836edo: Difference between revisions

BudjarnLambeth (talk | contribs)
mNo edit summary
Francium (talk | contribs)
m changed EDO intro to ED intro
 
(10 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
{{EDO intro|836}}
{{ED intro}}


836edo is a strong 11-limit system, having the lowest absolute error beating [[612edo]].  
== Theory ==
836edo is a strong 11-limit system, having the record of lowest absolute error and beating [[612edo]].
 
As an equal temperament, it [[tempering out|tempers out]] the [[counterschisma]] and the [[enneadeca]] in the 5-limit; [[4375/4374]], [[703125/702464]] in the 7-limit; [[3025/3024]] and [[9801/9800]] in the 11-limit. It supports [[enneadecal]] in the 7-limit as well as [[hemienneadecal]] in the 11-limit. It also tunes [[orga]] and [[quasithird]]. In addition, it is divisible by 44 and in light of that it tunes [[ruthenium]] in the 7-limit and also 11-limit.
 
Extending it to the 13-limit requires choosing which mapping one wants to use, as both are nearly equally far off the mark. Using the [[patent val]], it tempers out [[2200/2197]], [[4096/4095]], 31250/31213 in the 13-limit; and [[1275/1274]], [[2500/2499]], [[2601/2600]] in the 17-limit. It provides the [[optimal patent val]] for 13-limit quasithird. Using the 836f [[val]], it tempers out [[1716/1715]], [[2080/2079]], 15379/15360 in the 13-limit; and [[2431/2430]], 2500/2499, [[4914/4913]], [[5832/5831]], 11271/11264 in the 17-limit. It gives a good tuning for 13-limit orga.  


836edo is a tuning for the [[enneadecal]] in the 7-limit as well as the [[hemienneadecal]] in the 11-limit. It also tunes [[orga]] and [[quasithird]]. In addition, it is divisible by 44 and in light of that it tunes [[ruthenium]] in the 7-limit and also 11-limit.
=== Prime harmonics ===
=== Prime harmonics ===
{{harmonics in equal|836}}
{{Harmonics in equal|836}}


=== Subsets and supersets ===
=== Subsets and supersets ===
836edo has subset edos {{EDOs|1, 2, 4, 11, 19, 22, 38, 44, 76, 209, 418}}.
Since 836 factors into 2<sup>2</sup> × 11 × 19, 836edo has subset edos {{EDOs| 2, 4, 11, 19, 22, 38, 44, 76, 209, 418 }}. [[1672edo]], which doubles it, provides a good correction for [[harmonic]] [[13/1|13]].
 
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br />8ve stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
| 2.3
| {{monzo| -1325 836 }}
| {{mapping| 836 1325 }}
| +0.0130
| 0.0130
| 0.90
|-
| 2.3.5
| {{monzo| -14 -19 19 }}, {{monzo| -69 45 -1 }}
| {{mapping| 836 1325 1941 }}
| +0.0358
| 0.0340
| 2.37
|-
| 2.3.5.7
| 4375/4374, 703125/702464, {{monzo| 41 -4 2 -14 }}
| {{mapping| 836 1325 1941 2347 }}
| +0.0203
| 0.0399
| 2.78
|-
| 2.3.5.7.11
| 3025/3024, 4375/4374, 234375/234256, {{monzo| 22 -4 2 -6 -1 }}
| {{mapping| 836 1325 1941 2347 2892 }}
| +0.0233
| 0.0362
| 2.52
|-
| 2.3.5.7.11.17
| 2500/2499, 3025/3024, 4375/4374, 57375/57344, 108086/108045
| {{mapping| 836 1325 1941 2347 2892 3417 }}
| +0.0264
| 0.0337
| 2.35
|- style="border-top: double;"
| 2.3.5.7.11.13
| 2200/2197, 3025/3024, 4096/4095, 4375/4374, 31250/31213
| {{mapping| 836 1325 1941 2347 2892 3094 }} (836)
| −0.0085
| 0.0785
| 5.47
|-
| 2.3.5.7.11.13.17
| 1275/1274, 2200/2197, 2500/2499, 3025/3024, 4096/4095, 4375/4374
| {{mapping| 836 1325 1941 2347 2892 3094 3417 }} (836)
| −0.0014
| 0.0747
| 5.21
|- style="border-top: double;"
| 2.3.5.7.11.13
| 1716/1715, 2080/2079, 3025/3024, 15379/15360, 234375/234256
| {{mapping| 836 1325 1941 2347 2892 3093 }} (836f)
| +0.0561
| 0.0805
| 5.60
|-
| 2.3.5.7.11.13.17
| 1716/1715, 2080/2079, 2431/2430, 2500/2499, 4914/4913, 11271/11264
| {{mapping| 836 1325 1941 2347 2892 3093 3417 }} (836f)
| +0.0541
| 0.0747
| 5.20
|}
* 836et is notable in the 11-limit with a lower absolute error than any previous equal temperaments, past [[612edo|612]] and before [[1084edo|1084]].
 
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|-
! Periods<br />per 8ve
! Generator*
! Cents*
! Associated<br />ratio*
! Temperaments
|-
| 1
| 347\836
| 498.09
| 4/3
| [[Counterschismic]]
|-
| 2
| 161\836
| 231.10
| 8/7
| [[Orga]] (836f)
|-
| 2
| 265\836<br />(56\836)
| 380.38<br />(80.38)
| 81/65<br />(22/21)
| [[Quasithird]] (836)
|-
| 19
| 347\836<br />(5\836)
| 498.09<br />(7.18)
| 4/3<br />(225/224)
| [[Enneadecal]]
|-
| 22
| 347\836<br />(5\836)
| 498.09<br />(7.18)
| 4/3<br />({{monzo| 16 -13 2 }})
| [[Major arcana]]
|-
| 38
| 347\836<br />(5\836)
| 498.09<br />(7.18)
| 4/3<br />(225/224)
| [[Hemienneadecal]]
|-
| 44
| 347\836<br />(5\836)
| 498.09<br />(7.18)
| 4/3<br />(18375/18304)
| [[Ruthenium]]
|}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct
 
[[Category:Quasithird]]