2-15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-9/8-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;40&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-6-15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-7/5-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;unimarv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;41&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-9-15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-7/6-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;42&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-9-15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-7/6-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;43&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-13-15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-16/11-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;unimarv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;44&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-14-15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-12/11-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;ambitonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;45&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-14-15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-12/11-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;46&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-13-14-15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-16/11-12/11-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;47&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-3-17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/9-5/3-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;48&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-4-17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/9-5/4-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;49&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-4-17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/3-5/4-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;50&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-8-17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-14/9-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;terpsichore&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;51&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-8-17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/4-14/9-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;unimarv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;52&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-9-17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/3-7/6-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;53&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-7/6-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;54&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-13-17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/3-16/11-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;keenanismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;55&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-13-17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/4-16/11-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;keenanismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;56&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-13-17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-16/11-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;unimarv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;57&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-14-17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/4-12/11-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;keenanismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;58&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-14-17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-12/11-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;59&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-13-14-17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-16/11-12/11-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;60&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-15-17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-18/11-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;didymic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;61&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-15-17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-18/11-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;terpsichore&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;62&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-13-15-17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-16/11-18/11-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;63&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-14-15-17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-12/11-18/11-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;64&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-8-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-14/9-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;65&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-9-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-7/6-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;66&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-7/6-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;67&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-10-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-7/4-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;68&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-10-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-7/4-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;69&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-10-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-7/4-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;70&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-13-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-16/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;keenanismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;71&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-10-13-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/4-16/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;keenanismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-14-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-12/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;73&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-14-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-12/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;74&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-10-14-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/4-12/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;keenanismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;75&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-13-14-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-16/11-12/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;76&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-15-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-18/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;77&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-15-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-18/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;78&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-13-15-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-16/11-18/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;79&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-14-15-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-12/11-18/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;80&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-17-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-20/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;81&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-17-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-20/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;82&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-13-17-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-16/11-20/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;83&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-14-17-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-12/11-20/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;84&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-15-17-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-18/11-20/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Pentads"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Pentads&lt;/h1&gt;
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;td&gt;Number&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Chord&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Transversal&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Type&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-2-3-4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-9/8-5/3-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;didymic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-3-4-6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-5/3-5/4-7/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;erato&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-4-6-8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-5/4-7/5-14/9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;erato&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-2-4-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-9/8-5/4-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-4-6-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-5/4-7/5-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;erato&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-4-8-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-5/4-14/9-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;erato&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-6-8-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-7/5-14/9-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;erato&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-6-8-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/4-7/5-14/9-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;erato&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-8-9-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-14/9-7/6-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-6-8-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/4-7/5-14/9-12/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;meanpop&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-4-10-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-5/4-7/4-12/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;keenanismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-6-10-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/4-7/5-7/4-12/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;unimarv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-8-10-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/4-14/9-7/4-12/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;unimarv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-8-10-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-14/9-7/4-12/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;meanpop&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-10-13-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/4-7/4-16/11-12/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;keenanismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-3-4-17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-10/9-5/3-5/4-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-4-8-17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-5/4-14/9-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;meanpop&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-4-13-17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/3-5/4-16/11-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;keenanismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-9-13-17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/3-7/6-16/11-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;unimarv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-8-14-17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/4-14/9-12/11-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;unimarv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-13-14-17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/4-16/11-12/11-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;keenanismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-13-15-17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-16/11-18/11-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;meanpop&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-13-14-15-17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-16/11-12/11-18/11-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-8-9-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-14/9-7/6-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-8-10-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-14/9-7/4-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-9-10-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-7/6-7/4-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-10-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-7/6-7/4-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-10-13-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-7/4-16/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;keenanismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-8-14-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-14/9-12/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;terpsichore&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-10-14-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-7/4-12/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;unimarv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-10-14-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-7/4-12/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;unimarv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-10-13-14-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/4-16/11-12/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;keenanismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-9-15-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-7/6-18/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;34&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-13-15-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-16/11-18/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;unimarv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-14-15-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-12/11-18/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;36&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-13-14-15-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-16/11-12/11-18/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-9-17-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-7/6-20/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;38&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-13-17-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-16/11-20/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;unimarv&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;39&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-8-14-17-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/9-12/11-20/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;40&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-13-14-17-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-16/11-12/11-20/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;41&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-15-17-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-18/11-20/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;terpsichore&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;42&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-13-15-17-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-16/11-18/11-20/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;43&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-14-15-17-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-12/11-18/11-20/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Hexads"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Hexads&lt;/h1&gt;
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;td&gt;Number&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Chord&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Transversal&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Type&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-2-4-6-8-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/8-5/4-7/5-14/9-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;erato&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-6-8-10-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/4-7/5-14/9-7/4-12/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;meanpop&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-8-9-10-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-14/9-7/6-7/4-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-8-10-14-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-14/9-7/4-12/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;meanpop&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-9-13-15-17-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-16/11-18/11-20/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;meanpop&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-13-14-15-17-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-16/11-12/11-18/11-20/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;/body&gt;&lt;/html&gt;</pre></div>
{| class="wikitable"
|-
| | Number
| | Chord
| | Transversal
| | Type
|-
| | 1
| | 0-2-4-6-8-10
| | 1-9/8-5/4-7/5-14/9-7/4
| | erato
|-
| | 2
| | 0-4-6-8-10-14
| | 1-5/4-7/5-14/9-7/4-12/11
| | meanpop
|-
| | 3
| | 0-6-8-9-10-23
| | 1-7/5-14/9-7/6-7/4-14/11
| | utonal
|-
| | 4
| | 0-6-8-10-14-23
| | 1-7/5-14/9-7/4-12/11-14/11
| | meanpop
|-
| | 5
| | 0-9-13-15-17-23
| | 1-7/6-16/11-18/11-20/11-14/11
| | meanpop
|-
| | 6
| | 0-13-14-15-17-23
| | 1-16/11-12/11-18/11-20/11-14/11
| | otonal
|}
[[Category:Lists of chords]]
[[Category:Dyadic chords]]
[[Category:11-limit]]
[[Category:Meanpop]]