Bohpier/Chords: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 290312079 - Original comment: **
m Lériendil moved page Chords of bohpier to Bohpier/Chords
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
Below are listed the [[Dyadic_chord|dyadic chords]] of 11-limit [[Sensamagic_clan#Bohpier|bohpier temperament]]. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 540/539 are swetismic, by 245/243 sensamagic, by 100/99 ptolemismic, and by 1344/1331 hemimin. Chords requiring any two of 540/539, 245/243 or 100/99 are labeled octarod.
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-01-08 01:47:58 UTC</tt>.<br>
: The original revision id was <tt>290312079</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Below are listed the [[Dyadic chord|dyadic chords]] of 11-limit [[Sensamagic clan#Bohpier|bohpier temperament]]. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 540/539 are swetismic, by 245/243 sensamagic, by 100/99 ptolemismic, and by 1344/1331 hemimin. Chords requiring any two of 540/539, 245/243 or 100/99 are labeled octarod.


Bohpier has MOS of size 8, 9, 17, 25, 33, 41 and 49, and it may be seen that even the eight-note MOS comes equipped with some triads and tetrads. It should also be noted that the generator chain of 7-limit bohpier is the [[Bohlen-Pierce]] scale, and the same is true of 11-limit bohpier if we do not regard 11/4 as a forbidden interval because the denominator is an even number. Hence, every chord listed below has a voicing which makes it a chord of Bohlen-Pierce, showing Bohlen-Pierce contains many essentially tempered chords. The listed transversals may be converted to Bohlen-Pierce transversals by adjusting up an octave past 9/5~20/11, so that 7/6 becomes 7/3, 14/11 becomes 28/11, 11/8 becomes 11/4, 3/2 becomes 3, 18/11 becomes 36/11, 5/4 becomes 5, 7/4 becomes 7, and 9/8 becomes 9. It should also be noted that 13-limit bohpier, and hence 13-limit Bohlen-Pierce, has many more 13-limit essentially tempered chords.
Bohpier has MOS of size 8, 9, 17, 25, 33, 41 and 49, and it may be seen that even the eight-note MOS comes equipped with some triads and tetrads. It should also be noted that the generator chain of 7-limit bohpier is the [[Bohlen–Pierce scale]], and the same is true of 11-limit bohpier if we do not regard 11/4 as a forbidden interval because the denominator is an even number. Hence, every chord listed below has a voicing which makes it a chord of Bohlen–Pierce, showing Bohlen–Pierce contains many essentially tempered chords. The listed transversals may be converted to Bohlen–Pierce transversals by adjusting up an octave past 9/5~20/11, so that 7/6 becomes 7/3, 14/11 becomes 28/11, 11/8 becomes 11/4, 3/2 becomes 3, 18/11 becomes 36/11, 5/4 becomes 5, 7/4 becomes 7, and 9/8 becomes 9. It should also be noted that 13-limit bohpier, and hence 13-limit Bohlen–Pierce, has many more 13-limit essentially tempered chords.


In strictly traditional Bohlen-Pierce theory, only ratios with odd numbers are considered, such as produce coincident partials on instruments with only odd harmonics (e.g. an ideal clarinet). The essentially tempered chords of this 3.5.7 system are much more limited - besides the JI chords (otonal, utonal, and ambitonal), only the [[sensamagic chords]] exist in strict Bohlen-Pierce.
In strictly traditional Bohlen–Pierce theory, only ratios with odd numbers are considered, such as produce coincident partials on timbres whose overtones consist of mostly or only odd harmonics, such as square waves, triangle waves, and an ideal clarinet. The essentially tempered chords of this 3.5.7 system are much more limited—besides the JI chords (otonal, utonal, and ambitonal), only the [[sensamagic chords]] exist in strict Bohlen–Pierce.


=Triads=  
== Triads ==
|| Number || Chord || Transversal || Type ||
{| class="wikitable"
|| 1 || 0-1-4 || 1-12/11-7/5 || swetismic ||
|-
|| 2 || 0-3-4 || 1-9/7-7/5 || swetismic ||
! Number
|| 3 || 0-3-6 || 1-9/7-5/3 || sensamagic ||
! Chord
|| 4 || 0-1-7 || 1-12/11-20/11 || otonal ||
! Transversal
|| 5 || 0-3-7 || 1-9/7-9/5 || utonal ||
! Type
|| 6 || 0-4-7 || 1-7/5-9/5 || otonal ||
|-
|| 7 || 0-6-7 || 1-5/3-20/11 || utonal ||
| 1
|| 8 || 0-3-10 || 1-9/7-7/6 || sensamagic ||
| 0-1-4
|| 9 || 0-4-10 || 1-7/5-7/6 || utonal ||
| 1-12/11-7/5
|| 10 || 0-6-10 || 1-5/3-7/6 || otonal ||
| swetismic
|| 11 || 0-7-10 || 1-9/5-7/6 || sensamagic ||
|-
|| 12 || 0-1-11 || 1-12/11-14/11 || otonal ||
| 2
|| 13 || 0-4-11 || 1-7/5-14/11 || utonal ||
| 0-3-4
|| 14 || 0-7-11 || 1-20/11-14/11 || otonal ||
| 1-9/7-7/5
|| 15 || 0-10-11 || 1-7/6-14/11 || utonal ||
| swetismic
|| 16 || 0-1-12 || 1-12/11-11/8 || hemimin ||
|-
|| 17 || 0-6-12 || 1-5/3-11/8 || ptolemismic ||
| 3
|| 18 || 0-11-12 || 1-14/11-11/8 || hemimin ||
| 0-3-6
|| 19 || 0-1-13 || 1-12/11-3/2 || utonal ||
| 1-9/7-5/3
|| 20 || 0-3-13 || 1-9/7-3/2 || utonal ||
| sensamagic
|| 21 || 0-6-13 || 1-5/3-3/2 || otonal ||
|-
|| 22 || 0-7-13 || 1-9/5-3/2 || utonal ||
| 4
|| 23 || 0-10-13 || 1-7/6-3/2 || otonal ||
| 0-1-7
|| 24 || 0-12-13 || 1-11/8-3/2 || otonal ||
| 1-12/11-20/11
|| 25 || 0-1-14 || 1-12/11-18/11 || otonal ||
| otonal
|| 26 || 0-3-14 || 1-9/7-18/11 || utonal ||
|-
|| 27 || 0-4-14 || 1-7/5-18/11 || swetismic ||
| 5
|| 28 || 0-7-14 || 1-9/5-18/11 || utonal ||
| 0-3-7
|| 29 || 0-10-14 || 1-7/6-18/11 || swetismic ||
| 1-9/7-9/5
|| 30 || 0-11-14 || 1-14/11-18/11 || otonal ||
| utonal
|| 31 || 0-13-14 || 1-3/2-18/11 || utonal ||
|-
|| 32 || 0-6-19 || 1-5/3-5/4 || utonal ||
| 6
|| 33 || 0-7-19 || 1-20/11-5/4 || utonal ||
| 0-4-7
|| 34 || 0-12-19 || 1-11/8-5/4 || otonal ||
| 1-7/5-9/5
|| 35 || 0-13-19 || 1-3/2-5/4 || otonal ||
| otonal
|| 36 || 0-4-23 || 1-7/5-7/4 || utonal ||
|-
|| 37 || 0-10-23 || 1-7/6-7/4 || utonal ||
| 7
|| 38 || 0-11-23 || 1-14/11-7/4 || utonal ||
| 0-6-7
|| 39 || 0-12-23 || 1-11/8-7/4 || otonal ||
| 1-5/3-20/11
|| 40 || 0-13-23 || 1-3/2-7/4 || otonal ||
| utonal
|| 41 || 0-19-23 || 1-5/4-7/4 || otonal ||
|-
|| 42 || 0-3-26 || 1-9/7-9/8 || utonal ||
| 8
|| 43 || 0-7-26 || 1-9/5-9/8 || utonal ||
| 0-3-10
|| 44 || 0-12-26 || 1-11/8-9/8 || otonal ||
| 1-9/7-7/6
|| 45 || 0-13-26 || 1-3/2-9/8 || ambitonal ||
| sensamagic
|| 46 || 0-14-26 || 1-18/11-9/8 || utonal ||
|-
|| 47 || 0-19-26 || 1-5/4-9/8 || otonal ||
| 9
|| 48 || 0-23-26 || 1-7/4-9/8 || otonal ||
| 0-4-10
| 1-7/5-7/6
| utonal
|-
| 10
| 0-6-10
| 1-5/3-7/6
| otonal
|-
| 11
| 0-7-10
| 1-9/5-7/6
| sensamagic
|-
| 12
| 0-1-11
| 1-12/11-14/11
| otonal
|-
| 13
| 0-4-11
| 1-7/5-14/11
| utonal
|-
| 14
| 0-7-11
| 1-20/11-14/11
| otonal
|-
| 15
| 0-10-11
| 1-7/6-14/11
| utonal
|-
| 16
| 0-1-12
| 1-12/11-11/8
| hemimin
|-
| 17
| 0-6-12
| 1-5/3-11/8
| ptolemismic
|-
| 18
| 0-11-12
| 1-14/11-11/8
| hemimin
|-
| 19
| 0-1-13
| 1-12/11-3/2
| utonal
|-
| 20
| 0-3-13
| 1-9/7-3/2
| utonal
|-
| 21
| 0-6-13
| 1-5/3-3/2
| otonal
|-
| 22
| 0-7-13
| 1-9/5-3/2
| utonal
|-
| 23
| 0-10-13
| 1-7/6-3/2
| otonal
|-
| 24
| 0-12-13
| 1-11/8-3/2
| otonal
|-
| 25
| 0-1-14
| 1-12/11-18/11
| otonal
|-
| 26
| 0-3-14
| 1-9/7-18/11
| utonal
|-
| 27
| 0-4-14
| 1-7/5-18/11
| swetismic
|-
| 28
| 0-7-14
| 1-9/5-18/11
| utonal
|-
| 29
| 0-10-14
| 1-7/6-18/11
| swetismic
|-
| 30
| 0-11-14
| 1-14/11-18/11
| otonal
|-
| 31
| 0-13-14
| 1-3/2-18/11
| utonal
|-
| 32
| 0-6-19
| 1-5/3-5/4
| utonal
|-
| 33
| 0-7-19
| 1-20/11-5/4
| utonal
|-
| 34
| 0-12-19
| 1-11/8-5/4
| otonal
|-
| 35
| 0-13-19
| 1-3/2-5/4
| otonal
|-
| 36
| 0-4-23
| 1-7/5-7/4
| utonal
|-
| 37
| 0-10-23
| 1-7/6-7/4
| utonal
|-
| 38
| 0-11-23
| 1-14/11-7/4
| utonal
|-
| 39
| 0-12-23
| 1-11/8-7/4
| otonal
|-
| 40
| 0-13-23
| 1-3/2-7/4
| otonal
|-
| 41
| 0-19-23
| 1-5/4-7/4
| otonal
|-
| 42
| 0-3-26
| 1-9/7-9/8
| utonal
|-
| 43
| 0-7-26
| 1-9/5-9/8
| utonal
|-
| 44
| 0-12-26
| 1-11/8-9/8
| otonal
|-
| 45
| 0-13-26
| 1-3/2-9/8
| ambitonal
|-
| 46
| 0-14-26
| 1-18/11-9/8
| utonal
|-
| 47
| 0-19-26
| 1-5/4-9/8
| otonal
|-
| 48
| 0-23-26
| 1-7/4-9/8
| otonal
|}


=Tetrads=  
== Tetrads ==
|| Number || Chord || Transversal || Type ||
{| class="wikitable"
|| 1 || 0-1-4-7 || 1-12/11-7/5-9/5 || octarod ||
|-
|| 2 || 0-3-4-7 || 1-9/7-7/5-9/5 || swetismic ||
! Number
|| 3 || 0-3-6-7 || 1-9/7-5/3-9/5 || octarod ||
! Chord
|| 4 || 0-3-4-10 || 1-9/7-7/5-7/6 || octarod ||
! Transversal
|| 5 || 0-3-6-10 || 1-9/7-5/3-7/6 || sensamagic ||
! Type
|| 6 || 0-3-7-10 || 1-9/7-9/5-7/6 || sensamagic ||
|-
|| 7 || 0-4-7-10 || 1-7/5-9/5-7/6 || sensamagic ||
| 1
|| 8 || 0-6-7-10 || 1-5/3-9/5-7/6 || octarod ||
| 0-1-4-7
|| 9 || 0-1-4-11 || 1-12/11-7/5-14/11 || octarod ||
| 1-12/11-7/5-9/5
|| 10 || 0-1-7-11 || 1-12/11-20/11-14/11 || otonal ||
| octarod
|| 11 || 0-4-7-11 || 1-7/5-9/5-14/11 || ptolemismic ||
|-
|| 12 || 0-4-10-11 || 1-7/5-7/6-14/11 || utonal ||
| 2
|| 13 || 0-7-10-11 || 1-9/5-7/6-14/11 || octarod ||
| 0-3-4-7
|| 14 || 0-1-11-12 || 1-12/11-14/11-11/8 || hemimin ||
| 1-9/7-7/5-9/5
|| 15 || 0-3-6-13 || 1-9/7-5/3-3/2 || sensamagic ||
| swetismic
|| 16 || 0-1-7-13 || 1-12/11-9/5-3/2 || ptolemismic ||
|-
|| 17 || 0-3-7-13 || 1-9/7-9/5-3/2 || utonal ||
| 3
|| 18 || 0-6-7-13 || 1-5/3-9/5-3/2 || ptolemismic ||
| 0-3-6-7
|| 19 || 0-3-10-13 || 1-9/7-7/6-3/2 || sensamagic ||
| 1-9/7-5/3-9/5
|| 20 || 0-6-10-13 || 1-5/3-7/6-3/2 || otonal ||
| octarod
|| 21 || 0-7-10-13 || 1-9/5-7/6-3/2 || sensamagic ||
|-
|| 22 || 0-1-12-13 || 1-12/11-11/8-3/2 || hemimin ||
| 4
|| 23 || 0-6-12-13 || 1-5/3-11/8-3/2 || ptolemismic ||
| 0-3-4-10
|| 24 || 0-1-4-14 || 1-12/11-7/5-18/11 || swetismic ||
| 1-9/7-7/5-7/6
|| 25 || 0-3-4-14 || 1-9/7-7/5-18/11 || swetismic ||
| octarod
|| 26 || 0-1-7-14 || 1-12/11-20/11-18/11 || otonal ||
|-
|| 27 || 0-3-7-14 || 1-9/7-9/5-18/11 || utonal ||
| 5
|| 28 || 0-4-7-14 || 1-7/5-9/5-18/11 || octarod ||
| 0-3-6-10
|| 29 || 0-3-10-14 || 1-9/7-7/6-18/11 || octarod ||
| 1-9/7-5/3-7/6
|| 30 || 0-4-10-14 || 1-7/5-7/6-18/11 || swetismic ||
| sensamagic
|| 31 || 0-7-10-14 || 1-9/5-7/6-18/11 || octarod ||
|-
|| 32 || 0-1-11-14 || 1-12/11-14/11-18/11 || otonal ||
| 6
|| 33 || 0-4-11-14 || 1-7/5-14/11-18/11 || octarod ||
| 0-3-7-10
|| 34 || 0-7-11-14 || 1-20/11-14/11-18/11 || otonal ||
| 1-9/7-9/5-7/6
|| 35 || 0-10-11-14 || 1-7/6-14/11-18/11 || swetismic ||
| sensamagic
|| 36 || 0-1-13-14 || 1-12/11-3/2-18/11 || ambitonal ||
|-
|| 37 || 0-3-13-14 || 1-9/7-3/2-18/11 || utonal ||
| 7
|| 38 || 0-7-13-14 || 1-9/5-3/2-18/11 || utonal ||
| 0-4-7-10
|| 39 || 0-10-13-14 || 1-7/6-3/2-18/11 || swetismic ||
| 1-7/5-9/5-7/6
|| 40 || 0-6-7-19 || 1-5/3-20/11-5/4 || utonal ||
| sensamagic
|| 41 || 0-6-12-19 || 1-5/3-11/8-5/4 || ptolemismic ||
|-
|| 42 || 0-6-13-19 || 1-5/3-3/2-5/4 || ambitonal ||
| 8
|| 43 || 0-7-13-19 || 1-9/5-3/2-5/4 || ptolemismic ||
| 0-6-7-10
|| 44 || 0-12-13-19 || 1-11/8-3/2-5/4 || otonal ||
| 1-5/3-9/5-7/6
|| 45 || 0-4-10-23 || 1-7/5-7/6-7/4 || utonal ||
| octarod
|| 46 || 0-4-11-23 || 1-7/5-14/11-7/4 || utonal ||
|-
|| 47 || 0-10-11-23 || 1-7/6-14/11-7/4 || utonal ||
| 9
|| 48 || 0-11-12-23 || 1-14/11-11/8-7/4 || hemimin ||
| 0-1-4-11
|| 49 || 0-10-13-23 || 1-7/6-3/2-7/4 || ambitonal ||
| 1-12/11-7/5-14/11
|| 50 || 0-12-13-23 || 1-11/8-3/2-7/4 || otonal ||
| octarod
|| 51 || 0-12-19-23 || 1-11/8-5/4-7/4 || otonal ||
|-
|| 52 || 0-13-19-23 || 1-3/2-5/4-7/4 || otonal ||
| 10
|| 53 || 0-3-7-26 || 1-9/7-9/5-9/8 || utonal ||
| 0-1-7-11
|| 54 || 0-3-13-26 || 1-9/7-3/2-9/8 || utonal ||
| 1-12/11-20/11-14/11
|| 55 || 0-7-13-26 || 1-9/5-3/2-9/8 || utonal ||
| otonal
|| 56 || 0-12-13-26 || 1-11/8-3/2-9/8 || otonal ||
|-
|| 57 || 0-3-14-26 || 1-9/7-18/11-9/8 || utonal ||
| 11
|| 58 || 0-7-14-26 || 1-9/5-18/11-9/8 || utonal ||
| 0-4-7-11
|| 59 || 0-13-14-26 || 1-3/2-18/11-9/8 || utonal ||
| 1-7/5-9/5-14/11
|| 60 || 0-7-19-26 || 1-9/5-5/4-9/8 || ptolemismic ||
| ptolemismic
|| 61 || 0-12-19-26 || 1-11/8-5/4-9/8 || otonal ||
|-
|| 62 || 0-13-19-26 || 1-3/2-5/4-9/8 || otonal ||
| 12
|| 63 || 0-12-23-26 || 1-11/8-7/4-9/8 || otonal ||
| 0-4-10-11
|| 64 || 0-13-23-26 || 1-3/2-7/4-9/8 || otonal ||
| 1-7/5-7/6-14/11
|| 65 || 0-19-23-26 || 1-5/4-7/4-9/8 || otonal ||
| utonal
|-
| 13
| 0-7-10-11
| 1-9/5-7/6-14/11
| octarod
|-
| 14
| 0-1-11-12
| 1-12/11-14/11-11/8
| hemimin
|-
| 15
| 0-3-6-13
| 1-9/7-5/3-3/2
| sensamagic
|-
| 16
| 0-1-7-13
| 1-12/11-9/5-3/2
| ptolemismic
|-
| 17
| 0-3-7-13
| 1-9/7-9/5-3/2
| utonal
|-
| 18
| 0-6-7-13
| 1-5/3-9/5-3/2
| ptolemismic
|-
| 19
| 0-3-10-13
| 1-9/7-7/6-3/2
| sensamagic
|-
| 20
| 0-6-10-13
| 1-5/3-7/6-3/2
| otonal
|-
| 21
| 0-7-10-13
| 1-9/5-7/6-3/2
| sensamagic
|-
| 22
| 0-1-12-13
| 1-12/11-11/8-3/2
| hemimin
|-
| 23
| 0-6-12-13
| 1-5/3-11/8-3/2
| ptolemismic
|-
| 24
| 0-1-4-14
| 1-12/11-7/5-18/11
| swetismic
|-
| 25
| 0-3-4-14
| 1-9/7-7/5-18/11
| swetismic
|-
| 26
| 0-1-7-14
| 1-12/11-20/11-18/11
| otonal
|-
| 27
| 0-3-7-14
| 1-9/7-9/5-18/11
| utonal
|-
| 28
| 0-4-7-14
| 1-7/5-9/5-18/11
| octarod
|-
| 29
| 0-3-10-14
| 1-9/7-7/6-18/11
| octarod
|-
| 30
| 0-4-10-14
| 1-7/5-7/6-18/11
| swetismic
|-
| 31
| 0-7-10-14
| 1-9/5-7/6-18/11
| octarod
|-
| 32
| 0-1-11-14
| 1-12/11-14/11-18/11
| otonal
|-
| 33
| 0-4-11-14
| 1-7/5-14/11-18/11
| octarod
|-
| 34
| 0-7-11-14
| 1-20/11-14/11-18/11
| otonal
|-
| 35
| 0-10-11-14
| 1-7/6-14/11-18/11
| swetismic
|-
| 36
| 0-1-13-14
| 1-12/11-3/2-18/11
| ambitonal
|-
| 37
| 0-3-13-14
| 1-9/7-3/2-18/11
| utonal
|-
| 38
| 0-7-13-14
| 1-9/5-3/2-18/11
| utonal
|-
| 39
| 0-10-13-14
| 1-7/6-3/2-18/11
| swetismic
|-
| 40
| 0-6-7-19
| 1-5/3-20/11-5/4
| utonal
|-
| 41
| 0-6-12-19
| 1-5/3-11/8-5/4
| ptolemismic
|-
| 42
| 0-6-13-19
| 1-5/3-3/2-5/4
| ambitonal
|-
| 43
| 0-7-13-19
| 1-9/5-3/2-5/4
| ptolemismic
|-
| 44
| 0-12-13-19
| 1-11/8-3/2-5/4
| otonal
|-
| 45
| 0-4-10-23
| 1-7/5-7/6-7/4
| utonal
|-
| 46
| 0-4-11-23
| 1-7/5-14/11-7/4
| utonal
|-
| 47
| 0-10-11-23
| 1-7/6-14/11-7/4
| utonal
|-
| 48
| 0-11-12-23
| 1-14/11-11/8-7/4
| hemimin
|-
| 49
| 0-10-13-23
| 1-7/6-3/2-7/4
| ambitonal
|-
| 50
| 0-12-13-23
| 1-11/8-3/2-7/4
| otonal
|-
| 51
| 0-12-19-23
| 1-11/8-5/4-7/4
| otonal
|-
| 52
| 0-13-19-23
| 1-3/2-5/4-7/4
| otonal
|-
| 53
| 0-3-7-26
| 1-9/7-9/5-9/8
| utonal
|-
| 54
| 0-3-13-26
| 1-9/7-3/2-9/8
| utonal
|-
| 55
| 0-7-13-26
| 1-9/5-3/2-9/8
| utonal
|-
| 56
| 0-12-13-26
| 1-11/8-3/2-9/8
| otonal
|-
| 57
| 0-3-14-26
| 1-9/7-18/11-9/8
| utonal
|-
| 58
| 0-7-14-26
| 1-9/5-18/11-9/8
| utonal
|-
| 59
| 0-13-14-26
| 1-3/2-18/11-9/8
| utonal
|-
| 60
| 0-7-19-26
| 1-9/5-5/4-9/8
| ptolemismic
|-
| 61
| 0-12-19-26
| 1-11/8-5/4-9/8
| otonal
|-
| 62
| 0-13-19-26
| 1-3/2-5/4-9/8
| otonal
|-
| 63
| 0-12-23-26
| 1-11/8-7/4-9/8
| otonal
|-
| 64
| 0-13-23-26
| 1-3/2-7/4-9/8
| otonal
|-
| 65
| 0-19-23-26
| 1-5/4-7/4-9/8
| otonal
|}


=Pentads=  
=Pentads=
|| Number || Chord || Transversal || Type ||
|| 1 || 0-3-4-7-10 || 1-9/7-7/5-9/5-7/6 || octarod ||
|| 2 || 0-3-6-7-10 || 1-9/7-5/3-9/5-7/6 || octarod ||
|| 3 || 0-1-4-7-11 || 1-12/11-7/5-9/5-14/11 || octarod ||
|| 4 || 0-4-7-10-11 || 1-7/5-9/5-7/6-14/11 || octarod ||
|| 5 || 0-3-6-7-13 || 1-9/7-5/3-9/5-3/2 || octarod ||
|| 6 || 0-3-6-10-13 || 1-9/7-5/3-7/6-3/2 || sensamagic ||
|| 7 || 0-3-7-10-13 || 1-9/7-9/5-7/6-3/2 || sensamagic ||
|| 8 || 0-6-7-10-13 || 1-5/3-9/5-7/6-3/2 || octarod ||
|| 9 || 0-1-4-7-14 || 1-12/11-7/5-9/5-18/11 || octarod ||
|| 10 || 0-3-4-7-14 || 1-9/7-7/5-9/5-18/11 || octarod ||
|| 11 || 0-3-4-10-14 || 1-9/7-7/5-7/6-18/11 || octarod ||
|| 12 || 0-3-7-10-14 || 1-9/7-9/5-7/6-18/11 || octarod ||
|| 13 || 0-4-7-10-14 || 1-7/5-9/5-7/6-18/11 || octarod ||
|| 14 || 0-1-4-11-14 || 1-12/11-7/5-14/11-18/11 || octarod ||
|| 15 || 0-1-7-11-14 || 1-12/11-20/11-14/11-18/11 || otonal ||
|| 16 || 0-4-7-11-14 || 1-7/5-9/5-14/11-18/11 || octarod ||
|| 17 || 0-4-10-11-14 || 1-7/5-7/6-14/11-18/11 || octarod ||
|| 18 || 0-7-10-11-14 || 1-9/5-7/6-14/11-18/11 || octarod ||
|| 19 || 0-1-7-13-14 || 1-12/11-9/5-3/2-18/11 || ptolemismic ||
|| 20 || 0-3-7-13-14 || 1-9/7-9/5-3/2-18/11 || utonal ||
|| 21 || 0-3-10-13-14 || 1-9/7-7/6-3/2-18/11 || octarod ||
|| 22 || 0-7-10-13-14 || 1-9/5-7/6-3/2-18/11 || octarod ||
|| 23 || 0-6-7-13-19 || 1-5/3-9/5-3/2-5/4 || ptolemismic ||
|| 24 || 0-6-12-13-19 || 1-5/3-11/8-3/2-5/4 || ptolemismic ||
|| 25 || 0-4-10-11-23 || 1-7/5-7/6-14/11-7/4 || utonal ||
|| 26 || 0-12-13-19-23 || 1-11/8-3/2-5/4-7/4 || otonal ||
|| 27 || 0-3-7-13-26 || 1-9/7-9/5-3/2-9/8 || utonal ||
|| 28 || 0-3-7-14-26 || 1-9/7-9/5-18/11-9/8 || utonal ||
|| 29 || 0-3-13-14-26 || 1-9/7-3/2-18/11-9/8 || utonal ||
|| 30 || 0-7-13-14-26 || 1-9/5-3/2-18/11-9/8 || utonal ||
|| 31 || 0-7-13-19-26 || 1-9/5-3/2-5/4-9/8 || ptolemismic ||
|| 32 || 0-12-13-19-26 || 1-11/8-3/2-5/4-9/8 || otonal ||
|| 33 || 0-12-13-23-26 || 1-11/8-3/2-7/4-9/8 || otonal ||
|| 34 || 0-12-19-23-26 || 1-11/8-5/4-7/4-9/8 || otonal ||
|| 35 || 0-13-19-23-26 || 1-3/2-5/4-7/4-9/8 || otonal ||


=Hexads=
{| class="wikitable"
|| Number || Chord || Transversal || Type ||
|-
|| 1 || 0-3-6-7-10-13 || 1-9/7-5/3-9/5-7/6-3/2 || octarod ||
| Number
|| 2 || 0-3-4-7-10-14 || 1-9/7-7/5-9/5-7/6-18/11 || octarod ||
| Chord
|| 3 || 0-1-4-7-11-14 || 1-12/11-7/5-9/5-14/11-18/11 || octarod ||
| Transversal
|| 4 || 0-4-7-10-11-14 || 1-7/5-9/5-7/6-14/11-18/11 || octarod ||
| Type
|| 5 || 0-3-7-10-13-14 || 1-9/7-9/5-7/6-3/2-18/11 || octarod ||
|-
|| 6 || 0-3-7-13-14-26 || 1-9/7-9/5-3/2-18/11-9/8 || utonal ||
| 1
|| 7 || 0-12-13-19-23-26 || 1-11/8-3/2-5/4-7/4-9/8 || otonal ||</pre></div>
| 0-3-4-7-10
<h4>Original HTML content:</h4>
| 1-9/7-7/5-9/5-7/6
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Chords of bohpier&lt;/title&gt;&lt;/head&gt;&lt;body&gt;Below are listed the &lt;a class="wiki_link" href="/Dyadic%20chord"&gt;dyadic chords&lt;/a&gt; of 11-limit &lt;a class="wiki_link" href="/Sensamagic%20clan#Bohpier"&gt;bohpier temperament&lt;/a&gt;. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 540/539 are swetismic, by 245/243 sensamagic, by 100/99 ptolemismic, and by 1344/1331 hemimin. Chords requiring any two of 540/539, 245/243 or 100/99 are labeled octarod.&lt;br /&gt;
| octarod
&lt;br /&gt;
|-
Bohpier has MOS of size 8, 9, 17, 25, 33, 41 and 49, and it may be seen that even the eight-note MOS comes equipped with some triads and tetrads. It should also be noted that the generator chain of 7-limit bohpier is the &lt;a class="wiki_link" href="/Bohlen-Pierce"&gt;Bohlen-Pierce&lt;/a&gt; scale, and the same is true of 11-limit bohpier if we do not regard 11/4 as a forbidden interval because the denominator is an even number. Hence, every chord listed below has a voicing which makes it a chord of Bohlen-Pierce, showing Bohlen-Pierce contains many essentially tempered chords. The listed transversals may be converted to Bohlen-Pierce transversals by adjusting up an octave past 9/5~20/11, so that 7/6 becomes 7/3, 14/11 becomes 28/11, 11/8 becomes 11/4, 3/2 becomes 3, 18/11 becomes 36/11, 5/4 becomes 5, 7/4 becomes 7, and 9/8 becomes 9. It should also be noted that 13-limit bohpier, and hence 13-limit Bohlen-Pierce, has many more 13-limit essentially tempered chords.&lt;br /&gt;
| 2
&lt;br /&gt;
| 0-3-6-7-10
In strictly traditional Bohlen-Pierce theory, only ratios with odd numbers are considered, such as produce coincident partials on instruments with only odd harmonics (e.g. an ideal clarinet). The essentially tempered chords of this 3.5.7 system are much more limited - besides the JI chords (otonal, utonal, and ambitonal), only the &lt;a class="wiki_link" href="/sensamagic%20chords"&gt;sensamagic chords&lt;/a&gt; exist in strict Bohlen-Pierce.&lt;br /&gt;
| 1-9/7-5/3-9/5-7/6
&lt;br /&gt;
| octarod
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Triads"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Triads&lt;/h1&gt;
|-
| 3
| 0-1-4-7-11
| 1-12/11-7/5-9/5-14/11
| octarod
|-
| 4
| 0-4-7-10-11
| 1-7/5-9/5-7/6-14/11
| octarod
|-
| 5
| 0-3-6-7-13
| 1-9/7-5/3-9/5-3/2
| octarod
|-
| 6
| 0-3-6-10-13
| 1-9/7-5/3-7/6-3/2
| sensamagic
|-
| 7
| 0-3-7-10-13
| 1-9/7-9/5-7/6-3/2
| sensamagic
|-
| 8
| 0-6-7-10-13
| 1-5/3-9/5-7/6-3/2
| octarod
|-
| 9
| 0-1-4-7-14
| 1-12/11-7/5-9/5-18/11
| octarod
|-
| 10
| 0-3-4-7-14
| 1-9/7-7/5-9/5-18/11
| octarod
|-
| 11
| 0-3-4-10-14
| 1-9/7-7/5-7/6-18/11
| octarod
|-
| 12
| 0-3-7-10-14
| 1-9/7-9/5-7/6-18/11
| octarod
|-
| 13
| 0-4-7-10-14
| 1-7/5-9/5-7/6-18/11
| octarod
|-
| 14
| 0-1-4-11-14
| 1-12/11-7/5-14/11-18/11
| octarod
|-
| 15
| 0-1-7-11-14
| 1-12/11-20/11-14/11-18/11
| otonal
|-
| 16
| 0-4-7-11-14
| 1-7/5-9/5-14/11-18/11
| octarod
|-
| 17
| 0-4-10-11-14
| 1-7/5-7/6-14/11-18/11
| octarod
|-
| 18
| 0-7-10-11-14
| 1-9/5-7/6-14/11-18/11
| octarod
|-
| 19
| 0-1-7-13-14
| 1-12/11-9/5-3/2-18/11
| ptolemismic
|-
| 20
| 0-3-7-13-14
| 1-9/7-9/5-3/2-18/11
| utonal
|-
| 21
| 0-3-10-13-14
| 1-9/7-7/6-3/2-18/11
| octarod
|-
| 22
| 0-7-10-13-14
| 1-9/5-7/6-3/2-18/11
| octarod
|-
| 23
| 0-6-7-13-19
| 1-5/3-9/5-3/2-5/4
| ptolemismic
|-
| 24
| 0-6-12-13-19
| 1-5/3-11/8-3/2-5/4
| ptolemismic
|-
| 25
| 0-4-10-11-23
| 1-7/5-7/6-14/11-7/4
| utonal
|-
| 26
| 0-12-13-19-23
| 1-11/8-3/2-5/4-7/4
| otonal
|-
| 27
| 0-3-7-13-26
| 1-9/7-9/5-3/2-9/8
| utonal
|-
| 28
| 0-3-7-14-26
| 1-9/7-9/5-18/11-9/8
| utonal
|-
| 29
| 0-3-13-14-26
| 1-9/7-3/2-18/11-9/8
| utonal
|-
| 30
| 0-7-13-14-26
| 1-9/5-3/2-18/11-9/8
| utonal
|-
| 31
| 0-7-13-19-26
| 1-9/5-3/2-5/4-9/8
| ptolemismic
|-
| 32
| 0-12-13-19-26
| 1-11/8-3/2-5/4-9/8
| otonal
|-
| 33
| 0-12-13-23-26
| 1-11/8-3/2-7/4-9/8
| otonal
|-
| 34
| 0-12-19-23-26
| 1-11/8-5/4-7/4-9/8
| otonal
|-
| 35
| 0-13-19-23-26
| 1-3/2-5/4-7/4-9/8
| otonal
|}


&lt;table class="wiki_table"&gt;
== Hexads ==
    &lt;tr&gt;
{| class="wikitable"
        &lt;td&gt;Number&lt;br /&gt;
|-
&lt;/td&gt;
! Number
        &lt;td&gt;Chord&lt;br /&gt;
! Chord
&lt;/td&gt;
! Transversal
        &lt;td&gt;Transversal&lt;br /&gt;
! Type
&lt;/td&gt;
|-
        &lt;td&gt;Type&lt;br /&gt;
| 1
&lt;/td&gt;
| 0-3-6-7-10-13
    &lt;/tr&gt;
| 1-9/7-5/3-9/5-7/6-3/2
    &lt;tr&gt;
| octarod
        &lt;td&gt;1&lt;br /&gt;
|-
&lt;/td&gt;
| 2
        &lt;td&gt;0-1-4&lt;br /&gt;
| 0-3-4-7-10-14
&lt;/td&gt;
| 1-9/7-7/5-9/5-7/6-18/11
        &lt;td&gt;1-12/11-7/5&lt;br /&gt;
| octarod
&lt;/td&gt;
|-
        &lt;td&gt;swetismic&lt;br /&gt;
| 3
&lt;/td&gt;
| 0-1-4-7-11-14
    &lt;/tr&gt;
| 1-12/11-7/5-9/5-14/11-18/11
    &lt;tr&gt;
| octarod
        &lt;td&gt;2&lt;br /&gt;
|-
&lt;/td&gt;
| 4
        &lt;td&gt;0-3-4&lt;br /&gt;
| 0-4-7-10-11-14
&lt;/td&gt;
| 1-7/5-9/5-7/6-14/11-18/11
        &lt;td&gt;1-9/7-7/5&lt;br /&gt;
| octarod
&lt;/td&gt;
|-
        &lt;td&gt;swetismic&lt;br /&gt;
| 5
&lt;/td&gt;
| 0-3-7-10-13-14
    &lt;/tr&gt;
| 1-9/7-9/5-7/6-3/2-18/11
    &lt;tr&gt;
| octarod
        &lt;td&gt;3&lt;br /&gt;
|-
&lt;/td&gt;
| 6
        &lt;td&gt;0-3-6&lt;br /&gt;
| 0-3-7-13-14-26
&lt;/td&gt;
| 1-9/7-9/5-3/2-18/11-9/8
        &lt;td&gt;1-9/7-5/3&lt;br /&gt;
| utonal
&lt;/td&gt;
|-
        &lt;td&gt;sensamagic&lt;br /&gt;
| 7
&lt;/td&gt;
| 0-12-13-19-23-26
    &lt;/tr&gt;
| 1-11/8-3/2-5/4-7/4-9/8
    &lt;tr&gt;
| otonal
        &lt;td&gt;4&lt;br /&gt;
|}
&lt;/td&gt;
        &lt;td&gt;0-1-7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-12/11-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-9/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-9/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/3-20/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;sensamagic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/3-7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-7-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/5-7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;sensamagic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-12/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-7-11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-20/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-10-11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-12/11-11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemimin&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/3-11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;ptolemismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-11-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemimin&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-12/11-3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/3-3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-7-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/5-3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-10-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/8-3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-12/11-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-7-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/5-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-10-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-11-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-13-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/3-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-7-19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-20/11-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;34&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/8-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-13-19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;36&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-10-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;38&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-11-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;39&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/8-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;40&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-13-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;41&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-19-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/4-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;42&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;43&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-7-26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/5-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;44&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/8-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;45&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-13-26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;ambitonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;46&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-14-26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-18/11-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;47&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-19-26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/4-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;48&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-23-26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/4-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;br /&gt;
[[Category:Lists of chords]]
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Tetrads"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Tetrads&lt;/h1&gt;
[[Category:Bohpier]]
[[Category:Bohlen–Pierce]]
 
[[Category:11-limit]]
&lt;table class="wiki_table"&gt;
[[Category:Dyadic chords]]
    &lt;tr&gt;
        &lt;td&gt;Number&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Chord&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Transversal&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Type&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-4-7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-12/11-7/5-9/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;octarod&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-4-7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-7/5-9/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-6-7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-5/3-9/5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;octarod&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-4-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-7/5-7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;octarod&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-6-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-5/3-7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;sensamagic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-7-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-9/5-7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;sensamagic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-7-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-9/5-7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;sensamagic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-7-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/3-9/5-7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;octarod&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-4-11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-12/11-7/5-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;octarod&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-7-11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-12/11-20/11-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-7-11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-9/5-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;ptolemismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-10-11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-7/6-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-7-10-11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/5-7/6-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;octarod&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-11-12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-12/11-14/11-11/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemimin&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-6-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-5/3-3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;sensamagic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-7-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-12/11-9/5-3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;ptolemismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-7-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-9/5-3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-7-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/3-9/5-3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;ptolemismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-10-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-7/6-3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;sensamagic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-10-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/3-7/6-3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-7-10-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/5-7/6-3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;sensamagic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-12-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-12/11-11/8-3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemimin&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-12-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/3-11/8-3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;ptolemismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-4-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-12/11-7/5-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-4-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-7/5-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-7-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-12/11-20/11-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-7-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-9/5-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-7-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-9/5-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;octarod&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-10-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-7/6-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;octarod&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-10-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-7/6-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-7-10-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/5-7/6-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;octarod&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-11-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-12/11-14/11-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-11-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-14/11-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;octarod&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;34&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-7-11-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-20/11-14/11-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-10-11-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-14/11-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;36&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-13-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-12/11-3/2-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;ambitonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-13-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-3/2-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;38&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-7-13-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/5-3/2-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;39&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-10-13-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-3/2-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;swetismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;40&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-7-19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/3-20/11-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;41&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-12-19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/3-11/8-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;ptolemismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;42&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-13-19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/3-3/2-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;ambitonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;43&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-7-13-19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/5-3/2-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;ptolemismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;44&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-13-19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/8-3/2-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;45&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-10-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-7/6-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;46&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-11-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-14/11-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;47&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-10-11-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-14/11-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;48&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-11-12-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-14/11-11/8-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;hemimin&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;49&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-10-13-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/6-3/2-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;ambitonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;50&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-13-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/8-3/2-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;51&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-19-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/8-5/4-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;52&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-13-19-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-5/4-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;53&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-7-26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-9/5-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;54&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-13-26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-3/2-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;55&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-7-13-26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/5-3/2-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;56&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-13-26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/8-3/2-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;57&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-14-26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-18/11-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;58&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-7-14-26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/5-18/11-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;59&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-13-14-26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-18/11-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;60&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-7-19-26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/5-5/4-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;ptolemismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;61&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-19-26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/8-5/4-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;62&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-13-19-26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-5/4-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;63&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-23-26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/8-7/4-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;64&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-13-23-26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-7/4-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;65&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-19-23-26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/4-7/4-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Pentads"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Pentads&lt;/h1&gt;
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;td&gt;Number&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Chord&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Transversal&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Type&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-4-7-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-7/5-9/5-7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;octarod&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-6-7-10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-5/3-9/5-7/6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;octarod&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-4-7-11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-12/11-7/5-9/5-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;octarod&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-7-10-11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-9/5-7/6-14/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;octarod&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-6-7-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-5/3-9/5-3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;octarod&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-6-10-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-5/3-7/6-3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;sensamagic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-7-10-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-9/5-7/6-3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;sensamagic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-7-10-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/3-9/5-7/6-3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;octarod&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-4-7-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-12/11-7/5-9/5-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;octarod&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-4-7-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-7/5-9/5-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;octarod&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-4-10-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-7/5-7/6-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;octarod&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-7-10-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-9/5-7/6-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;octarod&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-7-10-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-9/5-7/6-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;octarod&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-4-11-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-12/11-7/5-14/11-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;octarod&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-7-11-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-12/11-20/11-14/11-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-7-11-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-9/5-14/11-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;octarod&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-10-11-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-7/6-14/11-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;octarod&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-7-10-11-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/5-7/6-14/11-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;octarod&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-7-13-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-12/11-9/5-3/2-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;ptolemismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-7-13-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-9/5-3/2-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-10-13-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-7/6-3/2-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;octarod&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-7-10-13-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/5-7/6-3/2-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;octarod&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-7-13-19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/3-9/5-3/2-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;ptolemismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-6-12-13-19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-5/3-11/8-3/2-5/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;ptolemismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-10-11-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-7/6-14/11-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-13-19-23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/8-3/2-5/4-7/4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-7-13-26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-9/5-3/2-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-7-14-26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-9/5-18/11-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-13-14-26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-3/2-18/11-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-7-13-14-26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/5-3/2-18/11-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-7-13-19-26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/5-3/2-5/4-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;ptolemismic&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-13-19-26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/8-3/2-5/4-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-13-23-26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/8-3/2-7/4-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;34&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-19-23-26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/8-5/4-7/4-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-13-19-23-26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-3/2-5/4-7/4-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Hexads"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Hexads&lt;/h1&gt;
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;td&gt;Number&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Chord&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Transversal&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Type&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-6-7-10-13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-5/3-9/5-7/6-3/2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;octarod&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-4-7-10-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-7/5-9/5-7/6-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;octarod&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-1-4-7-11-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-12/11-7/5-9/5-14/11-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;octarod&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-4-7-10-11-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-7/5-9/5-7/6-14/11-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;octarod&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-7-10-13-14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-9/5-7/6-3/2-18/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;octarod&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-3-7-13-14-26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-9/7-9/5-3/2-18/11-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;utonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0-12-13-19-23-26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1-11/8-3/2-5/4-7/4-9/8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;otonal&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;/body&gt;&lt;/html&gt;</pre></div>