|
|
(6 intermediate revisions by 5 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | Below are listed the [[dyadic chord]]s of [[11-limit]] [[hemithirds]] temperament. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering by 441/440 are werckismic, and by 385/384 keenanismic. |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| |
| : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-12-20 23:04:35 UTC</tt>.<br>
| |
| : The original revision id was <tt>287833246</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Below are listed the [[Dyadic chord|dyadic chords]] of 11-limit [[Gamelismic clan#Hemithirds|hemithirds temperament]]. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering by 441/440 are werckismic, and by 385/384 keenanismic.
| |
|
| |
|
| =Triads=
| | Hemithirds has MOS of size 6, 7, 13, 19, 25, 31, 56 and 87. It may be seen that adding essentially tempered chords to the mix allows for a notably richer range of harmonies even for the 13 note MOS. |
| || Number || Chord || Transversal || Type ||
| |
| || 1 || 0-2-5 || 1-5/4-7/4 || otonal ||
| |
| || 2 || 0-3-5 || 1-7/5-7/4 || utonal ||
| |
| || 3 || 0-2-7 || 1-5/4-12/11 || keenanismic ||
| |
| || 4 || 0-5-7 || 1-7/4-12/11 || keenanismic ||
| |
| || 5 || 0-3-8 || 1-7/5-11/9 || werckismic ||
| |
| || 6 || 0-5-8 || 1-7/4-11/9 || werckismic ||
| |
| || 7 || 0-7-15 || 1-12/11-4/3 || utonal ||
| |
| || 8 || 0-8-15 || 1-11/9-4/3 || otonal ||
| |
| || 9 || 0-2-17 || 1-5/4-5/3 || utonal ||
| |
| || 10 || 0-15-17 || 1-4/3-5/3 || otonal ||
| |
| || 11 || 0-3-20 || 1-7/5-7/6 || utonal ||
| |
| || 12 || 0-5-20 || 1-7/4-7/6 || utonal ||
| |
| || 13 || 0-15-20 || 1-4/3-7/6 || otonal ||
| |
| || 14 || 0-17-20 || 1-5/3-7/6 || otonal ||
| |
| || 15 || 0-2-22 || 1-5/4-16/11 || keenanismic ||
| |
| || 16 || 0-5-22 || 1-7/4-16/11 || keenanismic ||
| |
| || 17 || 0-7-22 || 1-12/11-16/11 || otonal ||
| |
| || 18 || 0-15-22 || 1-4/3-16/11 || utonal ||
| |
| || 19 || 0-17-22 || 1-5/3-16/11 || keenanismic ||
| |
| || 20 || 0-20-22 || 1-7/6-16/11 || keenanismic ||
| |
| || 21 || 0-2-24 || 1-5/4-20/11 || utonal ||
| |
| || 22 || 0-7-24 || 1-12/11-20/11 || otonal ||
| |
| || 23 || 0-17-24 || 1-5/3-20/11 || utonal ||
| |
| || 24 || 0-22-24 || 1-16/11-20/11 || otonal ||
| |
| || 25 || 0-3-27 || 1-7/5-14/11 || utonal ||
| |
| || 26 || 0-5-27 || 1-7/4-14/11 || utonal ||
| |
| || 27 || 0-7-27 || 1-12/11-14/11 || otonal ||
| |
| || 28 || 0-20-27 || 1-7/6-14/11 || utonal ||
| |
| || 29 || 0-22-27 || 1-16/11-14/11 || otonal ||
| |
| || 30 || 0-24-27 || 1-20/11-14/11 || otonal ||
| |
| || 31 || 0-3-30 || 1-7/5-16/9 || werckismic ||
| |
| || 32 || 0-8-30 || 1-11/9-16/9 || otonal ||
| |
| || 33 || 0-15-30 || 1-4/3-16/9 || ambitonal ||
| |
| || 34 || 0-22-30 || 1-16/11-16/9 || utonal ||
| |
| || 35 || 0-27-30 || 1-14/11-16/9 || werckismic ||
| |
| || 36 || 0-2-32 || 1-5/4-10/9 || utonal ||
| |
| || 37 || 0-5-32 || 1-7/4-10/9 || werckismic ||
| |
| || 38 || 0-8-32 || 1-11/9-10/9 || otonal ||
| |
| || 39 || 0-15-32 || 1-4/3-10/9 || otonal ||
| |
| || 40 || 0-17-32 || 1-5/3-10/9 || utonal ||
| |
| || 41 || 0-24-32 || 1-20/11-10/9 || utonal ||
| |
| || 42 || 0-27-32 || 1-14/11-10/9 || werckismic ||
| |
| || 43 || 0-30-32 || 1-16/9-10/9 || otonal ||
| |
| || 44 || 0-3-35 || 1-7/5-14/9 || utonal ||
| |
| || 45 || 0-5-35 || 1-7/4-14/9 || utonal ||
| |
| || 46 || 0-8-35 || 1-11/9-14/9 || otonal ||
| |
| || 47 || 0-15-35 || 1-4/3-14/9 || otonal ||
| |
| || 48 || 0-20-35 || 1-7/6-14/9 || utonal ||
| |
| || 49 || 0-27-35 || 1-14/11-14/9 || utonal ||
| |
| || 50 || 0-30-35 || 1-16/9-14/9 || otonal ||
| |
| || 51 || 0-32-35 || 1-10/9-14/9 || otonal ||
| |
|
| |
|
| =Tetrads= | | == Triads == |
| || Number || Chord || Transversal || Type ||
| |
| || 1 || 0-2-5-7 || 1-5/4-7/4-12/11 || keenanismic ||
| |
| || 2 || 0-3-5-8 || 1-7/5-7/4-11/9 || werckismic ||
| |
| || 3 || 0-3-5-20 || 1-7/5-7/4-7/6 || utonal ||
| |
| || 4 || 0-15-17-20 || 1-4/3-5/3-7/6 || otonal ||
| |
| || 5 || 0-2-5-22 || 1-5/4-7/4-16/11 || keenanismic ||
| |
| || 6 || 0-2-7-22 || 1-5/4-12/11-16/11 || keenanismic ||
| |
| || 7 || 0-5-7-22 || 1-7/4-12/11-16/11 || keenanismic ||
| |
| || 8 || 0-7-15-22 || 1-12/11-4/3-16/11 || ambitonal ||
| |
| || 9 || 0-2-17-22 || 1-5/4-5/3-16/11 || keenanismic ||
| |
| || 10 || 0-15-17-22 || 1-4/3-5/3-16/11 || keenanismic ||
| |
| || 11 || 0-5-20-22 || 1-7/4-7/6-16/11 || keenanismic ||
| |
| || 12 || 0-15-20-22 || 1-4/3-7/6-16/11 || keenanismic ||
| |
| || 13 || 0-17-20-22 || 1-5/3-7/6-16/11 || keenanismic ||
| |
| || 14 || 0-2-7-24 || 1-5/4-12/11-20/11 || keenanismic ||
| |
| || 15 || 0-2-17-24 || 1-5/4-5/3-20/11 || utonal ||
| |
| || 16 || 0-2-22-24 || 1-5/4-16/11-20/11 || keenanismic ||
| |
| || 17 || 0-7-22-24 || 1-12/11-16/11-20/11 || otonal ||
| |
| || 18 || 0-17-22-24 || 1-5/3-16/11-20/11 || keenanismic ||
| |
| || 19 || 0-3-5-27 || 1-7/5-7/4-14/11 || utonal ||
| |
| || 20 || 0-5-7-27 || 1-7/4-12/11-14/11 || keenanismic ||
| |
| || 21 || 0-3-20-27 || 1-7/5-7/6-14/11 || utonal ||
| |
| || 22 || 0-5-20-27 || 1-7/4-7/6-14/11 || utonal ||
| |
| || 23 || 0-5-22-27 || 1-7/4-16/11-14/11 || keenanismic ||
| |
| || 24 || 0-7-22-27 || 1-12/11-16/11-14/11 || otonal ||
| |
| || 25 || 0-20-22-27 || 1-7/6-16/11-14/11 || keenanismic ||
| |
| || 26 || 0-7-24-27 || 1-12/11-20/11-14/11 || otonal ||
| |
| || 27 || 0-22-24-27 || 1-16/11-20/11-14/11 || otonal ||
| |
| || 28 || 0-3-8-30 || 1-7/5-11/9-16/9 || werckismic ||
| |
| || 29 || 0-8-15-30 || 1-11/9-4/3-16/9 || otonal ||
| |
| || 30 || 0-15-22-30 || 1-4/3-16/11-16/9 || utonal ||
| |
| || 31 || 0-3-27-30 || 1-7/5-14/11-16/9 || werckismic ||
| |
| || 32 || 0-22-27-30 || 1-16/11-14/11-16/9 || werckismic ||
| |
| || 33 || 0-2-5-32 || 1-5/4-7/4-10/9 || werckismic ||
| |
| || 34 || 0-5-8-32 || 1-7/4-11/9-10/9 || werckismic ||
| |
| || 35 || 0-8-15-32 || 1-11/9-4/3-10/9 || otonal ||
| |
| || 36 || 0-2-17-32 || 1-5/4-5/3-10/9 || utonal ||
| |
| || 37 || 0-15-17-32 || 1-4/3-5/3-10/9 || ambitonal ||
| |
| || 38 || 0-2-24-32 || 1-5/4-20/11-10/9 || utonal ||
| |
| || 39 || 0-17-24-32 || 1-5/3-20/11-10/9 || utonal ||
| |
| || 40 || 0-5-27-32 || 1-7/4-14/11-10/9 || werckismic ||
| |
| || 41 || 0-24-27-32 || 1-20/11-14/11-10/9 || werckismic ||
| |
| || 42 || 0-8-30-32 || 1-11/9-16/9-10/9 || otonal ||
| |
| || 43 || 0-15-30-32 || 1-4/3-16/9-10/9 || otonal ||
| |
| || 44 || 0-27-30-32 || 1-14/11-16/9-10/9 || werckismic ||
| |
| || 45 || 0-3-5-35 || 1-7/5-7/4-14/9 || utonal ||
| |
| || 46 || 0-3-8-35 || 1-7/5-11/9-14/9 || werckismic ||
| |
| || 47 || 0-5-8-35 || 1-7/4-11/9-14/9 || werckismic ||
| |
| || 48 || 0-8-15-35 || 1-11/9-4/3-14/9 || otonal ||
| |
| || 49 || 0-3-20-35 || 1-7/5-7/6-14/9 || utonal ||
| |
| || 50 || 0-5-20-35 || 1-7/4-7/6-14/9 || utonal ||
| |
| || 51 || 0-15-20-35 || 1-4/3-7/6-14/9 || ambitonal ||
| |
| || 52 || 0-3-27-35 || 1-7/5-14/11-14/9 || utonal ||
| |
| || 53 || 0-5-27-35 || 1-7/4-14/11-14/9 || utonal ||
| |
| || 54 || 0-20-27-35 || 1-7/6-14/11-14/9 || utonal ||
| |
| || 55 || 0-3-30-35 || 1-7/5-16/9-14/9 || werckismic ||
| |
| || 56 || 0-8-30-35 || 1-11/9-16/9-14/9 || otonal ||
| |
| || 57 || 0-15-30-35 || 1-4/3-16/9-14/9 || otonal ||
| |
| || 58 || 0-27-30-35 || 1-14/11-16/9-14/9 || werckismic ||
| |
| || 59 || 0-5-32-35 || 1-7/4-10/9-14/9 || werckismic ||
| |
| || 60 || 0-8-32-35 || 1-11/9-10/9-14/9 || otonal ||
| |
| || 61 || 0-15-32-35 || 1-4/3-10/9-14/9 || otonal ||
| |
| || 62 || 0-27-32-35 || 1-14/11-10/9-14/9 || werckismic ||
| |
| || 63 || 0-30-32-35 || 1-16/9-10/9-14/9 || otonal ||
| |
|
| |
|
| =Pentads= | | {| class="wikitable" |
| || Number || Chord || Transversal || Type || | | |- |
| || 1 || 0-2-5-7-22 || 1-5/4-7/4-12/11-16/11 || keenanismic ||
| | ! Number |
| || 2 || 0-15-17-20-22 || 1-4/3-5/3-7/6-16/11 || keenanismic ||
| | ! Chord |
| || 3 || 0-2-7-22-24 || 1-5/4-12/11-16/11-20/11 || keenanismic || | | ! Transversal |
| || 4 || 0-2-17-22-24 || 1-5/4-5/3-16/11-20/11 || keenanismic || | | ! Type |
| || 5 || 0-3-5-20-27 || 1-7/5-7/4-7/6-14/11 || utonal || | | |- |
| || 6 || 0-5-7-22-27 || 1-7/4-12/11-16/11-14/11 || keenanismic || | | | 1 |
| || 7 || 0-5-20-22-27 || 1-7/4-7/6-16/11-14/11 || keenanismic ||
| | | 0-2-5 |
| || 8 || 0-7-22-24-27 || 1-12/11-16/11-20/11-14/11 || otonal ||
| | | 1-5/4-7/4 |
| || 9 || 0-2-17-24-32 || 1-5/4-5/3-20/11-10/9 || utonal ||
| | | otonal |
| || 10 || 0-8-15-30-32 || 1-11/9-4/3-16/9-10/9 || otonal ||
| | |- |
| || 11 || 0-3-5-8-35 || 1-7/5-7/4-11/9-14/9 || werckismic || | | | 2 |
| || 12 || 0-3-5-20-35 || 1-7/5-7/4-7/6-14/9 || utonal || | | | 0-3-5 |
| || 13 || 0-3-5-27-35 || 1-7/5-7/4-14/11-14/9 || utonal ||
| | | 1-7/5-7/4 |
| || 14 || 0-3-20-27-35 || 1-7/5-7/6-14/11-14/9 || utonal || | | | utonal |
| || 15 || 0-5-20-27-35 || 1-7/4-7/6-14/11-14/9 || utonal ||
| | |- |
| || 16 || 0-3-8-30-35 || 1-7/5-11/9-16/9-14/9 || werckismic ||
| | | 3 |
| || 17 || 0-8-15-30-35 || 1-11/9-4/3-16/9-14/9 || otonal ||
| | | 0-2-7 |
| || 18 || 0-3-27-30-35 || 1-7/5-14/11-16/9-14/9 || werckismic || | | | 1-5/4-12/11 |
| || 19 || 0-5-8-32-35 || 1-7/4-11/9-10/9-14/9 || werckismic || | | | keenanismic |
| || 20 || 0-8-15-32-35 || 1-11/9-4/3-10/9-14/9 || otonal ||
| | |- |
| || 21 || 0-5-27-32-35 || 1-7/4-14/11-10/9-14/9 || werckismic || | | | 4 |
| || 22 || 0-8-30-32-35 || 1-11/9-16/9-10/9-14/9 || otonal || | | | 0-5-7 |
| || 23 || 0-15-30-32-35 || 1-4/3-16/9-10/9-14/9 || otonal ||
| | | 1-7/4-12/11 |
| || 24 || 0-27-30-32-35 || 1-14/11-16/9-10/9-14/9 || werckismic || | | | keenanismic |
| | |- |
| | | 5 |
| | | 0-3-8 |
| | | 1-7/5-11/9 |
| | | werckismic |
| | |- |
| | | 6 |
| | | 0-5-8 |
| | | 1-7/4-11/9 |
| | | werckismic |
| | |- |
| | | 7 |
| | | 0-7-15 |
| | | 1-12/11-4/3 |
| | | utonal |
| | |- |
| | | 8 |
| | | 0-8-15 |
| | | 1-11/9-4/3 |
| | | otonal |
| | |- |
| | | 9 |
| | | 0-2-17 |
| | | 1-5/4-5/3 |
| | | utonal |
| | |- |
| | | 10 |
| | | 0-15-17 |
| | | 1-4/3-5/3 |
| | | otonal |
| | |- |
| | | 11 |
| | | 0-3-20 |
| | | 1-7/5-7/6 |
| | | utonal |
| | |- |
| | | 12 |
| | | 0-5-20 |
| | | 1-7/4-7/6 |
| | | utonal |
| | |- |
| | | 13 |
| | | 0-15-20 |
| | | 1-4/3-7/6 |
| | | otonal |
| | |- |
| | | 14 |
| | | 0-17-20 |
| | | 1-5/3-7/6 |
| | | otonal |
| | |- |
| | | 15 |
| | | 0-2-22 |
| | | 1-5/4-16/11 |
| | | keenanismic |
| | |- |
| | | 16 |
| | | 0-5-22 |
| | | 1-7/4-16/11 |
| | | keenanismic |
| | |- |
| | | 17 |
| | | 0-7-22 |
| | | 1-12/11-16/11 |
| | | otonal |
| | |- |
| | | 18 |
| | | 0-15-22 |
| | | 1-4/3-16/11 |
| | | utonal |
| | |- |
| | | 19 |
| | | 0-17-22 |
| | | 1-5/3-16/11 |
| | | keenanismic |
| | |- |
| | | 20 |
| | | 0-20-22 |
| | | 1-7/6-16/11 |
| | | keenanismic |
| | |- |
| | | 21 |
| | | 0-2-24 |
| | | 1-5/4-20/11 |
| | | utonal |
| | |- |
| | | 22 |
| | | 0-7-24 |
| | | 1-12/11-20/11 |
| | | otonal |
| | |- |
| | | 23 |
| | | 0-17-24 |
| | | 1-5/3-20/11 |
| | | utonal |
| | |- |
| | | 24 |
| | | 0-22-24 |
| | | 1-16/11-20/11 |
| | | otonal |
| | |- |
| | | 25 |
| | | 0-3-27 |
| | | 1-7/5-14/11 |
| | | utonal |
| | |- |
| | | 26 |
| | | 0-5-27 |
| | | 1-7/4-14/11 |
| | | utonal |
| | |- |
| | | 27 |
| | | 0-7-27 |
| | | 1-12/11-14/11 |
| | | otonal |
| | |- |
| | | 28 |
| | | 0-20-27 |
| | | 1-7/6-14/11 |
| | | utonal |
| | |- |
| | | 29 |
| | | 0-22-27 |
| | | 1-16/11-14/11 |
| | | otonal |
| | |- |
| | | 30 |
| | | 0-24-27 |
| | | 1-20/11-14/11 |
| | | otonal |
| | |- |
| | | 31 |
| | | 0-3-30 |
| | | 1-7/5-16/9 |
| | | werckismic |
| | |- |
| | | 32 |
| | | 0-8-30 |
| | | 1-11/9-16/9 |
| | | otonal |
| | |- |
| | | 33 |
| | | 0-15-30 |
| | | 1-4/3-16/9 |
| | | ambitonal |
| | |- |
| | | 34 |
| | | 0-22-30 |
| | | 1-16/11-16/9 |
| | | utonal |
| | |- |
| | | 35 |
| | | 0-27-30 |
| | | 1-14/11-16/9 |
| | | werckismic |
| | |- |
| | | 36 |
| | | 0-2-32 |
| | | 1-5/4-10/9 |
| | | utonal |
| | |- |
| | | 37 |
| | | 0-5-32 |
| | | 1-7/4-10/9 |
| | | werckismic |
| | |- |
| | | 38 |
| | | 0-8-32 |
| | | 1-11/9-10/9 |
| | | otonal |
| | |- |
| | | 39 |
| | | 0-15-32 |
| | | 1-4/3-10/9 |
| | | otonal |
| | |- |
| | | 40 |
| | | 0-17-32 |
| | | 1-5/3-10/9 |
| | | utonal |
| | |- |
| | | 41 |
| | | 0-24-32 |
| | | 1-20/11-10/9 |
| | | utonal |
| | |- |
| | | 42 |
| | | 0-27-32 |
| | | 1-14/11-10/9 |
| | | werckismic |
| | |- |
| | | 43 |
| | | 0-30-32 |
| | | 1-16/9-10/9 |
| | | otonal |
| | |- |
| | | 44 |
| | | 0-3-35 |
| | | 1-7/5-14/9 |
| | | utonal |
| | |- |
| | | 45 |
| | | 0-5-35 |
| | | 1-7/4-14/9 |
| | | utonal |
| | |- |
| | | 46 |
| | | 0-8-35 |
| | | 1-11/9-14/9 |
| | | otonal |
| | |- |
| | | 47 |
| | | 0-15-35 |
| | | 1-4/3-14/9 |
| | | otonal |
| | |- |
| | | 48 |
| | | 0-20-35 |
| | | 1-7/6-14/9 |
| | | utonal |
| | |- |
| | | 49 |
| | | 0-27-35 |
| | | 1-14/11-14/9 |
| | | utonal |
| | |- |
| | | 50 |
| | | 0-30-35 |
| | | 1-16/9-14/9 |
| | | otonal |
| | |- |
| | | 51 |
| | | 0-32-35 |
| | | 1-10/9-14/9 |
| | | otonal |
| | |} |
|
| |
|
| =Hexads= | | == Tetrads == |
| || Number || Chord || Transversal || Type ||
| |
| || 1 || 0-3-5-20-27-35 || 1-7/5-7/4-7/6-14/11-14/9 || utonal ||
| |
| || 2 || 0-8-15-30-32-35 || 1-11/9-4/3-16/9-10/9-14/9 || otonal ||
| |
| </pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Chords of hemithirds</title></head><body>Below are listed the <a class="wiki_link" href="/Dyadic%20chord">dyadic chords</a> of 11-limit <a class="wiki_link" href="/Gamelismic%20clan#Hemithirds">hemithirds temperament</a>. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering by 441/440 are werckismic, and by 385/384 keenanismic.<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Triads"></a><!-- ws:end:WikiTextHeadingRule:0 -->Triads</h1>
| |
|
| |
|
| | {| class="wikitable" |
| | |- |
| | ! Number |
| | ! Chord |
| | ! Transversal |
| | ! Type |
| | |- |
| | | 1 |
| | | 0-2-5-7 |
| | | 1-5/4-7/4-12/11 |
| | | keenanismic |
| | |- |
| | | 2 |
| | | 0-3-5-8 |
| | | 1-7/5-7/4-11/9 |
| | | werckismic |
| | |- |
| | | 3 |
| | | 0-3-5-20 |
| | | 1-7/5-7/4-7/6 |
| | | utonal |
| | |- |
| | | 4 |
| | | 0-15-17-20 |
| | | 1-4/3-5/3-7/6 |
| | | otonal |
| | |- |
| | | 5 |
| | | 0-2-5-22 |
| | | 1-5/4-7/4-16/11 |
| | | keenanismic |
| | |- |
| | | 6 |
| | | 0-2-7-22 |
| | | 1-5/4-12/11-16/11 |
| | | keenanismic |
| | |- |
| | | 7 |
| | | 0-5-7-22 |
| | | 1-7/4-12/11-16/11 |
| | | keenanismic |
| | |- |
| | | 8 |
| | | 0-7-15-22 |
| | | 1-12/11-4/3-16/11 |
| | | ambitonal |
| | |- |
| | | 9 |
| | | 0-2-17-22 |
| | | 1-5/4-5/3-16/11 |
| | | keenanismic |
| | |- |
| | | 10 |
| | | 0-15-17-22 |
| | | 1-4/3-5/3-16/11 |
| | | keenanismic |
| | |- |
| | | 11 |
| | | 0-5-20-22 |
| | | 1-7/4-7/6-16/11 |
| | | keenanismic |
| | |- |
| | | 12 |
| | | 0-15-20-22 |
| | | 1-4/3-7/6-16/11 |
| | | keenanismic |
| | |- |
| | | 13 |
| | | 0-17-20-22 |
| | | 1-5/3-7/6-16/11 |
| | | keenanismic |
| | |- |
| | | 14 |
| | | 0-2-7-24 |
| | | 1-5/4-12/11-20/11 |
| | | keenanismic |
| | |- |
| | | 15 |
| | | 0-2-17-24 |
| | | 1-5/4-5/3-20/11 |
| | | utonal |
| | |- |
| | | 16 |
| | | 0-2-22-24 |
| | | 1-5/4-16/11-20/11 |
| | | keenanismic |
| | |- |
| | | 17 |
| | | 0-7-22-24 |
| | | 1-12/11-16/11-20/11 |
| | | otonal |
| | |- |
| | | 18 |
| | | 0-17-22-24 |
| | | 1-5/3-16/11-20/11 |
| | | keenanismic |
| | |- |
| | | 19 |
| | | 0-3-5-27 |
| | | 1-7/5-7/4-14/11 |
| | | utonal |
| | |- |
| | | 20 |
| | | 0-5-7-27 |
| | | 1-7/4-12/11-14/11 |
| | | keenanismic |
| | |- |
| | | 21 |
| | | 0-3-20-27 |
| | | 1-7/5-7/6-14/11 |
| | | utonal |
| | |- |
| | | 22 |
| | | 0-5-20-27 |
| | | 1-7/4-7/6-14/11 |
| | | utonal |
| | |- |
| | | 23 |
| | | 0-5-22-27 |
| | | 1-7/4-16/11-14/11 |
| | | keenanismic |
| | |- |
| | | 24 |
| | | 0-7-22-27 |
| | | 1-12/11-16/11-14/11 |
| | | otonal |
| | |- |
| | | 25 |
| | | 0-20-22-27 |
| | | 1-7/6-16/11-14/11 |
| | | keenanismic |
| | |- |
| | | 26 |
| | | 0-7-24-27 |
| | | 1-12/11-20/11-14/11 |
| | | otonal |
| | |- |
| | | 27 |
| | | 0-22-24-27 |
| | | 1-16/11-20/11-14/11 |
| | | otonal |
| | |- |
| | | 28 |
| | | 0-3-8-30 |
| | | 1-7/5-11/9-16/9 |
| | | werckismic |
| | |- |
| | | 29 |
| | | 0-8-15-30 |
| | | 1-11/9-4/3-16/9 |
| | | otonal |
| | |- |
| | | 30 |
| | | 0-15-22-30 |
| | | 1-4/3-16/11-16/9 |
| | | utonal |
| | |- |
| | | 31 |
| | | 0-3-27-30 |
| | | 1-7/5-14/11-16/9 |
| | | werckismic |
| | |- |
| | | 32 |
| | | 0-22-27-30 |
| | | 1-16/11-14/11-16/9 |
| | | werckismic |
| | |- |
| | | 33 |
| | | 0-2-5-32 |
| | | 1-5/4-7/4-10/9 |
| | | werckismic |
| | |- |
| | | 34 |
| | | 0-5-8-32 |
| | | 1-7/4-11/9-10/9 |
| | | werckismic |
| | |- |
| | | 35 |
| | | 0-8-15-32 |
| | | 1-11/9-4/3-10/9 |
| | | otonal |
| | |- |
| | | 36 |
| | | 0-2-17-32 |
| | | 1-5/4-5/3-10/9 |
| | | utonal |
| | |- |
| | | 37 |
| | | 0-15-17-32 |
| | | 1-4/3-5/3-10/9 |
| | | ambitonal |
| | |- |
| | | 38 |
| | | 0-2-24-32 |
| | | 1-5/4-20/11-10/9 |
| | | utonal |
| | |- |
| | | 39 |
| | | 0-17-24-32 |
| | | 1-5/3-20/11-10/9 |
| | | utonal |
| | |- |
| | | 40 |
| | | 0-5-27-32 |
| | | 1-7/4-14/11-10/9 |
| | | werckismic |
| | |- |
| | | 41 |
| | | 0-24-27-32 |
| | | 1-20/11-14/11-10/9 |
| | | werckismic |
| | |- |
| | | 42 |
| | | 0-8-30-32 |
| | | 1-11/9-16/9-10/9 |
| | | otonal |
| | |- |
| | | 43 |
| | | 0-15-30-32 |
| | | 1-4/3-16/9-10/9 |
| | | otonal |
| | |- |
| | | 44 |
| | | 0-27-30-32 |
| | | 1-14/11-16/9-10/9 |
| | | werckismic |
| | |- |
| | | 45 |
| | | 0-3-5-35 |
| | | 1-7/5-7/4-14/9 |
| | | utonal |
| | |- |
| | | 46 |
| | | 0-3-8-35 |
| | | 1-7/5-11/9-14/9 |
| | | werckismic |
| | |- |
| | | 47 |
| | | 0-5-8-35 |
| | | 1-7/4-11/9-14/9 |
| | | werckismic |
| | |- |
| | | 48 |
| | | 0-8-15-35 |
| | | 1-11/9-4/3-14/9 |
| | | otonal |
| | |- |
| | | 49 |
| | | 0-3-20-35 |
| | | 1-7/5-7/6-14/9 |
| | | utonal |
| | |- |
| | | 50 |
| | | 0-5-20-35 |
| | | 1-7/4-7/6-14/9 |
| | | utonal |
| | |- |
| | | 51 |
| | | 0-15-20-35 |
| | | 1-4/3-7/6-14/9 |
| | | ambitonal |
| | |- |
| | | 52 |
| | | 0-3-27-35 |
| | | 1-7/5-14/11-14/9 |
| | | utonal |
| | |- |
| | | 53 |
| | | 0-5-27-35 |
| | | 1-7/4-14/11-14/9 |
| | | utonal |
| | |- |
| | | 54 |
| | | 0-20-27-35 |
| | | 1-7/6-14/11-14/9 |
| | | utonal |
| | |- |
| | | 55 |
| | | 0-3-30-35 |
| | | 1-7/5-16/9-14/9 |
| | | werckismic |
| | |- |
| | | 56 |
| | | 0-8-30-35 |
| | | 1-11/9-16/9-14/9 |
| | | otonal |
| | |- |
| | | 57 |
| | | 0-15-30-35 |
| | | 1-4/3-16/9-14/9 |
| | | otonal |
| | |- |
| | | 58 |
| | | 0-27-30-35 |
| | | 1-14/11-16/9-14/9 |
| | | werckismic |
| | |- |
| | | 59 |
| | | 0-5-32-35 |
| | | 1-7/4-10/9-14/9 |
| | | werckismic |
| | |- |
| | | 60 |
| | | 0-8-32-35 |
| | | 1-11/9-10/9-14/9 |
| | | otonal |
| | |- |
| | | 61 |
| | | 0-15-32-35 |
| | | 1-4/3-10/9-14/9 |
| | | otonal |
| | |- |
| | | 62 |
| | | 0-27-32-35 |
| | | 1-14/11-10/9-14/9 |
| | | werckismic |
| | |- |
| | | 63 |
| | | 0-30-32-35 |
| | | 1-16/9-10/9-14/9 |
| | | otonal |
| | |} |
|
| |
|
| <table class="wiki_table">
| | == Pentads == |
| <tr>
| |
| <td>Number<br />
| |
| </td>
| |
| <td>Chord<br />
| |
| </td>
| |
| <td>Transversal<br />
| |
| </td>
| |
| <td>Type<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>0-2-5<br />
| |
| </td>
| |
| <td>1-5/4-7/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>0-3-5<br />
| |
| </td>
| |
| <td>1-7/5-7/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>0-2-7<br />
| |
| </td>
| |
| <td>1-5/4-12/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>0-5-7<br />
| |
| </td>
| |
| <td>1-7/4-12/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>0-3-8<br />
| |
| </td>
| |
| <td>1-7/5-11/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>0-5-8<br />
| |
| </td>
| |
| <td>1-7/4-11/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>0-7-15<br />
| |
| </td>
| |
| <td>1-12/11-4/3<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>0-8-15<br />
| |
| </td>
| |
| <td>1-11/9-4/3<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>0-2-17<br />
| |
| </td>
| |
| <td>1-5/4-5/3<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10<br />
| |
| </td>
| |
| <td>0-15-17<br />
| |
| </td>
| |
| <td>1-4/3-5/3<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11<br />
| |
| </td>
| |
| <td>0-3-20<br />
| |
| </td>
| |
| <td>1-7/5-7/6<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12<br />
| |
| </td>
| |
| <td>0-5-20<br />
| |
| </td>
| |
| <td>1-7/4-7/6<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13<br />
| |
| </td>
| |
| <td>0-15-20<br />
| |
| </td>
| |
| <td>1-4/3-7/6<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14<br />
| |
| </td>
| |
| <td>0-17-20<br />
| |
| </td>
| |
| <td>1-5/3-7/6<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>15<br />
| |
| </td>
| |
| <td>0-2-22<br />
| |
| </td>
| |
| <td>1-5/4-16/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>16<br />
| |
| </td>
| |
| <td>0-5-22<br />
| |
| </td>
| |
| <td>1-7/4-16/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17<br />
| |
| </td>
| |
| <td>0-7-22<br />
| |
| </td>
| |
| <td>1-12/11-16/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18<br />
| |
| </td>
| |
| <td>0-15-22<br />
| |
| </td>
| |
| <td>1-4/3-16/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>19<br />
| |
| </td>
| |
| <td>0-17-22<br />
| |
| </td>
| |
| <td>1-5/3-16/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20<br />
| |
| </td>
| |
| <td>0-20-22<br />
| |
| </td>
| |
| <td>1-7/6-16/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>21<br />
| |
| </td>
| |
| <td>0-2-24<br />
| |
| </td>
| |
| <td>1-5/4-20/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>22<br />
| |
| </td>
| |
| <td>0-7-24<br />
| |
| </td>
| |
| <td>1-12/11-20/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>23<br />
| |
| </td>
| |
| <td>0-17-24<br />
| |
| </td>
| |
| <td>1-5/3-20/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>24<br />
| |
| </td>
| |
| <td>0-22-24<br />
| |
| </td>
| |
| <td>1-16/11-20/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>25<br />
| |
| </td>
| |
| <td>0-3-27<br />
| |
| </td>
| |
| <td>1-7/5-14/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>26<br />
| |
| </td>
| |
| <td>0-5-27<br />
| |
| </td>
| |
| <td>1-7/4-14/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>27<br />
| |
| </td>
| |
| <td>0-7-27<br />
| |
| </td>
| |
| <td>1-12/11-14/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>28<br />
| |
| </td>
| |
| <td>0-20-27<br />
| |
| </td>
| |
| <td>1-7/6-14/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>29<br />
| |
| </td>
| |
| <td>0-22-27<br />
| |
| </td>
| |
| <td>1-16/11-14/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>30<br />
| |
| </td>
| |
| <td>0-24-27<br />
| |
| </td>
| |
| <td>1-20/11-14/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>31<br />
| |
| </td>
| |
| <td>0-3-30<br />
| |
| </td>
| |
| <td>1-7/5-16/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>32<br />
| |
| </td>
| |
| <td>0-8-30<br />
| |
| </td>
| |
| <td>1-11/9-16/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>33<br />
| |
| </td>
| |
| <td>0-15-30<br />
| |
| </td>
| |
| <td>1-4/3-16/9<br />
| |
| </td>
| |
| <td>ambitonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>34<br />
| |
| </td>
| |
| <td>0-22-30<br />
| |
| </td>
| |
| <td>1-16/11-16/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>35<br />
| |
| </td>
| |
| <td>0-27-30<br />
| |
| </td>
| |
| <td>1-14/11-16/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>36<br />
| |
| </td>
| |
| <td>0-2-32<br />
| |
| </td>
| |
| <td>1-5/4-10/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>37<br />
| |
| </td>
| |
| <td>0-5-32<br />
| |
| </td>
| |
| <td>1-7/4-10/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>38<br />
| |
| </td>
| |
| <td>0-8-32<br />
| |
| </td>
| |
| <td>1-11/9-10/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>39<br />
| |
| </td>
| |
| <td>0-15-32<br />
| |
| </td>
| |
| <td>1-4/3-10/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>40<br />
| |
| </td>
| |
| <td>0-17-32<br />
| |
| </td>
| |
| <td>1-5/3-10/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>41<br />
| |
| </td>
| |
| <td>0-24-32<br />
| |
| </td>
| |
| <td>1-20/11-10/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>42<br />
| |
| </td>
| |
| <td>0-27-32<br />
| |
| </td>
| |
| <td>1-14/11-10/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>43<br />
| |
| </td>
| |
| <td>0-30-32<br />
| |
| </td>
| |
| <td>1-16/9-10/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>44<br />
| |
| </td>
| |
| <td>0-3-35<br />
| |
| </td>
| |
| <td>1-7/5-14/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>45<br />
| |
| </td>
| |
| <td>0-5-35<br />
| |
| </td>
| |
| <td>1-7/4-14/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>46<br />
| |
| </td>
| |
| <td>0-8-35<br />
| |
| </td>
| |
| <td>1-11/9-14/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>47<br />
| |
| </td>
| |
| <td>0-15-35<br />
| |
| </td>
| |
| <td>1-4/3-14/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>48<br />
| |
| </td>
| |
| <td>0-20-35<br />
| |
| </td>
| |
| <td>1-7/6-14/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>49<br />
| |
| </td>
| |
| <td>0-27-35<br />
| |
| </td>
| |
| <td>1-14/11-14/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>50<br />
| |
| </td>
| |
| <td>0-30-35<br />
| |
| </td>
| |
| <td>1-16/9-14/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>51<br />
| |
| </td>
| |
| <td>0-32-35<br />
| |
| </td>
| |
| <td>1-10/9-14/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| <br />
| | {| class="wikitable" |
| <!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Tetrads"></a><!-- ws:end:WikiTextHeadingRule:2 -->Tetrads</h1>
| | |- |
| | ! Number |
| | ! Chord |
| | ! Transversal |
| | ! Type |
| | |- |
| | | 1 |
| | | 0-2-5-7-22 |
| | | 1-5/4-7/4-12/11-16/11 |
| | | keenanismic |
| | |- |
| | | 2 |
| | | 0-15-17-20-22 |
| | | 1-4/3-5/3-7/6-16/11 |
| | | keenanismic |
| | |- |
| | | 3 |
| | | 0-2-7-22-24 |
| | | 1-5/4-12/11-16/11-20/11 |
| | | keenanismic |
| | |- |
| | | 4 |
| | | 0-2-17-22-24 |
| | | 1-5/4-5/3-16/11-20/11 |
| | | keenanismic |
| | |- |
| | | 5 |
| | | 0-3-5-20-27 |
| | | 1-7/5-7/4-7/6-14/11 |
| | | utonal |
| | |- |
| | | 6 |
| | | 0-5-7-22-27 |
| | | 1-7/4-12/11-16/11-14/11 |
| | | keenanismic |
| | |- |
| | | 7 |
| | | 0-5-20-22-27 |
| | | 1-7/4-7/6-16/11-14/11 |
| | | keenanismic |
| | |- |
| | | 8 |
| | | 0-7-22-24-27 |
| | | 1-12/11-16/11-20/11-14/11 |
| | | otonal |
| | |- |
| | | 9 |
| | | 0-2-17-24-32 |
| | | 1-5/4-5/3-20/11-10/9 |
| | | utonal |
| | |- |
| | | 10 |
| | | 0-8-15-30-32 |
| | | 1-11/9-4/3-16/9-10/9 |
| | | otonal |
| | |- |
| | | 11 |
| | | 0-3-5-8-35 |
| | | 1-7/5-7/4-11/9-14/9 |
| | | werckismic |
| | |- |
| | | 12 |
| | | 0-3-5-20-35 |
| | | 1-7/5-7/4-7/6-14/9 |
| | | utonal |
| | |- |
| | | 13 |
| | | 0-3-5-27-35 |
| | | 1-7/5-7/4-14/11-14/9 |
| | | utonal |
| | |- |
| | | 14 |
| | | 0-3-20-27-35 |
| | | 1-7/5-7/6-14/11-14/9 |
| | | utonal |
| | |- |
| | | 15 |
| | | 0-5-20-27-35 |
| | | 1-7/4-7/6-14/11-14/9 |
| | | utonal |
| | |- |
| | | 16 |
| | | 0-3-8-30-35 |
| | | 1-7/5-11/9-16/9-14/9 |
| | | werckismic |
| | |- |
| | | 17 |
| | | 0-8-15-30-35 |
| | | 1-11/9-4/3-16/9-14/9 |
| | | otonal |
| | |- |
| | | 18 |
| | | 0-3-27-30-35 |
| | | 1-7/5-14/11-16/9-14/9 |
| | | werckismic |
| | |- |
| | | 19 |
| | | 0-5-8-32-35 |
| | | 1-7/4-11/9-10/9-14/9 |
| | | werckismic |
| | |- |
| | | 20 |
| | | 0-8-15-32-35 |
| | | 1-11/9-4/3-10/9-14/9 |
| | | otonal |
| | |- |
| | | 21 |
| | | 0-5-27-32-35 |
| | | 1-7/4-14/11-10/9-14/9 |
| | | werckismic |
| | |- |
| | | 22 |
| | | 0-8-30-32-35 |
| | | 1-11/9-16/9-10/9-14/9 |
| | | otonal |
| | |- |
| | | 23 |
| | | 0-15-30-32-35 |
| | | 1-4/3-16/9-10/9-14/9 |
| | | otonal |
| | |- |
| | | 24 |
| | | 0-27-30-32-35 |
| | | 1-14/11-16/9-10/9-14/9 |
| | | werckismic |
| | |} |
|
| |
|
| | == Hexads == |
|
| |
|
| <table class="wiki_table">
| | {| class="wikitable" |
| <tr>
| | |- |
| <td>Number<br />
| | ! Number |
| </td>
| | ! Chord |
| <td>Chord<br />
| | ! Transversal |
| </td>
| | ! Type |
| <td>Transversal<br />
| | |- |
| </td>
| | | 1 |
| <td>Type<br />
| | | 0-3-5-20-27-35 |
| </td>
| | | 1-7/5-7/4-7/6-14/11-14/9 |
| </tr>
| | | utonal |
| <tr>
| | |- |
| <td>1<br />
| | | 2 |
| </td>
| | | 0-8-15-30-32-35 |
| <td>0-2-5-7<br />
| | | 1-11/9-4/3-16/9-10/9-14/9 |
| </td>
| | | otonal |
| <td>1-5/4-7/4-12/11<br />
| | |} |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>0-3-5-8<br />
| |
| </td>
| |
| <td>1-7/5-7/4-11/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>0-3-5-20<br />
| |
| </td>
| |
| <td>1-7/5-7/4-7/6<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>0-15-17-20<br />
| |
| </td>
| |
| <td>1-4/3-5/3-7/6<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>0-2-5-22<br />
| |
| </td>
| |
| <td>1-5/4-7/4-16/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>0-2-7-22<br />
| |
| </td>
| |
| <td>1-5/4-12/11-16/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>0-5-7-22<br />
| |
| </td>
| |
| <td>1-7/4-12/11-16/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>0-7-15-22<br />
| |
| </td>
| |
| <td>1-12/11-4/3-16/11<br />
| |
| </td>
| |
| <td>ambitonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>0-2-17-22<br />
| |
| </td>
| |
| <td>1-5/4-5/3-16/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10<br />
| |
| </td>
| |
| <td>0-15-17-22<br />
| |
| </td>
| |
| <td>1-4/3-5/3-16/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11<br />
| |
| </td>
| |
| <td>0-5-20-22<br />
| |
| </td>
| |
| <td>1-7/4-7/6-16/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12<br />
| |
| </td>
| |
| <td>0-15-20-22<br />
| |
| </td>
| |
| <td>1-4/3-7/6-16/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13<br />
| |
| </td>
| |
| <td>0-17-20-22<br />
| |
| </td>
| |
| <td>1-5/3-7/6-16/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14<br />
| |
| </td>
| |
| <td>0-2-7-24<br />
| |
| </td>
| |
| <td>1-5/4-12/11-20/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>15<br />
| |
| </td>
| |
| <td>0-2-17-24<br />
| |
| </td>
| |
| <td>1-5/4-5/3-20/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>16<br />
| |
| </td>
| |
| <td>0-2-22-24<br />
| |
| </td>
| |
| <td>1-5/4-16/11-20/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17<br />
| |
| </td>
| |
| <td>0-7-22-24<br />
| |
| </td>
| |
| <td>1-12/11-16/11-20/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18<br />
| |
| </td>
| |
| <td>0-17-22-24<br />
| |
| </td>
| |
| <td>1-5/3-16/11-20/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>19<br />
| |
| </td>
| |
| <td>0-3-5-27<br />
| |
| </td>
| |
| <td>1-7/5-7/4-14/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20<br />
| |
| </td>
| |
| <td>0-5-7-27<br />
| |
| </td>
| |
| <td>1-7/4-12/11-14/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>21<br />
| |
| </td>
| |
| <td>0-3-20-27<br />
| |
| </td>
| |
| <td>1-7/5-7/6-14/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>22<br />
| |
| </td>
| |
| <td>0-5-20-27<br />
| |
| </td>
| |
| <td>1-7/4-7/6-14/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>23<br />
| |
| </td>
| |
| <td>0-5-22-27<br />
| |
| </td>
| |
| <td>1-7/4-16/11-14/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>24<br />
| |
| </td>
| |
| <td>0-7-22-27<br />
| |
| </td>
| |
| <td>1-12/11-16/11-14/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>25<br />
| |
| </td>
| |
| <td>0-20-22-27<br />
| |
| </td>
| |
| <td>1-7/6-16/11-14/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>26<br />
| |
| </td>
| |
| <td>0-7-24-27<br />
| |
| </td>
| |
| <td>1-12/11-20/11-14/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>27<br />
| |
| </td>
| |
| <td>0-22-24-27<br />
| |
| </td>
| |
| <td>1-16/11-20/11-14/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>28<br />
| |
| </td>
| |
| <td>0-3-8-30<br />
| |
| </td>
| |
| <td>1-7/5-11/9-16/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>29<br />
| |
| </td>
| |
| <td>0-8-15-30<br />
| |
| </td>
| |
| <td>1-11/9-4/3-16/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>30<br />
| |
| </td>
| |
| <td>0-15-22-30<br />
| |
| </td>
| |
| <td>1-4/3-16/11-16/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>31<br />
| |
| </td>
| |
| <td>0-3-27-30<br />
| |
| </td>
| |
| <td>1-7/5-14/11-16/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>32<br />
| |
| </td>
| |
| <td>0-22-27-30<br />
| |
| </td>
| |
| <td>1-16/11-14/11-16/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>33<br />
| |
| </td>
| |
| <td>0-2-5-32<br />
| |
| </td>
| |
| <td>1-5/4-7/4-10/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>34<br />
| |
| </td>
| |
| <td>0-5-8-32<br />
| |
| </td>
| |
| <td>1-7/4-11/9-10/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>35<br />
| |
| </td>
| |
| <td>0-8-15-32<br />
| |
| </td>
| |
| <td>1-11/9-4/3-10/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>36<br />
| |
| </td>
| |
| <td>0-2-17-32<br />
| |
| </td>
| |
| <td>1-5/4-5/3-10/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>37<br />
| |
| </td>
| |
| <td>0-15-17-32<br />
| |
| </td>
| |
| <td>1-4/3-5/3-10/9<br />
| |
| </td>
| |
| <td>ambitonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>38<br />
| |
| </td>
| |
| <td>0-2-24-32<br />
| |
| </td>
| |
| <td>1-5/4-20/11-10/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>39<br />
| |
| </td>
| |
| <td>0-17-24-32<br />
| |
| </td>
| |
| <td>1-5/3-20/11-10/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>40<br />
| |
| </td>
| |
| <td>0-5-27-32<br />
| |
| </td>
| |
| <td>1-7/4-14/11-10/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>41<br />
| |
| </td>
| |
| <td>0-24-27-32<br />
| |
| </td>
| |
| <td>1-20/11-14/11-10/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>42<br />
| |
| </td>
| |
| <td>0-8-30-32<br />
| |
| </td>
| |
| <td>1-11/9-16/9-10/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>43<br />
| |
| </td>
| |
| <td>0-15-30-32<br />
| |
| </td>
| |
| <td>1-4/3-16/9-10/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>44<br />
| |
| </td>
| |
| <td>0-27-30-32<br />
| |
| </td>
| |
| <td>1-14/11-16/9-10/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>45<br />
| |
| </td>
| |
| <td>0-3-5-35<br />
| |
| </td>
| |
| <td>1-7/5-7/4-14/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>46<br />
| |
| </td>
| |
| <td>0-3-8-35<br />
| |
| </td>
| |
| <td>1-7/5-11/9-14/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>47<br />
| |
| </td>
| |
| <td>0-5-8-35<br />
| |
| </td>
| |
| <td>1-7/4-11/9-14/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>48<br />
| |
| </td>
| |
| <td>0-8-15-35<br />
| |
| </td>
| |
| <td>1-11/9-4/3-14/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>49<br />
| |
| </td>
| |
| <td>0-3-20-35<br />
| |
| </td>
| |
| <td>1-7/5-7/6-14/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>50<br />
| |
| </td>
| |
| <td>0-5-20-35<br />
| |
| </td>
| |
| <td>1-7/4-7/6-14/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>51<br />
| |
| </td>
| |
| <td>0-15-20-35<br />
| |
| </td>
| |
| <td>1-4/3-7/6-14/9<br />
| |
| </td>
| |
| <td>ambitonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>52<br />
| |
| </td>
| |
| <td>0-3-27-35<br />
| |
| </td>
| |
| <td>1-7/5-14/11-14/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>53<br />
| |
| </td>
| |
| <td>0-5-27-35<br />
| |
| </td>
| |
| <td>1-7/4-14/11-14/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>54<br />
| |
| </td>
| |
| <td>0-20-27-35<br />
| |
| </td>
| |
| <td>1-7/6-14/11-14/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>55<br />
| |
| </td>
| |
| <td>0-3-30-35<br />
| |
| </td>
| |
| <td>1-7/5-16/9-14/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>56<br />
| |
| </td>
| |
| <td>0-8-30-35<br />
| |
| </td>
| |
| <td>1-11/9-16/9-14/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>57<br />
| |
| </td>
| |
| <td>0-15-30-35<br />
| |
| </td>
| |
| <td>1-4/3-16/9-14/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>58<br />
| |
| </td>
| |
| <td>0-27-30-35<br />
| |
| </td>
| |
| <td>1-14/11-16/9-14/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>59<br />
| |
| </td>
| |
| <td>0-5-32-35<br />
| |
| </td>
| |
| <td>1-7/4-10/9-14/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>60<br />
| |
| </td>
| |
| <td>0-8-32-35<br />
| |
| </td>
| |
| <td>1-11/9-10/9-14/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>61<br />
| |
| </td>
| |
| <td>0-15-32-35<br />
| |
| </td>
| |
| <td>1-4/3-10/9-14/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>62<br />
| |
| </td>
| |
| <td>0-27-32-35<br />
| |
| </td>
| |
| <td>1-14/11-10/9-14/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>63<br />
| |
| </td>
| |
| <td>0-30-32-35<br />
| |
| </td>
| |
| <td>1-16/9-10/9-14/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| <br />
| | [[Category:Lists of chords]] |
| <!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Pentads"></a><!-- ws:end:WikiTextHeadingRule:4 -->Pentads</h1>
| | [[Category:Hemithirds]] |
| | |
| | |
| <table class="wiki_table">
| |
| <tr>
| |
| <td>Number<br />
| |
| </td>
| |
| <td>Chord<br />
| |
| </td>
| |
| <td>Transversal<br />
| |
| </td>
| |
| <td>Type<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>0-2-5-7-22<br />
| |
| </td>
| |
| <td>1-5/4-7/4-12/11-16/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>0-15-17-20-22<br />
| |
| </td>
| |
| <td>1-4/3-5/3-7/6-16/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>0-2-7-22-24<br />
| |
| </td>
| |
| <td>1-5/4-12/11-16/11-20/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>0-2-17-22-24<br />
| |
| </td>
| |
| <td>1-5/4-5/3-16/11-20/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>0-3-5-20-27<br />
| |
| </td>
| |
| <td>1-7/5-7/4-7/6-14/11<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>0-5-7-22-27<br />
| |
| </td>
| |
| <td>1-7/4-12/11-16/11-14/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>0-5-20-22-27<br />
| |
| </td>
| |
| <td>1-7/4-7/6-16/11-14/11<br />
| |
| </td>
| |
| <td>keenanismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>0-7-22-24-27<br />
| |
| </td>
| |
| <td>1-12/11-16/11-20/11-14/11<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>0-2-17-24-32<br />
| |
| </td>
| |
| <td>1-5/4-5/3-20/11-10/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10<br />
| |
| </td>
| |
| <td>0-8-15-30-32<br />
| |
| </td>
| |
| <td>1-11/9-4/3-16/9-10/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11<br />
| |
| </td>
| |
| <td>0-3-5-8-35<br />
| |
| </td>
| |
| <td>1-7/5-7/4-11/9-14/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12<br />
| |
| </td>
| |
| <td>0-3-5-20-35<br />
| |
| </td>
| |
| <td>1-7/5-7/4-7/6-14/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13<br />
| |
| </td>
| |
| <td>0-3-5-27-35<br />
| |
| </td>
| |
| <td>1-7/5-7/4-14/11-14/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14<br />
| |
| </td>
| |
| <td>0-3-20-27-35<br />
| |
| </td>
| |
| <td>1-7/5-7/6-14/11-14/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>15<br />
| |
| </td>
| |
| <td>0-5-20-27-35<br />
| |
| </td>
| |
| <td>1-7/4-7/6-14/11-14/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>16<br />
| |
| </td>
| |
| <td>0-3-8-30-35<br />
| |
| </td>
| |
| <td>1-7/5-11/9-16/9-14/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17<br />
| |
| </td>
| |
| <td>0-8-15-30-35<br />
| |
| </td>
| |
| <td>1-11/9-4/3-16/9-14/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18<br />
| |
| </td>
| |
| <td>0-3-27-30-35<br />
| |
| </td>
| |
| <td>1-7/5-14/11-16/9-14/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>19<br />
| |
| </td>
| |
| <td>0-5-8-32-35<br />
| |
| </td>
| |
| <td>1-7/4-11/9-10/9-14/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20<br />
| |
| </td>
| |
| <td>0-8-15-32-35<br />
| |
| </td>
| |
| <td>1-11/9-4/3-10/9-14/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>21<br />
| |
| </td>
| |
| <td>0-5-27-32-35<br />
| |
| </td>
| |
| <td>1-7/4-14/11-10/9-14/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>22<br />
| |
| </td>
| |
| <td>0-8-30-32-35<br />
| |
| </td>
| |
| <td>1-11/9-16/9-10/9-14/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>23<br />
| |
| </td>
| |
| <td>0-15-30-32-35<br />
| |
| </td>
| |
| <td>1-4/3-16/9-10/9-14/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>24<br />
| |
| </td>
| |
| <td>0-27-30-32-35<br />
| |
| </td>
| |
| <td>1-14/11-16/9-10/9-14/9<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| | |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Hexads"></a><!-- ws:end:WikiTextHeadingRule:6 -->Hexads</h1>
| |
| | |
| | |
| <table class="wiki_table">
| |
| <tr>
| |
| <td>Number<br />
| |
| </td>
| |
| <td>Chord<br />
| |
| </td>
| |
| <td>Transversal<br />
| |
| </td>
| |
| <td>Type<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>0-3-5-20-27-35<br />
| |
| </td>
| |
| <td>1-7/5-7/4-7/6-14/11-14/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>0-8-15-30-32-35<br />
| |
| </td>
| |
| <td>1-11/9-4/3-16/9-10/9-14/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| | |
| </body></html></pre></div>
| |