User:Moremajorthanmajor/2L 1s (perfect fourth-equivalent): Difference between revisions

Restored text of page
Tags: Removed redirect Visual edit
 
(37 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''2L 1s<fourth>''', is a fourth-repeating MOS scale. The notation "<fourth>" means the period of the MOS is a fourth, disambiguating it from octave-repeating [[2L 1s]].
'''2L 1s<perfect fourth>''', is a perfect fourth-repeating MOS scale. The notation "<perfect fourth>" means the period of the MOS is a perfect fourth, disambiguating it from octave-repeating [[2L 1s]].


The generator range is 171.4 to 240 cents, placing it near the [[9/8|diatonic major second]], usually representing a major second of some type. The dark (chroma-negative) generator is, however, its fourth complement (240 to 342.9 cents).  
The generator range is 171.4 to 240 cents, placing it near the [[9/8|diatonic major second]], usually representing a major second of some type. The dark (chroma-negative) generator is, however, its fourth complement (240 to 342.9 cents).  


In the fourth-repeating version of the diatonic scale, each tone has a 4/3 perfect fourth above it. The scale has one major chord and two minor chords.  
In the fourth-repeating version of the diatonic scale, each tone has a perfect fourth above it. The scale has one major chord and two minor chords.  


[[Basic]] diatonic is in [[5ed4/3]], which is a very good fourth-based equal tuning similar to [[12edo]].
[[Basic]] diatonic is in [[5ed4/3]], which is a very good fourth-based equal tuning similar to [[12edo]].
==Notation==
==Notation==
There are 4 main ways to notate this scale. One method uses a simple fourth repeating notation consisting of 3 naturals (eg. Do Re Mi, Sol La Si). Given that 1-5/4-3/2 is fourth-equivalent to a tone cluster of 1-9/8-5/4, it may be more convenient to notate diatonic scales as repeating at the double, triple, quadruple or quintuple fourth (minor seventh, tenth, thirteenth or sixteenth), however it does make navigating the [[Generator|genchain]] harder. This way, 3/2 is its own pitch class, distinct from 9/8. Notating this way produces a minor tenth which is the Dorian mode of Middletown[6L 3s], also known as the Mahur scale in Persian/Arabic music, a minor thirteenth which is the Aeolian mode of Bijou[8L 4s] or a minor sixteenth which is the Phrygian mode of Hyperionic. Since there are exactly 9 naturals in triple fourth notation, 12 in quadruple fourth and 15 in quintuple fourth notation, letters A-G plus J, Q or Q, S (GJABCQDEF or GABCQDSEF, flats written F molle) or dozenal or hex digits (0123456789XE0 or E1234567GABDE with flats written D molle or 123456789ABCDEF1 with flats written F molle) may be used.
There are 6 main ways to notate this scale. One method uses a simple fourth repeating notation consisting of 3 naturals (eg. Do Re Mi, Sol La Si). Given that 1-5/4-3/2 is fourth-equivalent to a tone cluster of 1-9/8-5/4 and a fourth has too few notes for a structure analogous to the major scale, it may be more convenient to notate diatonic scales as repeating at the double, triple, quadruple, quintuple or sextuple fourth (minor seventh, tenth, thirteenth or sixteenth or diminished nineteenth), however it does make navigating the [[Generator|genchain]] harder. This way, 3/2 is its own pitch class, distinct from 9/8. Notating this way produces a minor tenth which is the Dorian mode of Middletown[6L 3s], also known as the Mahur scale in Persian/Arabic music, a minor thirteenth which is the Aeolian mode of Bijou[8L 4s]; the bastonic chromatic scale, a minor sixteenth which is the Phrygian mode of Hyperionic[10L 5s] or a diminished nineteenth which is the Locrian mode of Subsextal[12L 6s]. Since there are exactly 9 naturals in triple fourth notation, 12 in quadruple fourth, 15 in quintuple fourth and 18 in sextuple fourth notation, letters A-G plus J, Q or Q, S (GJABCQDEF or GABCQDSEF, flats written F molle) or dozenal, hex or duohex digits (0123456789XE0 or E1234567GABDE with flats written D molle or 123456789ABCDEF1 or 0123456789XɜABCDEF0 with flats written F molle) may be used.
{| class="wikitable"
{| class="wikitable"
|+Cents<ref name=":05">Fractions repeating more than 4 digits written as continued fractions</ref>
|+Cents
! colspan="5" |Notation
!Notation
!Supersoft
!Supersoft
!Soft
!Soft
Line 19: Line 19:
!Superhard
!Superhard
|-
|-
! colspan="2" |Diatonic
!Fourth
! rowspan="2" |Mahur
!~11ed4/3
! rowspan="2" |Bijou
!~8ed4/3
! rowspan="2" |Hyperionic
!~13ed4/3
! rowspan="2" |~11ed4/3
!~5ed4/3
! rowspan="2" |~8ed4/3
!~12ed4/3
! rowspan="2" |~13ed4/3
!~7ed4\3
! rowspan="2" |~5ed4/3
!~9ed4/3
! rowspan="2" |~12ed4/3
|-
! rowspan="2" |~7ed4\3
|F/C/G ut#
! rowspan="2" |~9ed4/3
Do#, Sol#
 
د#,
 
ص#
|1\11, 46.154
|1\8, 63.158
|2\13, 77.419
| rowspan="2" |1\5, 100
|3\12, 124.138
|2\7, 141.176
|3\9, 163.636
|-
| G/D/A reb
Reb, Lab
 
رb, لb
|3\11, 138.462
|2\8, 126.316
|3\13, 116.129
|2\12, 82.759
|1\7, 70.588
|1\9, 54.545
|-
|'''G/D/A re'''
'''Re, La'''
 
'''ر, ل'''
|'''4\11,''' '''184.615'''
|'''3\8,''' '''189.474'''
|'''5\13,''' '''193.548'''
|'''2\5,''' '''200'''
|'''5\12,''' '''206.897'''
|'''3\7,''' '''211.765'''
|'''4\9,''' '''218.182'''
|-
|G/D/A re#
Re#, La#
 
ر,# ل#
|5\11, 230.769
| rowspan="2" |4\8, 252.632
|7\13, 270.967
|3\5, 300
| 8\12, 331.034
|5\7, 352.941
|7\9, 381.818
|-
|A/E/B mibb
Mibb, Sibb
 
مbb,تbb
|6\11, 276.923
|6\13, 232.258
|2\5, 200
|4\12, 165.517
|2\7, 141.176
|2\9, 109.091
|-
|'''A/E/B mib'''
'''Mib, Sib'''
 
'''مb,تb'''
|'''7\11,''' '''323.077'''
|'''5\8,''' '''315.789'''
|'''8\13,''' '''309.677'''
|'''3\5,''' '''300'''
|'''7\12,''' '''289.655'''
|'''4\7,''' '''282.353'''
|'''5\9,''' '''272.727'''
|-
|A/E/B mi
Mi, Si
 
م, ت
|8\11, 369.231
|6\8, 378.947
|10\13, 387.097
|4\5, 400
|10\12, 413.793
|6\7, 423.529
|8\9, 436.364
|-
|A/E/B mi#
Mi#, Si#
 
م,#ت#
|9\11, 415.385
| rowspan="2" |7\8, 442.105
|12\13, 464.516
|5\5, 500
|13\12, 537.069
|8\7, 564.705
|11\9, 600
|-
|F/C/G utb
Dob, Solb
 
دb,
 
صb
|10\11, 461.538
|11\13, 425.806
|4\5, 400
|9\12, 372.414
|5\7, 352.941
|6\9, 327.273
|-
!F/C/G ut
Do, Sol
 
د, ص
!'''11\11,''' '''507.692'''
!'''8\8,''' '''505.263'''
!'''13\13,''' '''503.226'''
!5\5, 500
!'''12\12,''' '''496.552'''
!'''7\7,''' '''494.118'''
!'''9\9,''' '''490.909'''
|}
 
{| class="wikitable"
|+Cents
! colspan="2" |Notation
!Supersoft
!Soft
!Semisoft
!Basic
!Semihard
!Hard
!Superhard
|-
! colspan="2" |Seventh
!~11ed4/3
!~8ed4/3
!~13ed4/3
!~5ed4/3
!~12ed4/3
!~7ed4\3
!~9ed4/3
|-
!Mixolydian
!Dorian
!
!
!
!
!
!
!
|-
| F/C/G ut#
Sol#
 
ص#
|G/D/A re#
Re#
 
ر#
|1\11, 46.154
|1\8, 63.158
|2\13, 77.419
| rowspan="2" |1\5, 100
| 3\12, 124.138
|2\7, 141.176
|3\9, 163.636
|-
|-
!Fourth
|G/D/A reb
!Seventh
Lab
 
لb
|A/E/B mib
Mib
 
مb
|3\11, 138.462
|2\8, 126.316
|3\13, 116.129
|2\12, 82.759
|1\7, 70.588
|1\9, 54.545
|-
|'''G/D/A re'''
'''La'''
 
ل
|'''A/E/B mi'''
'''Mi'''
 
م
|'''4\11,''' '''184.615'''
|'''3\8,''' '''189.474'''
|'''5\13,''' '''193.548'''
|'''2\5,''' '''200'''
|'''5\12,''' '''206.897'''
|'''3\7,''' '''211.765'''
|'''4\9,''' '''218.182'''
|-
|G/D/A re#
La#
 
ل#
| A/E/B mi#
Mi#
 
م#
|5\11, 230.769
| rowspan="2" |4\8, 252.632
| 7\13, 270.967
|3\5, 300
|8\12, 331.034
|5\7, 352.941
|7\9, 381.818
|-
|A/E/B mibb
Sibb
 
تbb
|B/F/C fab
Fab
 
فb
|6\11, 276.923
|6\13, 232.258
|2\5, 200
|4\12, 165.517
|2\7, 141.176
|2\9, 109.091
|-
|'''A/E/B mib'''
'''Sib'''
 
تb
|'''B/F/C fa'''
'''Fa'''
 
'''ف'''
|'''7\11,''' '''323.077'''
|'''5\8,''' '''315.789'''
|'''8\13,''' '''309.677'''
|'''3\5,''' '''300'''
|'''7\12,''' '''289.655'''
|'''4\7,''' '''282.353'''
|'''5\9,''' '''272.727'''
|-
|A/E/B mi
Si
 
ت
|B/F/C fa#
Fa#
 
ف#
| 8\11, 369.231
|6\8, 378.947
|10\13, 387.097
|4\5, 400
|10\12, 413.793
|6\7, 423.529
|8\9, 436.364
|-
|A/E/B mi#
Si#
 
ت#
|B/F/C fax
Fax
 
فx
|9\11, 415.385
| rowspan="2" |7\8, 442.105
|12\13, 464.516
|5\5, 500
|13\12, 537.069
|8\7, 564.705
|11\9, 600
|-
| B/F/C fab
Dob
 
دb
|C/G/D solb
Solb
 
صb
|10\11, 461.538
|11\13, 425.806
|4\5, 400
|9\12, 372.414
|5\7, 352.941
|6\9, 327.273
|-
!B/F/C fa
Do
 
د
!C/G/D sol
Sol
 
ص
!'''11\11,''' '''507.692'''
!'''8\8,''' '''505.263'''
!'''13\13,''' '''503.226'''
!5\5, 500
!'''12\12,''' '''496.552'''
!'''7\7,''' '''494.118'''
!'''9\9,''' '''490.909'''
|-
|B/F/C fa#
Do#
 
د#
| C/G/D sol#
Sol#
 
ص#
|12\11, 553.846
|9\8, 568.421
|15\13, 580.645
| rowspan="2" |6\5, 600
|15\12, 620.690
|9\7, 635.294
|12\9, 654.545
|-
|C/G/D solb
Reb
 
رb
|D/A/E lab
Lab
 
لb
|14\11, 646.154
|10\8, 631.579
|16\13, 619.355
|14\12, 579.310
|8\7, 564.706
|10\9, 545.455
|-
|'''C/G/D sol'''
'''Re'''
 
ر
|'''D/A/E la'''
'''La'''
 
ل
|'''15\11,''' '''692.308'''
|'''11\8'''  '''694.737'''
|'''18\13,''' '''696.774'''
|'''7\5,''' '''700'''
|'''17\12,''' '''703.448'''
|'''10\7,''' '''705.882'''
|'''13\9,''' '''709.091'''
|-
|C/G/D sol#
Re#
 
د#
|D/A/E la#
La#
 
ل#
|16\11, 738.462
|12\8, 757.895
|20\13, 774.294
| rowspan="2" |'''8\5,''' '''800'''
|20\12, 827.586
|12\7, 847.059
|16\9, 872.727
|-
|'''D/A/E lab'''
'''Mib'''
 
مb
|'''E/B/F síb'''
'''Sib'''
 
تb
|'''18\11,''' '''830.769'''
|'''13\8,''' '''821.053'''
|'''21\13,''' '''812.903'''
|'''19\12,''' '''786.207'''
|'''11\7,''' '''776.471'''
|'''14\9,''' '''763.636'''
|-
|D/A/E la
Mi
 
م
|E/B/F sí
Si
 
ت
|19\11, 876.923
|14\8, 884.211
|23\13, 890.323
|9\5, 900
|22\12, 910.345
|13\7, 917.647
|17\9, 927.727
|-
|D/A/E la#
Mi#
 
م#
|E/B/F sí#
Si#
 
ت#
|20\11, 923.077
| rowspan="2" |15\8, 947.378
|25\13, 967.742
|10\5, 1000
|25\12, 1034.483
|15\7, 1058.824
|20\9, 1090.909
|-
|F/C/G utb
Solb
 
صb
|G/D/A reb
Reb
 
رb
|21\11, 969.231
|24\13, 929.033
|9\5, 900
|21\12, 868.966
|11\7, 776.471
|15\9, 818.182
|-
!F/C/G ut
Sol
 
ص
!G/D/A re
Re
 
ر
!22\11, 1015.385
! 16\8, 1010.526
! 26\13, 1006.452
!10\5, 1000
!24\12, 993.103
!14\7, 988.235
!18\9, 981.818
|}
{| class="wikitable"
!Notation
!Supersoft
!Soft
!Semisoft
!Basic
!Semihard
!Hard
!Superhard
|-
!Mahur
!~11ed4/3
!~8ed4/3
!~13ed4/3
!~5ed4/3
!~12ed4/3
!~7ed4\3
! ~9ed4/3
|-
|-
|Do#, Sol#
|Sol#
|G#
|G#
|0#, D#
|1\11, 46.154
|1#
|1\8, 63.158
|1\11
|2\13, 77.419
46; 6.5
| rowspan="2" |1\5, 100
|1\8
|3\12, 124.138
63; 6.{{Overline|3}}
|2\7, 141.176
|2\13
|3\9, 163.636
77; 2, 2.6
| rowspan="2" |1\5
100
|3\12
124; 7.25
|2\7
141; 5.{{Overline|6}}
|3\9
163.{{Overline|63}}
|-
|-
|Reb, Lab
|Lab
|Jf, Af
|Jf, Af
|3\11, 138.462
|2\8, 126.316
|3\13, 116.129
|2\12, 82.759
|1\7, 70.588
|1\9, 54.545
|-
|'''J, A'''
|'''4\11,''' '''184.615'''
|'''3\8,''' '''189.474'''
|'''5\13,''' '''193.548'''
|'''2\5,''' '''200'''
|'''5\12,''' '''206.897'''
|'''3\7,''' '''211.765'''
|'''4\9,''' '''218.182'''
|-
| J#, A#
|5\11, 230.769
|4\8, 252.632
|7\13, 270.968
| rowspan="2" |'''3\5,''' '''300'''
|8\12, 331.034
|5\7, 352.941
|7\9, 381.818
|-
|'''Af, Bf'''
|'''7\11,''' '''323.077'''
|'''5\8,''' '''315.789'''
|'''8\13,''' '''309.677'''
|'''7\12,''' '''289.655'''
|'''4\7,''' '''282.353'''
|'''5\9,''' '''272.727'''
|-
|A, B
|8\11, 369.231
|6\8, 378.947
|10\13, 387.097
|4\5, 400
|10\12, 413.793
|6\7, 423.529
|8\9, 436.364
|-
|A#, B#
|9\11, 415.385
| rowspan="2" |7\8, 442.105
|12\13, 464.516
|5\5, 500
|13\12, 537.069
|8\7, 564.705
|11\9, 600
|-
|Bb, Cf
|10\11, 461.538
|11\13, 425.806
|4\5, 400
|9\12, 372.414
|5\7, 352.941
|6\9, 327.273
|-
!B, C
!'''11\11,''' '''507.692'''
!'''8\8,''' '''505.263'''
!'''13\13,''' '''503.226'''
!5\5, 500
!'''12\12,''' '''496.552'''
!'''7\7,''' '''494.118'''
!'''9\9,''' '''490.909'''
|-
|B#, C#
|12\11, 553.846
|9\8, 568.421
|15\13, 580.645
| rowspan="2" |6\5, 600
|15\12, 620.690
| 9\7, 635.294
| 12\9, 654.545
|-
|Cf, Qf
|14\11, 646.154
|10\8, 631.579
|16\13, 619.355
|14\12, 579.310
|8\7, 564.706
| 10\9, 545.455
|-
|'''C, Q'''
|'''15\11,''' '''692.308'''
|'''11\8'''  '''694.737'''
|'''18\13,''' '''696.774'''
|'''7\5,''' '''700'''
|'''17\12,''' '''703.448'''
|'''10\7,''' '''705.882'''
|'''13\9,''' '''709.091'''
|-
|C#, Q#
|16\11, 738.462
|12\8, 757.895
|20\13, 774.194
| rowspan="2" |'''8\5,''' '''800'''
|20\12, 827.586
|12\7, 847.059
|16\9, 872.727
|-
|'''Qf, Df'''
|'''18\11,''' '''830.769'''
|'''13\8,''' '''821.053'''
|'''21\13,''' '''812.903'''
|'''19\12,''' '''786.207'''
|'''11\7,''' '''776.471'''
|'''14\9,''' '''763.636'''
|-
|Q, D
|19\11, 876.923
|14\8, 884.211
|23\13, 890.323
|9\5, 900
|22\12, 910.345
|13\7, 917.647
| 17\9, 927.727
|-
|Q#, D#
|20\11, 923.077
| rowspan="2" |15\8, 947.368
|25\13, 967.742
| 10\5, 1000
|25\12, 1034.483
| 15\7, 1058.824
| 20\9, 1090.909
|-
|Df, Sf
| 21\11, 969.231
|24\13, 929.033
|9\5, 900
|21\12, 868.966
|11\7, 776.471
|15\9, 818.182
|-
!D, S
!22\11, 1015.385
!16\8, 1010.526
!26\13, 1006.452
!10\5, 1000
!24\12, 993.103
!14\7, 988.235
!18\9, 981.818
|-
|D#, S#
|23\11, 1061.538
|17\8, 1073.684
|28\13, 1083.871
| rowspan="2" |11\5, 1100
|27\12, 1117.241
|16\7, 1129.412
|21\9, 1145.455
|-
|Ef
|25\11, 1153.846
|18\8, 1136.842
|29\13, 1122.581
|26\12, 1075.862
|15\7, 1058.824
|19\9, 1036.364
|-
|'''E'''
|'''26\11,''' '''1200'''
|'''19\8,''' '''1200'''
|'''31\13,''' '''1200'''
|'''12\5,''' '''1200'''
|'''29\12,''' '''1200'''
|'''17\7,''' '''1200'''
|'''22\9,''' '''1200'''
|-
|E#
|27\11, 1246.154
|20\8, 1263.158
|33\13, 1277.419
| rowspan="2" |'''13\5,''' '''1300'''
|32\12, 1324.138
|19\7, 1341.176
|25\9, 1363.636
|-
|'''Ff'''
|'''29\11,''' '''1338.462'''
|'''21\8,''' '''1326.316'''
|'''34\13,''' '''1316.129'''
|'''31\12,''' '''1282.759'''
|'''18\7,''' '''1270.588'''
|'''23\9,''' '''1254.545'''
|-
|F
|30\11, 1384.615
|22\8, 1389.474
|36\13, 1393.548
|14\5, 1400
|34\12, 1406.897
|20\7, 1411.765
| 26\9, 1418.182
|-
|F#
|31\11, 1430.769
| rowspan="2" |23\8, 1452.632
|38\13, 1470.968
|15\5, 1500
|37\12, 1531.034
|22\7, 1552.941
| 29\9, 1581.818
|-
|Gf
|32\11, 1476.923
|37\13, 1432.258
|14\5, 1400
|33\12, 1365.517
|19\7, 1341.176
|24\9, 1309.091
|-
!G
!33\11, 1523.077
!24\8, 1515.789
!39\13, 1509.677
!15\5, 1500
!36\12, 1489.655
!21\7, 1482.353
!27\9, 1472.727
|}
{| class="wikitable"
!Notation
! Supersoft
!Soft
!Semisoft
!Basic
!Semihard
!Hard
!Superhard
|-
!Bijou
!~11ed4/3
! ~8ed4/3
!~13ed4/3
!~5ed4/3
!~12ed4/3
!~7ed4\3
!~9ed4/3
|-
|0#, E#
|1\11, 46.154
|1\8, 63.158
|2\13, 77.419
| rowspan="2" |1\5, 100
|3\12, 124.138
|2\7, 141.176
| 3\9, 163.636
|-
|1b, 1d
|1b, 1d
|2f
|3\11, 138.462
|3\11
|2\8, 126.316
138; 3.25
|3\13, 116.129
|2\8
| 2\12, 82.759
126; 3.1{{Overline|6}}
|1\7, 70.588
|3\13
|1\9, 54.545
116; 7.75
|2\12
82; 1.3{{Overline|18}}
|1\7
70; 1.7
|1\9
54.{{Overline|54}}
|-
|-
|'''Re, La'''
|'''La'''
|'''J, A'''
|'''1'''
|'''1'''
|'''2'''
|'''4\11,''' '''184.615'''
|'''4\11'''
|'''3\8,''' '''189.474'''
'''184; 1.625'''
|'''5\13,''' '''193.548'''
|'''3\8'''
|'''2\5,''' '''200'''
'''189; 2.{{Overline|1}}'''
|'''5\12,''' '''206.897'''
|'''5\13'''
|'''3\7,''' '''211.765'''
'''193; 1, 1, 4.{{Overline|6}}'''
|'''4\9,''' '''218.182'''
|'''2\5'''
'''200'''
|'''5\12'''
'''206; 1, 8.{{Overline|6}}'''
|'''3\7'''
'''211; 1, 3.25'''
|'''4\9'''
'''218.{{Overline|18}}'''
|-
|-
|Re#, La#
|La#
|J#, A#
|1#
|1#
|2#
|5\11, 230.769
|5\11
|4\8, 252.632
230; 1.3
|7\13, 270.968
|4\8
| rowspan="2" |'''3\5,''' '''300'''
252; 1.58{{Overline|3}}
|8\12, 331.034
|7\13
|5\7, 352.941
270; 1.0{{Overline|3}}
|7\9, 381.818
| rowspan="2" |'''3\5'''
'''300'''
|8\12
331; 29
|5\7
352; 1.0625
|7\9
381.{{Overline|81}}
|-
|-
|'''Mib, Sib'''
|'''Sib'''
|'''Af, Bf'''
|'''2b, 2d'''
|'''2b, 2d'''
|'''3f'''
|'''7\11,''' '''323.077'''
|'''7\11'''
|'''5\8,''' '''315.789'''
'''323; 13'''
|'''8\13,''' '''309.677'''
|'''5\8'''
|'''7\12,''' '''289.655'''
'''315; 1.2{{Overline|6}}'''
|'''4\7,''' '''282.353'''
|'''8\13'''
|'''5\9,''' '''272.727'''
'''309; 1, 2.1'''
|'''7\12'''
'''289; 1, 1.9'''
|'''4\7'''
'''282; 2.8{{Overline|3}}'''
|'''5\9'''
'''272.{{Overline|72}}'''
|-
|-
|Mi, Si
|Si
|A, B
|2
|2
|3
|8\11, 369.231
|8\11
|6\8, 378.947
369; 4.{{Overline|3}}
|10\13, 387.097
|6\8
|4\5, 400
378; 1.0{{Overline|5}}
|10\12, 413.793
|10\13
|6\7, 423.529
387; 10.{{Overline|3}}
|8\9, 436.364
|4\5
400
|10\12
413; 1, 3.8{{Overline|3}}
|6\7
423; 1.{{Overline|8}}
|8\9
436.{{Overline|36}}
|-
|-
|Mi#, Si#
|Si#
|A#, B#
|2#
|2#
|3#
|9\11, 415.385
|9\11
| rowspan="2" |7\8, 442.105
415; 2.6
|12\13, 464.516
| rowspan="2" |7\8
|5\5, 500
442; 9.5
|13\12, 537.069
|12\13
|8\7, 564.705
464; 1.9375
|11\9, 600
|5\5
500
|13\12
537; 14.5
|8\7
564; 1.41{{Overline|6}}
|11\9
600
|-
|-
|Dob, Solb
|Dob
|Bb, Cf
|3b, 3d
|3b, 3d
|4f
|10\11, 461.538
|10\11
|11\13, 425.806
461; 1, 1.1{{Overline|6}}
|4\5, 400
|11\13
|9\12, 372.414
425; 1.24
|5\7, 352.941
|4\5
|6\9, 327.273
400
|9\12
372; 2.41{{Overline|6}}
|5\7
352; 1.0625
|6\9
327.{{Overline|27}}
|-
|-
!Do, Sol
!Do
!B, C
!3
!3
!4
!'''11\11,''' '''507.692'''
!'''11\11'''
!'''8\8,''' '''505.263'''
'''507; 1.{{Overline|4}}'''
!'''13\13,''' '''503.226'''
!'''8\8'''
!5\5, 500
'''505; 3.8'''
!'''12\12,''' '''496.552'''
!'''13\13'''
!'''7\7,''' '''494.118'''
'''503; 4, 2.{{Overline|3}}'''
!'''9\9,''' '''490.909'''
!'''5\5'''
'''500'''
!'''12\12'''
'''496; 1.8125'''
!'''7\7'''
'''494; 8.5'''
!'''9\9'''
'''490.{{Overline|90}}'''
|-
|-
|Do#, Sol#
|Do#
|B#, C#
|3#
|3#
|4#
|12\11, 553.846
|12\11
|9\8, 568.421
553; 1.{{Overline|18}}
|15\13, 580.645
|9\8
| rowspan="2" |6\5, 600
568; 2.375
|15\12, 620.690
|15\13
|9\7, 635.294
580; 1.55
|12\9, 654.545
| rowspan="2" |6\5
600
|15\12
620; 1.45
|9\7
635; 3.4
|12\9
654.{{Overline|54}}
|-
|-
|Reb, Lab
|Reb
|Cf, Qf
|4b, 4d
|4b, 4d
|5f
|14\11, 646.154
|14\11
|10\8, 631.579
646; 6.5
|16\13, 619.355
|10\8
|14\12, 579.310
631; 1.{{Overline|72}}
|8\7, 564.706
|16\13
|10\9, 545.455
619; 2.{{Overline|81}}
|14\12
579; 3.{{Overline|2}}
|8\7
564; 1.41{{Overline|6}}
|10\9
545.{{Overline|45}}
|-
|-
|'''Re, La'''
|'''Re'''
|'''C, Q'''
|'''4'''
|'''4'''
|'''5'''
|'''15\11,''' '''692.308'''
|'''15\11'''
|'''11\8''' '''694.737'''
'''692; 3.25'''
|'''18\13,''' '''696.774'''
|'''11\8'''
|'''7\5,''' '''700'''
'''694; 1, 2.8'''
|'''17\12,''' '''703.448'''
|'''18\13'''
|'''10\7,''' '''705.882'''
'''696; 1.291{{Overline|6}}'''
|'''13\9,''' '''709.091'''
|'''7\5'''
'''700'''
|'''17\12'''
'''703; 2, 2.1{{Overline|6}}'''
|'''10\7'''
'''705; 1.1{{Overline|3}}'''
|'''13\9'''
'''709.{{Overline|09}}'''
|-
|-
|Re#, La#
|Re#
|C#, Q#
|4#
|4#
|5#
|16\11, 738.462
|16\11
|12\8, 757.895
738; 2.1{{Overline|6}}
|20\13, 774.194
|12\8
| rowspan="2" |'''8\5,''' '''800'''
757; 1, 8.5
|20\12, 827.586
|20\13
|12\7, 847.059
774; 5.1{{Overline|6}}
|16\9, 872.727
| rowspan="2" |'''8\5'''
'''800'''
|20\12
827; 1, 1.41{{Overline|6}}
|12\7
847; 17
|16\9
872.{{Overline|72}}
|-
|-
|'''Mib, Sib'''
|'''Mib'''
|'''Qf, Df'''
|'''5b, 5d'''
|'''5b, 5d'''
|'''6f'''
|'''18\11,''' '''830.769'''
|'''18\11'''
|'''13\8,''' '''821.053'''
'''830; 1.3'''
|'''21\13,''' '''812.903'''
|'''13\8'''
|'''19\12,''' '''786.207'''
'''821; 19'''
|'''11\7,''' '''776.471'''
|'''21\13'''
|'''14\9,''' '''763.636'''
'''812; 1, 9.{{Overline|3}}'''
|'''19\12'''
'''786; 4.8{{Overline|3}}'''
|'''11\7'''
'''776; 2.125'''
|'''14\9'''
'''763.{{Overline|63}}'''
|-
|-
|Mi, Si
|Mi
|Q, D
|5
|5
|6
|19\11, 876.923
|19\11
|14\8, 884.211
876; 1.08{{Overline|3}}
|23\13, 890.323
|14\8
|9\5, 900
884; 4.75
|22\12, 910.345
|23\13
|13\7, 917.647
890; 3.1
|17\9, 927.727
|9\5
900
|22\12
910; 2.9
|13\7
917; 1.{{Overline|54}}
|17\9
927.{{Overline|27}}
|-
|-
|Mi#, Si#
|Mi#
|Q#, D#
|5#
|5#
|6#
|20\11, 923.077
|20\11
| rowspan="2" |15\8, 947.368
923: 13
|25\13, 967.742
| rowspan="2" |15\8
|10\5, 1000
947; 2, 1.4
|25\12, 1034.483
|25\13
|15\7, 1058.824
967; 1, 2.875
|20\9, 1090.909
|10\5
1000
|25\12
1034; 2, 14
|15\7
1058; 1, 4.{{Overline|6}}
|20\9
1090.{{Overline|90}}
|-
|-
|Dob, Solb
|Solb
|Df, Sf
|6b, 6d
|6b, 6d
|7f
|21\11, 969.231
|21\11
|24\13, 929.033
969; 4.{{Overline|3}}
| 9\5, 900
|24\13
|21\12, 868.966
929; 31
|11\7, 776.471
|9\5
|15\9, 818.182
900
|21\12
868; 1, 28
|11\7
776; 2.125
|15\9
818.{{Overline|18}}
|-
|-
!Do, Sol
!Sol
!D, S
!6
!6
!7
!22\11, 1015.385
!22\11
!16\8, 1010.526
1015; 2.6
!26\13, 1006.452
!16\8
!10\5, 1000
1010; 1.9
!24\12, 993.103
!26\13
!14\7, 988.235
1006; 2, 4.{{Overline|6}}
!18\9, 981.818
!10\5
1000
!24\12
993; 9.{{Overline|6}}
!14\7
988; 4.25
!18\9
981.{{Overline|81}}
|-
|-
|Do#, Sol#
|Sol#
|D#, S#
|6#
|6#
|23\11, 1061.538
|17\8, 1073.684
|28\13, 1083.871
| rowspan="2" |11\5, 1100
|27\12, 1117.241
|16\7, 1129.412
|21\9, 1145.455
|-
|7b, 7d
| 25\11, 1153.846
|18\8, 1136.842
|29\13, 1122.581
|26\12, 1075.862
|15\7, 1058.824
|19\9, 1036.364
|-
|'''7'''
|'''26\11,''' '''1200'''
|'''19\8,''' '''1200'''
|'''31\13,''' '''1200'''
|'''12\5,''' '''1200'''
|'''29\12,''' '''1200'''
|'''17\7,''' '''1200'''
|'''22\9,''' '''1200'''
|-
|7#
|7#
|23\11
|27\11, 1246.154
1061; 1, 1.1{{Overline|6}}
|20\8, 1263.158
|17\8
|33\13, 1277.419
1073; 1, 2.1{{Overline|6}}
| rowspan="2" |'''13\5,''' '''1300'''
|28\13
|32\12, 1324.138
1083; 1.{{Overline|148}}
|19\7, 1341.176
| rowspan="2" |11\5
|25\9, 1363.636
1100
|-
|27\12
|'''8b, Gd'''
1117; 4, 7
|'''29\11,''' '''1338.462'''
|16\7
|'''21\8,''' '''1326.316'''
1129; 2, 2.{{Overline|3}}
|'''34\13,''' '''1316.129'''
|24\9
|'''31\12,''' '''1282.759'''
1309.{{Overline|09}}
|'''18\7,''' '''1270.588'''
|'''23\9,''' '''1254.545'''
|-
|8, G
|30\11, 1384.615
|22\8, 1389.474
|36\13, 1393.548
|14\5, 1400
|34\12, 1406.897
|20\7, 1411.765
|26\9, 1418.182
|-
|8#, G#
|31\11, 1430.769
| rowspan="2" |23\8, 1452.632
|38\13, 1470.968
|15\5, 1500
|37\12, 1531.034
|22\7, 1552.941
| 29\9, 1581.818
|-
|9b, Ad
|32\11, 1476.923
|37\13, 1432.258
|14\5, 1400
|33\12, 1365.517
|19\7, 1341.176
|24\9, 1309.091
|-
!'''9, A'''
!33\11, 1523.077
!24\8, 1515.789
!39\13, 1509.677
!15\5, 1500
!36\12, 1489.655
!21\7, 1482.353
!27\9, 1472.727
|-
|9#, A#
|34\11, 1569.231
| 25\8, 1578.947
|41\13, 1587.097
| rowspan="2" |16\5, 1600
|39\12, 1613.793
|23\7, 1623.529
|30\9, 1636.364
|-
|Xb, Bd
|36\11, 1661.538
|26\8, 1642.105
|42\13, 1625.806
|38\12, 1572.034
| 22\7, 1552.941
|28\9, 1527.{{Overline|27}}
|-
|'''X, B'''
|'''37\11,''' '''1707.692'''
|'''27\8,''' '''1705.263'''
|'''44\13,''' '''1703.226'''
|'''17\5,''' '''1700'''
|'''41\12,''' '''1696.552'''
|'''24\7,''' '''1694.118'''
|'''31\9,''' '''1690.909'''
|-
|X#, B#
|38\11, 1753.846
|28\8, 1768.421
|46\13, 1780.645
| rowspan="2" |'''18\5,''' '''1800'''
|44\12, 1820.690
|26\7, 1835.294
|34\9, 1854.545
|-
|'''Eb, Dd'''
|'''40\11,''' '''1846.154'''
|'''29\8,''' '''1831.579'''
|'''47\13,''' '''1819.355'''
|'''43\12,''' '''1779.310'''
|'''25\7,''' '''1764.706'''
|'''32\9,''' '''1745.455'''
|-
|E, D
|41\11, 1892.308
|30\8, 1894.737
|49\13, 1896.774
|19\5, 1900
|46\12, 1903.448
|27\7, 1905.882
|35\9, 1909.090
|-
|E#, D#
|42\11, 1938.462
| rowspan="2" |31\8, 1957.895
|51\13, 1974.194
|20\5, 2000
|49\12, 2027.586
|29\7, 2047.059
|38\9, 2072.727
|-
|0b, Ed
|43\11, 1984.615
|50\13, 1935.484
|19\5, 1900
|45\12, 1862.069
|26\7, 1835.294
|33\9, 1800
|-
!0, E
!44\11, 2030.769
!32\8, 2021.053
!52\13, 2012.903
!20\5, 2000
!48\12, 1986.207
!28\7, 1976.471
!36\9, 1963.636
|}
{| class="wikitable"
! Notation
!Supersoft
! Soft
!Semisoft
!Basic
!Semihard
!Hard
!Superhard
|-
!Hyperionic
!~11ed4/3
!~8ed4/3
!~13ed4/3
!~5ed4/3
!~12ed4/3
!~7ed4\3
!~9ed4/3
|-
|1#
|1\11, 46.154
|1\8, 63.158
|2\13, 77.419
| rowspan="2" |1\5, 100
|3\12, 124.138
|2\7, 141.176
|3\9, 163.636
|-
|2f
|3\11, 138.462
|2\8, 126.316
|3\13, 116.129
|2\12, 82.759
| 1\7, 70.588
|1\9, 54.545
|-
|'''2'''
|'''4\11,''' '''184.615'''
|'''3\8,''' '''189.474'''
|'''5\13,''' '''193.548'''
|'''2\5,''' '''200'''
|'''5\12,''' '''206.897'''
|'''3\7,''' '''211.765'''
|'''4\9,''' '''218.182'''
|-
|2#
| 5\11, 230.769
|4\8, 252.632
|7\13, 270.967
| rowspan="2" |'''3\5,''' '''300'''
| 8\12, 331.034
|5\7, 352.941
|7\9, 381.818
|-
|'''3f'''
|'''7\11,''' '''323.077'''
|'''5\8,''' '''315.789'''
|'''8\13,''' '''309.677'''
|'''7\12,''' '''289.655'''
|'''4\7,''' '''282.353'''
|'''5\9,''' '''272.727'''
|-
|3
|8\11, 369.231
|6\8, 378.947
|10\13, 387.098
|4\5, 400
|10\12, 413.793
|6\7, 423.529
|8\9, 436.364
|-
|3#
|9\11, 415.385
| rowspan="2" |7\8, 442.105
|12\13, 464.516
|5\5, 500
|13\12, 537.069
|8\7, 564.705
|11\9, 600
|-
|4f
|10\11, 461.538
|11\13, 425.806
|4\5, 400
|9\12, 372.414
|5\7, 352.941
|6\9, 327.273
|-
!4
!'''11\11,''' '''507.692'''
!'''8\8,''' '''505.263'''
!'''13\13,''' '''503.226'''
!5\5, 500
!'''12\12,''' '''496.552'''
!'''7\7,''' '''494.118'''
!'''9\9,''' '''490.909'''
|-
|4#
|12\11, 553.846
|9\8, 568.421
|15\13, 580.645
| rowspan="2" |6\5, 600
|15\12, 620.690
|9\7, 635.294
|12\9, 654.545
|-
|5f
|14\11, 646.154
|10\8, 631.579
|16\13, 619.355
|14\12, 579.310
|8\7, 564.706
|10\9, 545.455
|-
|'''5'''
|'''15\11,''' '''692.308'''
|'''11\8'''  '''694.737'''
|'''18\13,''' '''696.774'''
|'''7\5,''' '''700'''
|'''17\12,''' '''703.448'''
|'''10\7,''' '''705.882'''
|'''13\9,''' '''709.091'''
|-
|5#
|16\11, 738.462
|12\8, 757.895
|20\13, 774.194
| rowspan="2" |'''8\5,''' '''800'''
|20\12, 827.586
|12\7, 847.059
|16\9, 872.727
|-
|'''6f'''
|'''18\11,''' '''830.769'''
|'''13\8,''' '''821.053'''
|'''21\13,''' '''812.903'''
|'''19\12,''' '''786.207'''
|'''11\7,''' '''776.471'''
|'''14\9,''' '''763.636'''
|-
|6
|19\11, 876.923
|14\8, 884.211
|23\13, 890.323
|9\5, 900
|22\12, 910.345
|13\7, 917.647
|17\9, 927.727
|-
|6#
|20\11, 923.077
| rowspan="2" |15\8, 947.368
|25\13, 967.742
|10\5, 1000
| 25\12, 1034.483
|15\7, 1058.824
|20\9, 1090.909
|-
|7f
|21\11, 969.231
|24\13, 929.032
|9\5, 900
|21\12, 868.966
| 11\7, 776.471
|15\9, 818.182
|-
!7
!22\11, 1015.385
!16\8, 1010.526
!26\13, 1006.452
!10\5, 1000
!24\12, 993.103
!14\7, 988.235
! 18\9, 981.818
|-
| 7#
|23\11, 1061.538
|17\8, 1073.684
|28\13, 1083.871
| rowspan="2" |11\5, 1100
|27\12, 1117.241
|16\7, 1129.412
|21\9, 1145.455
|-
|-
|Reb, Lab
|Lab
|Ef
|7b, 7d
|8f
|8f
|25\11
|25\11, 1153.846
1153; 1.{{Overline|18}}
|18\8, 1136.842
|18\8
|29\13, 1122.581
1136; 1.1875
|26\12, 1075.862
|29\13
|15\7, 1058.824
1122; 1.7{{Overline|2}}
|19\9, 1036.364
|26\12
1075; 1.16
|15\7
1058; 1, 4.{{Overline|6}}
|19\9
1036.{{Overline|36}}
|-
|-
|'''Re, La'''
|'''La'''
|'''E'''
|'''7'''
|'''8'''
|'''8'''
|'''26\11'''
|'''26\11,''' '''1200'''
'''1200'''
|'''19\8,''' '''1200'''
|'''19\8'''
|'''31\13,''' '''1200'''
'''1200'''
|'''12\5,''' '''1200'''
|'''31\13'''
|'''29\12,''' '''1200'''
'''1200'''
|'''17\7,''' '''1200'''
|'''12\5'''
|'''22\9,''' '''1200'''
'''1200'''
|'''29\12'''
'''1200'''
|'''17\7'''
'''1200'''
|'''22\9'''
'''1200'''
|-
|-
|Re#, La#
|La#
|E#
|7#
|8#
|8#
|27\11
|27\11, 1246.154
1246; 6,5
|20\8, 1263.158
|20\8
|33\13, 1277.419
1263; 6.{{Overline|3}}
| rowspan="2" |'''13\5,''' '''1300'''
|33\13
|32\12, 1324.138
1277; 2, 2.6
|19\7, 1341.176
| rowspan="2" |'''13\5'''
|25\9, 1363.636
'''1300'''
|32\12
1324; 7.25
|19\7
1341; 5.{{Overline|6}}
|25\9
1363.{{Overline|63}}
|-
|-
|'''Mib, Sib'''
|'''Sib'''
|'''Ff'''
|'''8b, Fd'''
|'''9f'''
|'''9f'''
|'''29\11'''
|'''29\11,''' '''1338.462'''
'''1338; 3.25'''
|'''21\8,''' '''1326.316'''
|'''21\8'''
|'''34\13,''' '''1316.129'''
'''1326; 3.16̄'''
|'''31\12,''' '''1282.759'''
|'''34\13'''
|'''18\7,''' '''1270.588'''
'''1316; 7.75'''
|'''23\9,''' '''1254.545'''
|'''31\12'''
'''1282; 1.3{{Overline|18}}'''
|'''18\7'''
'''1270; 1.7'''
|'''23\9'''
'''1254.{{Overline|54}}'''
|-
|-
|Mi, Si
|Si
|F
|8, F
|9
|9
|30\11
|30\11, 1384.615
1384; 1.625
|22\8, 1389.474
|22\8
| 36\13, 1393.548
1389; 2.
|14\5, 1400
|36\13
|34\12, 1406.897
1393; 1, 1, 4.{{Overline|6}}
|20\7, 1411.765
|14\5
|26\9, 1418.182
1400
|34\12
1406; 1, 8.{{Overline|6}}
|20\7
1411; 1, 3.25
|26\9
1418.{{Overline|18}}
|-
|-
|Mi#, Si#
|Si#
|F#
|8#, F#
|9#
|9#
|31\11
|31\11, 1430.769
1430; 1.3
| rowspan="2" |23\8, 1452.632
| rowspan="2" |23\8
|38\13, 1470.968
1452; 1.58{{Overline|3}}
|15\5, 1500
|38\13
|37\12, 1531.034
1470; 1.0{{Overline|3}}
|22\7, 1552.941
|15\5
| 29\9, 1581.818
1500
|37\12
1531; 29
|22\7
1552; 1.0625
|29\9
1581.{{Overline|81}}
|-
|-
|Dob, Solb
|Dob
|Gf
|9b, Gd
|Af
|Af
|32\11
|32\11, 1476.923
1476; 1.08{{Overline|3}}
|37\13, 1432.258
|37\13
|14\5, 1400
1432: 3.875
|33\12, 1365.517
|14\5
|19\7, 1341.176
1400
|24\9, 1309.091
|33\12
1365; 1.9{{Overline|3}}
|19\7
1341; 5.{{Overline|3}}
|24\9
1309.{{Overline|09}}
|-
|-
!Do, Sol
!Do
!G
!'''9, G'''
!A
!A
!33\11
!33\11, 1523.077
1523; 13
!24\8, 1515.789
!24\8
!39\13, 1509.677
1515; 1.2{{Overline|6}}
!15\5, 1500
!39\13
!36\12, 1489.655
1509; 1, 2.1
!21\7, 1482.353
!15\5
!27\9, 1472.727
1500
!36\12
1489; 1, 1.9
!21\7
1482; 2.8{{Overline|3}}
!27\9
1472.{{Overline|72}}
|-
|-
|Do#, Sol#
|Do#
|G#
|9#, G#
|A#
|A#
|34\11
|34\11, 1569.231
1569; 4.{{Overline|3}}
|25\8, 1578.947
|25\8
|41\13, 1587.097
1578; 1.05̄
| rowspan="2" |16\5, 1600
|41\13
|39\12, 1613.793
1587; 10.{{Overline|3}}
|23\7, 1623.529
| rowspan="2" |16\5
|30\9, 1636.364
1600
|39\12
1613; 1, 3.8{{Overline|3}}
|23\7
1623; 1.{{Overline|8}}
|30\9
1636.{{Overline|36}}
|-
|-
|Reb, Lab
|Reb
|Jf, Af
|Xb, Ad
|Bf
|Bf
|36\11
|36\11, 1661.538
1661; 1, 1.1{{Overline|6}}
|26\8, 1642.105
|26\8
|42\13, 1625.806
1642; 9.5
|38\12, 1572.034
|42\13
|22\7, 1552.941
1625; 1.24
|28\9, 1527.{{Overline|27}}
|38\12
1572; 29
|22\7
1552; 1.0625
|28\9
1527.{{Overline|27}}
|-
|-
|'''Re, La'''
|'''Re'''
|'''J, A'''
|'''X, A'''
|'''B'''
|'''B'''
|'''37\11'''
|'''37\11,''' '''1707.692'''
'''1707; 1.{{Overline|4}}'''
|'''27\8,''' '''1705.263'''
|'''27\8'''
|'''44\13,''' '''1703.226'''
'''1705; 3.8'''
|'''17\5,''' '''1700'''
|'''44\13'''
|'''41\12,''' '''1696.552'''
'''1703; 4, 2.'''
|'''24\7,''' '''1694.118'''
|'''17\5'''
|'''31\9,''' '''1690.909'''
 
'''1700'''
|'''41\12'''
'''1696; 1.8125'''
|'''24\7'''
'''1694; 8.5'''
|'''31\9'''
'''1690.{{Overline|90}}'''
|-
|-
|Re#, La#
|Re#
|J#, A#
|X#, A#
|B#
|B#
|38\11
| 38\11, 1753.846
1753; 1.{{Overline|18}}
|28\8, 1768.421
|28\8
|46\13, 1780.645
1768; 2.375
| rowspan="2" |'''18\5,''' '''1800'''
|46\13
|44\12, 1820.690
1780; 1.55
|26\7, 1835.294
| rowspan="2" |'''18\5'''
| 34\9, 1854.545
'''1800'''
|44\12
1820; 1.45
|26\7
1835; 3,4
|34\9
1854.{{Overline|54}}
|-
|-
|'''Mib, Sib'''
|'''Mib'''
|'''Af, Bf'''
|'''Eb, Bd'''
|'''Cf'''
|'''Cf'''
|'''40\11'''
|'''40\11,''' '''1846.154'''
'''1846; 6.5'''
|'''29\8,''' '''1831.579'''
|'''29\8'''
|'''47\13,''' '''1819.355'''
 
|'''43\12,''' '''1779.310'''
'''1831; 1.{{Overline|72}}'''
|'''25\7,''' '''1764.706'''
|'''47\13'''
|'''32\9,''' '''1745.455'''
'''1819; 2.{{Overline|81}}'''
|'''43\12'''
'''1779; 3.{{Overline|2}}'''
|'''25\7'''
'''1764; 1, 3.25'''
|'''32\9'''
'''1745.{{Overline|45}}'''
|-
|-
|Mi, Si
|Mi
|A, B
|E, B
|C
|C
|41\11
| 41\11, 1892.308
1892; 3.25
|30\8, 1894.737
|30\8
|49\13, 1896.774
1894; 1, 2.8
|19\5, 1900
|49\13
|46\12, 1903.448
1896; 1.291{{Overline|6}}
|27\7, 1905.882
|19\5
|35\9, 1909.090
1900
|46\12
1903; 2, 2.1{{Overline|6}}
|27\7
1905; 1, 7.5
|35\9
1909.{{Overline|09}}
|-
|-
|Mi#, Si#
|Mi#
|A#, B#
|E#, B#
|C#
|C#
|42\11
|42\11, 1938.462
1938; 2.1{{Overline|6}}
| rowspan="2" |31\8, 1957.895
| rowspan="2" |31\8
|51\13, 1974.194
1957; 1, 8.5
|20\5, 2000
|51\13
|49\12, 2027.586
1974; 5.1{{Overline|6}}
|29\7, 2047.059
|20\5
| 38\9, 2072.727
2000
|49\12
2027; 1, 1.41{{Overline|6}}
|29\7
2047; 17
|38\9
2072.{{Overline|72}}
|-
|-
|Dob, Solb
|Solb
|Bb, Cf
|0b, Dd
|Df
|Df
|43\15
|43\11, 1984.615
1984; 1.625
|50\13, 1935.484
|50\13
|19\5, 1900
1935; 2.0{{Overline|6}}
|45\12, 1862.069
|19\5
|26\7, 1835.294
1900
|33\9, 1800
|45\12
1862; 14.5
|26\7
1835; 3,4
|33\9
1800
|-
|-
!Do, Sol
!Sol
!B, C
!0, D
!D
!D
!44\11
!44\11, 2030.769
2030; 1.3
!32\8, 2021.053
!32\8
! 52\13, 2012.903
 
!20\5, 2000
2021; 19
!48\12, 1986.207
!52\13
!28\7, 1976.471
2012; 1, 9.{{Overline|3}}
!36\9, 1963.636
!20\5
2000
!48\12
1986; 4.8{{Overline|3}}
!28\7
1976; 2.125
!36\9
1963.{{Overline|63}}
|-
|-
|Do#, Sol#
| D#
|Sol#
|45\11, 2076.923
|B#, C#
|33\8, 2084.211
|0#, D#
|54\13, 2090.323
|D#
| rowspan="2" |21\5, 2100
|45\11
|51\12, 2110.345
2076; 1.08{{Overline|3}}
|30\7, 2117.647
|33\8
|39\9, 2127.273
2084; 4.75
|54\13
2090; 3.1
| rowspan="2" |21\5
2100
|51\12
2110; 2.9
|30\7
2117; 1.{{Overline|54}}
|39\9
2127.{{Overline|27}}
|-
|-
|Reb, Lab
|Lab
|Cf, Qf
|1b, 1d
|Ef
|Ef
|47\11
|47\11, 2169.231
2169; 4.{{Overline|3}}
|34\8, 2147.368
|34\8
|55\13, 2129.032
2147; 2, 1.4
|50\12, 2068.966
|55\13
|29\7, 2047.059
2129; 31
|37\9, 2018.182
|50\12
2068; 1, 28
|29\7
2047; 17
|37\9
2018.{{Overline|18}}
|-
|-
|'''Re, La'''
|'''La'''
|'''C, Q'''
|'''1'''
|'''E'''
|'''E'''
|'''48\11'''
|'''48\11,''' '''2215.385'''
'''2215; 2.6'''
|'''35\8,''' '''2210.526'''
|'''35\8'''
|'''57\13,''' '''2206.452'''
'''2210; 1.9'''
|'''22\5,''' '''2200'''
|'''57\13'''
|'''53\12,''' '''2193.103'''
'''2206; 2, 4.{{Overline|6}}'''
|'''31\7,''' '''2188.235'''
|'''22\5'''
|'''40\9,''' '''2181.818'''
'''2200'''
|'''53\12'''
'''2193; 9.{{Overline|6}}'''
|'''31\7'''
'''2188; 4.25'''
|'''40\9'''
'''2181.{{Overline|81}}'''
|-
|-
|Re#, La#
|La#
|C#, Q#
|1#
|E#
|E#
|49\11
|49\11, 2261.538
2261; 1, 1.1{{Overline|6}}
|36\8, 2273.684
|36\8
|59\13, 2283.871
2273; 1, 2.1{{Overline|6}}
| rowspan="2" |'''23\5,''' '''2300'''
|59\13
|56\12, 2317.241
2083; 1.{{Overline|148}}
|33\7, 2329.412
| rowspan="2" |'''23\5'''
|43\9, 2345.455
'''2300'''
|56\12
2327; 4, 7
|33\7
2329; 2, 2.{{Overline|3}}
|43\9
2345.{{Overline|45}}
|-
|-
|'''Mib, Sib'''
|'''Sib'''
|'''Qf, Df'''
|'''2b, 2d'''
|'''Ff'''
|'''Ff'''
|'''51\11'''
|'''51\11,''' '''2353.846'''
'''2353; 1.{{Overline|18}}'''
|'''37\8,''' '''2336.842'''
|'''37\8'''
|'''61\13,''' '''2322.581'''
'''2336; 1.1875'''
|'''55\12,''' '''2275.864'''
|'''61\13'''
|'''32\7,''' '''2258.824'''
'''2322; 1.7{{Overline|2}}'''
|'''41\9,''' '''2236.364'''
|'''55\12'''
'''2275; 1.16'''
|'''32\7'''
'''2258; 1, 4.{{Overline|6}}'''
|'''41\9'''
'''2236.{{Overline|36}}'''
|-
|-
|Mi, Si
|Si
|Q, D
|2
|F
|F
|52\11
|52\11, 2400
2400
|38\8, 2400
|38\8
|62\13, 2400
2400
|24\5, 2400
|62\13
|58\12, 2400
2400
|34\7, 2400
|24\5
|44\9, 2400
2400
|58\12
2400
|34\7
2400
|44\9
2400
|-
|-
|Mi#, Si#
|Si#
|Q#, D#
|2#
|F#
|F#
|53\11
|53\11, 2446.154
2446; 6.5
| rowspan="2" |39\8, 2463.158
| rowspan="2" |39\8
|64\13, 2477.419
2463; 6.{{Overline|3}}
|25\5, 2500
|64\13
|61\12, 2524.138
2477; 2, 2.6
|36\7, 2541.176
|25\5
|47/9, 2563.636
2500
|61\12
2524; 7.25
|36\7
2541; 5.{{Overline|6}}
|47/9
2563.{{Overline|63}}
|-
|-
|Dob, Solb
|Dob
|Df, Sf
|3b, 3d
|1f
|1f
|54\11
|54\11, 2492.308
2492; 3.25
|63\13, 2438.710
|63\13
|24\5, 2400
2438; 1.1{{Overline|36}}
|57\12, 2358.621
|24\5
|33\7, 2329.412
2400
|42\9, 2390.909
|57\12
2358; 1.61̄
|33\7
2329; 2, 2.{{Overline|3}}
|42\9
2390.{{Overline|90}}
|-
|-
!Do, Sol
!Do
!D, S
!3
!1
!1
!55\11
!55\11, 2538.462
2538; 2.1{{Overline|6}}
!40\8, 2526.316
!40\8
!65\13, 2516.129
2526; 3.1{{Overline|6}}
!25\5, 2500
!65\13
!60\12, 2482.759
2516; 7.75
!35\7, 2470.588
!25\5
!45\9, 2454.545
2500
!60\12
2482; '''1.3{{Overline|18}}'''
!35\7
2470; 1.7
!45\9
2454.{{Overline|54}}
|}
|}
{| class="wikitable"
{| class="wikitable"
|+Relative cents<ref name=":05" />
!Notation
! colspan="5" |Notation
!Supersoft
!Supersoft
!Soft
!Soft
Line 918: Line 1,482:
!Superhard
!Superhard
|-
|-
! colspan="2" |Diatonic
!Subsextal
! rowspan="2" |Mahur
!~11ed4/3
! rowspan="2" |Bijou
!~8ed4/3
! rowspan="2" |Hyperionic
!~13ed4/3
! rowspan="2" |~11ed4/3
!~5ed4/3
! rowspan="2" |~8ed4/3
!~12ed4/3
! rowspan="2" |~13ed4/3
!~7ed4\3
! rowspan="2" |~5ed4/3
!~9ed4/3
! rowspan="2" |~12ed4/3
! rowspan="2" |~7ed4\3
! rowspan="2" |~9ed4/3
|-
|-
!Fourth
|0#
!Seventh
|1\11, 46.154
|1\8, 63.158
|2\13, 77.419
| rowspan="2" |1\5, 100
|3\12, 124.138
|2\7, 141.176
|3\9, 163.636
|-
|1f
|3\11, 138.462
|2\8, 126.316
|3\13, 116.129
|2\12, 82.759
|1\7, 70.588
|1\9, 54.545
|-
|'''1'''
|'''4\11,''' '''184.615'''
|'''3\8,''' '''189.474'''
|'''5\13,''' '''193.548'''
|'''2\5,''' '''200'''
|'''5\12,''' '''206.897'''
|'''3\7,''' '''211.765'''
|'''4\9,''' '''218.182'''
|-
|-
|Do#, Sol#
|Sol#
|G#
|0#, D#
|1#
|1#
|1\11
|5\11, 230.769
''45.{{Overline|45}}''
|4\8, 252.632
|1\8
|7\13, 270.967
''62.5''
| rowspan="2" |'''3\5,''' '''300'''
|2\13
|8\12, 331.034
''76; 1.08{{Overline|3}}''
|5\7, 352.941
| rowspan="2" |1\5
|7\9, 381.818
''100''
|3\12
''125''
|2\7
''142; 1.1{{Overline|6}}''
|3\9
''166.{{Overline|6}}''
|-
|-
|Reb, Lab
|Lab
|Jf, Af
|1b, 1d
|2f
|2f
|3\11
|'''7\11,''' '''323.077'''
''136.{{Overline|36}}''
|'''5\8,''' '''315.789'''
|2\8
|'''8\13,''' '''309.677'''
''125''
|'''7\12,''' '''289.655'''
|3\13
|'''4\7,''' '''282.353'''
''115; 2.6''
|'''5\9,''' '''272.727'''
|2\12
''83.{{Overline|3}}''
|1\7
''71; 2.{{Overline|3}}''
|1\9
''55.''
|-
|-
|'''Re, La'''
|'''La'''
|'''J, A'''
|'''1'''
|'''2'''
|'''2'''
|'''4\11'''
|8\11, 369.231
'''''181.{{Overline|81}}'''''
|6\8, 378.947
|'''3\8'''
|10\13, 387.098
'''''187.5'''''
|4\5, 400
|'''5\13'''
|10\12, 413.793
'''''192; 3.25'''''
|6\7, 423.529
|'''2\5'''
|8\9, 436.364
'''''200'''''
|'''5\12'''
'''''208.{{Overline|3}}'''''
|'''3\7'''
'''''214; 3.5'''''
|'''4\9'''
'''''222.{{Overline|2}}'''''
|-
|-
|Re#, La#
|La#
|J#, A#
|1#
|2#
|2#
|5\11
|9\11, 415.385
''227.{{Overline|27}}''
| rowspan="2" |7\8, 442.105
|4\8
|12\13, 464.516
''250''
|5\5, 500
|7\13
|13\12, 537.069
''269; 4.{{Overline|3}}''
|8\7, 564.705
| rowspan="2" |'''3\5'''
|11\9, 600
'''''300'''''
|8\12
''333.{{Overline|3}}''
|5\7
''357; 7''
|7\9
''388.{{Overline|8}}''
|-
|-
|'''Mib, Sib'''
|'''Sib'''
|'''Af, Bf'''
|'''2b, 2d'''
|'''3f'''
|'''3f'''
|'''7\11'''
|10\11, 461.538
'''''318.{{Overline|18}}'''''
|11\13, 425.806
|'''5\8'''
|4\5, 400
'''''312.5'''''
|9\12, 372.414
|'''8\13'''
|5\7, 352.941
'''''307; 1.{{Overline|4}}'''''
|6\9, 327.273
|'''7\12'''
'''''291.6̄'''''
|'''4\7'''
'''''285; 1.4'''''
|'''5\9'''
'''''277.{{Overline|7}}'''''
|-
|-
|Mi, Si
!3
|Si
!'''11\11,''' '''507.692'''
|A, B
!'''8\8,''' '''505.263'''
|2
!'''13\13,''' '''503.226'''
|3
!5\5, 500
|8\11
!'''12\12,''' '''496.552'''
''363.{{Overline|63}}''
!'''7\7,''' '''494.118'''
|6\8
!'''9\9,''' '''490.909'''
''375''
|10\13
''384; 1.625''
|4\5
''400''
|10\12
''416.{{Overline|6}}''
|6\7
''428; 1.75''
|8\9
''444.{{Overline|4}}''
|-
|-
|Mi#, Si#
|Si#
|A#, B#
|2#
|3#
|3#
|9\11
|12\11, 553.846
''409.{{Overline|09}}''
|9\8, 568.421
| rowspan="2" |7\8
|15\13, 580.645
''437.5''
| rowspan="2" |6\5, 600
|12\13
|15\12, 620.690
''461; 1, 1.1{{Overline|6}}''
|9\7, 635.294
|5\5
|12\9, 654.545
''500''
|13\12
''541.{{Overline|6}}''
|8\7
''571; 2.{{Overline|3}}''
|11\9
''611.1̄''
|-
|-
|Dob, Solb
|Dob
|Bb, Cf
|3b, 3d
|4f
|4f
|10\11
|14\11, 646.154
''454.{{Overline|54}}''
|10\8, 631.579
|11\13
|16\13, 619.355
''423; 13''
|14\12, 579.310
|4\5
|8\7, 564.706
''400''
|10\9, 545.455
|9\12
''375''
|5\7
''357; 7''
|6\9
''333.{{Overline|3}}''
|-
|-
!Do, Sol
|'''4'''
!Do
|'''15\11,''' '''692.308'''
!B, C
|'''11\8'''  '''694.737'''
!3
|'''18\13,''' '''696.774'''
!4
|'''7\5,''' '''700'''
! colspan="7" |''500''
|'''17\12,''' '''703.448'''
|'''10\7,''' '''705.882'''
|'''13\9,''' '''709.091'''
|-
|-
|Do#, Sol#
|Do#
|B#, C#
|3#
|4#
|4#
|12\11
|16\11, 738.462
''545.{{Overline|45}}''
|12\8, 757.895
|9\8
|20\13, 774.194
''562.5''
| rowspan="2" |'''8\5,''' '''800'''
|15\13
|20\12, 827.586
''576; 1.08{{Overline|3}}''
|12\7, 847.059
| rowspan="2" |6\5
|16\9, 872.727
''600''
|15\12
''625''
|9\7
''642; 1.1{{Overline|6}}''
|12\9
''666.{{Overline|6}}''
|-
|-
|Reb, Lab
|Reb
|Cf, Qf
|4b, 4d
|5f
|5f
|14\11
|'''18\11,''' '''830.769'''
''636.{{Overline|36}}''
|'''13\8,''' '''821.053'''
|10\8
|'''21\13,''' '''812.903'''
''625''
|'''19\12,''' '''786.207'''
|16\13
|'''11\7,''' '''776.471'''
''615; 2.6''
|'''14\9,''' '''763.636'''
|14\12
''583.{{Overline|3}}''
|8\7
''571; 2.{{Overline|3}}''
|10\9
''555.''
|-
|-
|'''Re, La'''
|'''Re'''
|'''C, Q'''
|'''4'''
|'''5'''
|'''5'''
|'''15\11'''
|19\11, 876.923
'''''681.{{Overline|81}}'''''
|14\8, 884.211
|'''11\8'''
|23\13, 890.323
'''''687.5'''''
|9\5, 900
|'''18\13'''
|22\12, 910.345
'''''692; 3.25'''''
|13\7, 917.647
|'''7\5'''
|17\9, 927.727
'''''700'''''
|'''17\12'''
'''''708.{{Overline|3}}'''''
|'''10\7'''
'''''714; 3.5'''''
|'''13\9'''
'''''722.{{Overline|2}}'''''
|-
|-
|Re#, La#
|Re#
|C#, Q#
|4#
|5#
|5#
|16\11
|20\11, 923.077
''727.{{Overline|27}}''
| rowspan="2" |15\8, 947.368
|12\8
|25\13, 967.742
''750''
|10\5, 1000
|20\13
|25\12, 1034.483
''769; 4.{{Overline|3}}''
|15\7, 1058.824
| rowspan="2" |'''8\5'''
|20\9, 1090.909
'''''800'''''
|20\12
''833.{{Overline|3}}''
|12\7
''857; 7''
|16\9
''888.{{Overline|8}}''
|-
|-
|'''Mib, Sib'''
|'''Sib'''
|'''Qf, Df'''
|'''5b, 5d'''
|'''6f'''
|'''6f'''
|'''18\11'''
|21\11, 969.231
'''''818.{{Overline|18}}'''''
|24\13, 929.032
|'''13\8'''
|9\5, 900
'''''812.5'''''
|21\12, 868.966
|'''21\13'''
|11\7, 776.471
'''''807; 1.{{Overline|4}}'''''
|15\9, 818.182
|'''19\12'''
'''''791.{{Overline|6}}'''''
|'''11\7'''
'''''785; 1.4'''''
|'''14\9'''
'''''777.{{Overline|7}}'''''
|-
|-
|Mi, Si
!6
|Si
!22\11, 1015.385
|Q, D
!16\8, 1010.526
|5
!26\13, 1006.452
|6
!10\5, 1000
|19\11
!24\12, 993.103
''863.{{Overline|63}}''
!14\7, 988.235
|14\8
!18\9, 981.818
''875''
|23\13
''884; 1.625''
|9\5
''900''
|22\12
''916.{{Overline|6}}''
|13\7
''928; 1.75''
|17\9
''944.{{Overline|4}}''
|-
|-
|Mi#, Si#
|Si#
|Q#, D#
|5#
|6#
|6#
|20\11
|23\11, 1061.538
''909.{{Overline|09}}''
|17\8, 1073.684
| rowspan="2" |15\8
|28\13, 1083.871
''937.5''
| rowspan="2" |11\5, 1100
|25\13
|27\12, 1117.241
''961; 1, 1.1{{Overline|6}}''
|16\7, 1129.412
|10\5
|21\9, 1145.455
''1000''
|25\12
''1041.{{Overline|6}}''
|15\7
''1071; 2.{{Overline|3}}''
|20\9
''1111.1̄''
|-
|-
|Dob, Solb
|Solb
|Df, Sf
|6b, 6d
|7f
|7f
|21\11
|25\11, 1153.846
''954.{{Overline|54}}''
|18\8, 1136.842
|24\13
|29\13, 1122.581
''923; 13''
|26\12, 1075.862
|9\5
|15\7, 1058.824
''900''
|19\9, 1036.364
|21\12
''875''
|12\7
''857; 7''
|15\9
''833.{{Overline|3}}''
|-
|-
!Do, Sol
|7
!Sol
|'''26\11,''' '''1200'''
!D, S
|'''19\8,''' '''1200'''
!6
|'''31\13,''' '''1200'''
!7
|'''12\5,''' '''1200'''
! colspan="7" |''1000''
|'''29\12,''' '''1200'''
|'''17\7,''' '''1200'''
|'''22\9,''' '''1200'''
|-
|-
|Do#, Sol#
|Sol#
|D#, S#
|6#
|7#
|7#
|23\11
|27\11, 1246.154
''1045.{{Overline|45}}''
|20\8, 1263.158
|17\8
|33\13, 1277.419
''1062.5''
| rowspan="2" |'''13\5,''' '''1300'''
|28\13
|32\12, 1324.138
''1076; 1.08{{Overline|3}}''
|19\7, 1341.176
| rowspan="2" |11\5
|25\9, 1363.636
''1100''
|27\12
''1125''
|16\7
''1142; 1.1{{Overline|6}}''
|21\9
''1166.{{Overline|6}}''
|-
|-
|Reb, Lab
|Lab
|Ef
|7b, 7d
|8f
|8f
|25\11
|'''29\11,''' '''1338.462'''
''1136.{{Overline|36}}''
|'''21\8,''' '''1326.316'''
|18\8
|'''34\13,''' '''1316.129'''
''1125''
|'''31\12,''' '''1282.759'''
|29\13
|'''18\7,''' '''1270.588'''
''1115; 2.6''
|'''23\9,''' '''1254.545'''
|26\12
''1083.{{Overline|3}}''
|22\7
''1571; 2.{{Overline|3}}''
|19\9
''1055.''
|-
|-
|'''Re, La'''
|'''La'''
|'''E'''
|'''7'''
|'''8'''
|'''8'''
|'''26\11'''
|30\11, 1384.615
'''''1181.{{Overline|81}}'''''
|22\8, 1389.474
|'''19\8'''
|36\13, 1393.548
'''''1187.5'''''
|14\5, 1400
|'''31\13'''
|34\12, 1406.897
'''''1192; 3.25'''''
|20\7, 1411.765
|'''12\5'''
|26\9, 1418.182
'''''1200'''''
|'''29\12'''
'''''1208.{{Overline|3}}'''''
|'''17\7'''
'''''1214; 3.5'''''
|'''22\9'''
'''''1222.{{Overline|2}}'''''
|-
|-
|Re#, La#
|La#
|E#
|7#
|8#
|8#
|27\11
|31\11, 1430.769
''1227.{{Overline|27}}''
| rowspan="2" |23\8, 1452.632
|20\8
|38\13, 1470.968
''1250''
|15\5, 1500
|33\13
|37\12, 1531.034
''1269; 4.{{Overline|3}}''
|22\7, 1552.941
| rowspan="2" |'''13\5'''
|29\9, 1581.818
'''''1300'''''
|32\12
''1333.{{Overline|3}}''
|19\7
''1357; 7''
|25\9
''1388.{{Overline|8}}''
|-
|-
|'''Mib, Sib'''
|9f
|'''Sib'''
|32\11, 1476.923
|'''Ff'''
|37\13, 1432.258
|'''8b, Fd'''
|14\5, 1400
|'''9f'''
|33\12, 1365.517
|'''29\11'''
|19\7, 1341.176
'''''1318.{{Overline|18}}'''''
|24\9, 1309.091
|'''21\8'''
'''''1312.5'''''
|'''34\13'''
'''''1307; 1.{{Overline|4}}'''''
|'''31\12'''
'''''1291.{{Overline|6}}'''''
|'''18\7'''
'''''1285; 1.4'''''
|'''23\9'''
'''''1277.{{Overline|7}}'''''
|-
|-
|Mi, Si
!9
|Si
!33\11, 1523.077
|F
!24\8, 1515.789
|8, F
!39\13, 1509.677
|9
!15\5, 1500
|30\11
!36\12, 1489.655
''1363.{{Overline|63}}''
!21\7, 1482.353
|22\8
!27\9, 1472.727
''1375''
|36\13
''1384; 1.625''
|14\5
''1400''
|34\12
''1416.{{Overline|6}}''
|20\7
''1428; 1.75''
|26\9
''1444.{{Overline|4}}''
|-
|-
|Mi#, Si#
|Si#
|F#
|8#, F#
|9#
|9#
|31\11
|34\11, 1569.231
''1409.{{Overline|09}}''
|25\8, 1578.947
| rowspan="2" |23\8
|41\13, 1587.097
''1437.5''
| rowspan="2" |16\5, 1600
|38\13
|39\12, 1613.793
''1461; 1, 1.1{{Overline|6}}''
|23\7, 1623.529
|15\5
|30\9, 1636.364
''1500''
|-
|37\12
|Xb
''1541.{{Overline|6}}''
|36\11, 1661.538
|22\7
|26\8, 1642.105
''1571; 2.{{Overline|3}}''
|42\13, 1625.806
|29\9
|38\12, 1572.034
''1611.''
|22\7, 1552.941
|28\9, 1527.{{Overline|27}}
|-
|'''X'''
|'''37\11,''' '''1707.692'''
|'''27\8,''' '''1705.263'''
|'''44\13,''' '''1703.226'''
|'''17\5,''' '''1700'''
|'''41\12,''' '''1696.552'''
|'''24\7,''' '''1694.118'''
|'''31\9,''' '''1690.909'''
|-
|X#
|38\11, 1753.846
|28\8, 1768.421
|46\13, 1780.645
| rowspan="2" |'''18\5,''' '''1800'''
|44\12, 1820.690
|26\7, 1835.294
|34\9, 1854.545
|-
|'''ɛf'''
|'''40\11,''' '''1846.154'''
|'''29\8,''' '''1831.579'''
|'''47\13,''' '''1819.355'''
|'''43\12,''' '''1779.310'''
|'''25\7,''' '''1764.706'''
|'''32\9,''' '''1745.455'''
|-
|41\11, 1892.308
|30\8, 1894.737
|49\13, 1896.774
|19\5, 1900
|46\12, 1903.448
|27\7, 1905.882
|35\9, 1909.090
|-
|ɛ#
|42\11, 1938.462
| rowspan="2" |31\8, 1957.895
|51\13, 1974.194
|20\5, 2000
|49\12, 2027.586
|29\7, 2047.059
|38\9, 2072.727
|-
|-
|Dob, Solb
|Dob
|Gf
|9b, Gd
|Af
|Af
|32\11
|43\11, 1984.615
''1454.{{Overline|54}}''
|50\13, 1935.484
|37\13
|19\5, 1900
''1423; 13''
|45\12, 1862.069
|14\5
|26\7, 1835.294
''1400''
|33\9, 1800
|33\12
''1375''
|19\7
''1357; 7''
|24\9
''1333.{{Overline|3}}''
|-
|-
!Do, Sol
!Do
!G
!'''9, G'''
!A
!A
! colspan="7" |''1500''
!44\11, 2030.769
!32\8, 2021.053
!52\13, 2012.903
!20\5, 2000
!48\12, 1986.207
!28\7, 1976.471
!36\9, 1963.636
|-
|-
|Do#, Sol#
|Sol#
|G#
|9#, G#
|A#
|A#
|34\11
|45\11, 2076.923
''1545.{{Overline|45}}''
|33\8, 2084.211
|25\8
|54\13, 2090.323
''1562.5''
| rowspan="2" |21\5, 2100
|41\13
|51\12, 2110.345
''1576; 1.08{{Overline|3}}''
|30\7, 2117.647
| rowspan="2" |16\5
|39\9, 2127.273
''1600''
|39\12
''1625''
|23\7
''1642; 1.1{{Overline|6}}''
|30\9
''1666.{{Overline|6}}''
|-
|-
|Reb, Lab
|Lab
|Jf, Af
|Xb, Ad
|Bf
|Bf
|36\11
|47\11, 2169.231
''1636.{{Overline|36}}''
|34\8, 2147.368
|26\8
|55\13, 2129.032
''1625''
|50\12, 2068.966
|42\13
|29\7, 2047.059
''1615; 2.6''
|37\9, 2018.182
|38\12
''1583.{{Overline|3}}''
|22\7
''1571; 2.{{Overline|3}}''
|28\9
''1555.5̄''
|-
|-
|'''Re, La'''
|'''La'''
|'''J, A'''
|'''X, A'''
|'''B'''
|'''B'''
|'''37\11'''
|'''48\11,''' '''2215.385'''
'''''1681.{{Overline|81}}'''''
|'''35\8,''' '''2210.526'''
|'''27\8'''
|'''57\13,''' '''2206.452'''
'''''1687.5'''''
|'''22\5,''' '''2200'''
|'''44\13'''
|'''53\12,''' '''2193.103'''
'''''1692; 3.25'''''
|'''31\7,''' '''2188.235'''
|'''17\5'''
|'''40\9,''' '''2181.818'''
 
'''''1700'''''
|'''41\12'''
'''''1708.{{Overline|3}}'''''
|'''24\7'''
'''''1714; 3.5'''''
|'''31\9'''
'''''1722.{{Overline|2}}'''''
|-
|-
|Re#, La#
|La#
|J#, A#
|X#, A#
|B#
|B#
|38\11
|49\11, 2261.538
''1727.{{Overline|27}}''
|36\8, 2273.684
|28\8
|59\13, 2283.871
''1750''
| rowspan="2" |'''23\5,''' '''2300'''
|46\13
|56\12, 2317.241
''1769; 4.{{Overline|3}}''
|33\7, 2329.412
| rowspan="2" |'''18\5'''
|43\9, 2345.455
'''''1800'''''
|44\12
''1833.{{Overline|3}}''
|26\7
''1857; 7''
|34\9
''1888.{{Overline|8}}''
|-
|-
|'''Mib, Sib'''
|'''Sib'''
|'''Af, Bf'''
|'''Eb, Bd'''
|'''Cf'''
|'''Cf'''
|'''40\11'''
|'''51\11,''' '''2353.846'''
'''''1818.{{Overline|18}}'''''
|'''37\8,''' '''2336.842'''
|'''29\8'''
|'''61\13,''' '''2322.581'''
 
|'''55\12,''' '''2275.864'''
'''''1812.5'''''
|'''32\7,''' '''2258.824'''
|'''47\13'''
|'''41\9,''' '''2236.364'''
'''''1807; 1.{{Overline|4}}'''''
|'''43\12'''
'''''1791.{{Overline|6}}'''''
|'''25\7'''
'''''1785; 1.4'''''
|'''32\9'''
'''''1777.{{Overline|7}}'''''
|-
|-
|Mi, Si
|Si
|A, B
|E, B
|C
|C
|41\11
|52\11, 2400
''1863.{{Overline|63}}''
|38\8, 2400
|30\8
|62\13, 2400
''1875''
|24\5, 2400
|49\13
|58\12, 2400
''1884; 1.625''
|34\7, 2400
|19\5
|44\9, 2400
''1900''
|46\12
''1916.{{Overline|6}}''
|27\7
''1928; 1.75''
|35\9
''1944.{{Overline|4}}''
|-
|-
|Mi#, Si#
|Si#
|A#, B#
|E#, B#
|C#
|C#
|42\11
|53\11, 2446.154
''1909.{{Overline|09}}''
| rowspan="2" |39\8, 2463.158
| rowspan="2" |31\8
|64\13, 2477.419
''1937.5''
|25\5, 2500
|51\13
|61\12, 2524.138
''1961; 1, 1.1{{Overline|6}}''
|36\7, 2541.176
|20\5
|47/9, 2563.636
''2000''
|49\12
''2041.{{Overline|6}}''
|29\7
''2071; 2.{{Overline|3}}''
|38\9
''2111.1̄''
|-
|-
|Dob, Solb
|Dob
|Bb, Cf
|0b, Dd
|Df
|Df
|43\11
|54\11, 2492.308
''1954.{{Overline|54}}''
|63\13, 2438.710
|50\13
|24\5, 2400
''1923; 13''
|57\12, 2358.621
|19\5
|33\7, 2329.412
''1900''
|42\9, 2390.909
|45\12
''1875''
|26\7
''1857; 7''
|33\9
''1833.{{Overline|3}}''
|-
|-
!Do, Sol
!Sol
!B, C
!0, D
!D
!D
! colspan="7" |''2000''
!55\11, 2538.462
!40\8, 2526.316
!65\13, 2516.129
!25\5, 2500
!60\12, 2482.759
!35\7, 2470.588
!45\9, 2454.545
|-
|-
|Do#, Sol#
|Sol#
|B#, C#
|0#, D#
|D#
|D#
|45\11
|56\11, 2584.615
''2045.{{Overline|45}}''
|41\8, 2589.474
|33\8
|67\13, 2593.548
''2062.5''
| rowspan="2" |26\5, 2600
|54\13
|63\12, 2606.897
''2076; 1.08{{Overline|3}}''
|37\7, 2611.765
| rowspan="2" |21\5
|48\9, 2618.182
''2100''
|51\12
''2125''
|30\7
''2142; 1.1{{Overline|6}}''
|39\9
 
''2166.{{Overline|6}}''
|-
|-
|Reb, Lab
|Lab
|Cf, Qf
|1b, 1d
|Ef
|Ef
|47\11
|58\11, 2676.923
''2136.{{Overline|36}}''
|42\8, 2652.632
|34\8
|69\13, 2670.968
''2125''
|62\12, 2565.517
|55\13
|36\7, 2541.176
''2115; 2.6''
|46\9, 2509.091
|50\12
''2083.{{Overline|3}}''
|29\7
''2071; 2.{{Overline|3}}''
|37\9
''2055.5̄''
|-
|-
|'''Re, La'''
|'''La'''
|'''C, Q'''
|'''1'''
|'''E'''
|'''E'''
|'''48\11'''
|'''59\11,''' '''2723.077'''
'''''2181.{{Overline|81}}'''''
|'''43\8,''' '''2715.789'''
|'''35\8'''
|'''70\13,''' '''2709.677'''
'''''2187.5'''''
|'''27\5,''' '''2700'''
|'''57\13'''
|'''65\12,''' '''2689.655'''
'''''2192; 3.25'''''
|'''38\7,''' '''2682.353'''
|'''22\5'''
|'''49\9,''' '''2672.727'''
'''''2200'''''
|'''53\12'''
'''''2208.{{Overline|3}}'''''
|'''31\7'''
'''''2214; 3.5'''''
|'''40\9'''
'''''2222.{{Overline|2}}'''''
|-
|-
|Re#, La#
|La#
|C#, Q#
|1#
|E#
|E#
|49\11
|60\11, 2769.231
''2227.{{Overline|27}}''
|44\8, 2778.947
|36\8
|72\13, 2787.097
''2250''
| rowspan="2" |'''28\5,''' '''2800'''
|59\13
|68\12, 2813.793
''2269; 4.{{Overline|3}}''
|40\7, 2823.529
| rowspan="2" |'''23\5'''
|52\9, 2836.364
'''''2300'''''
|56\12
''2333.{{Overline|3}}''
|33\7
''2357; 7''
|43\9
''2388.{{Overline|8}}''
|-
|-
|'''Mib, Sib'''
|'''Sib'''
|'''Qf, Df'''
|'''2b, 2d'''
|'''Ff'''
|'''Ff'''
|'''51\11'''
|'''62\11,''' '''2861.538'''
'''''2318.{{Overline|18}}'''''
|'''45\8,''' '''2842.105'''
|'''37\8'''
|'''73\13,''' '''2825.806'''
 
|'''67\12,''' '''2772.034'''
'''''2312.5'''''
|'''39\7,''' '''2752.941'''
|'''60\13'''
|'''50\9,''' '''2727.273'''
'''''2307; 1.{{Overline|4}}'''''
|'''55\12'''
'''''2291.{{Overline|6}}'''''
|'''32\7'''
'''''2285; 1.4'''''
|'''41\9'''
'''''2277.{{Overline|7}}'''''
|-
|-
|Mi, Si
|Si
|Q, D
|2
|F
|F
|52\11
|63\11, 2907.692
''2363.{{Overline|63}}''
|46\8, 2905.263
|38\8
|75\13, 2903.226
''2375''
|29\5, 2900
|62\13
|70\12, 2896.552
''2384; 1.625''
|41\7, 2894.118
|24\5
|53\9, 2890.909
''2400''
|58\12
''2416.{{Overline|6}}''
|34\7
''2428; 1.75''
|44\9
''2444.{{Overline|4}}''
|-
|-
|Mi#, Si#
|Si#
|Q#, D#
|2#
|F#
|F#
|53\11
|64\11, 2953.846
''2409.{{Overline|09}}''
| rowspan="2" |47\8, 2968.421
| rowspan="2" |39\8
|77\13, 2980.645
 
|30\5, 3000
''2437.5''
|73\12, 3020.690
|64\13
|43\7, 3035.294
''2461; 1, 1.1{{Overline|6}}''
|55\9, 3000
|25\5
''2500''
|61\12
''2541.{{Overline|6}}''
|36\7
''2571; 2.3̄''
|47\9
''2611.1̄''
|-
|-
|Dob, Solb
|0f
|Dob
|65\11, 3000
|Df, Sf
|76\13, 2941.935
|3b, 3d
|29\5, 2900
|1f
|69\29, 2855.172
|54\11
|40\7, 2823.529
''2454.{{Overline|54}}''
|52\9, 2836.364
|63\13
''2423; 13''
|24\5
''2400''
|57\12
''2375''
|33\7
''2357; 7''
|42\9
''2333.{{Overline|3}}''
|-
|-
!Do, Sol
!0
!Do
!66\11, 3046.154
!D, S
!48\8, 30'''31.579'''
!3
!78\13, 30'''19.355'''
!1
!30\5, 3000
! colspan="7" |''2500''
!72\12, 29'''79.310'''
!42\7, 2964.706
!54\9, 2945.455
|}
|}


==Intervals==
==Intervals==
Line 1,756: Line 1,973:
|-
|-
|0
|0
|Do, Sol
|F/C/G ut
Do, Sol
 
د, ص
|perfect unison
|perfect unison
|0
|0
|Do, Sol
|F/C/G ut
Do, Sol
 
د, ص
|perfect fourth
|perfect fourth
|-
|-
|1
|1
|Mib, Sib
|A/E/B mib
Mib, Sib
 
صb, مb
|diminished third
|diminished third
| -1
| -1
|Re, La
|G/D/A re
Re, La
 
ر, ل
|perfect second
|perfect second
|-
|-
|2
|2
|Reb, Lab
|G/D/A reb
Reb, Lab
 
رb, لb
|diminished second
|diminished second
| -2
| -2
|Mi, Si
|A/E/B mi
Mi, Si
 
ص, م
|perfect third
|perfect third
|-
|-
Line 1,779: Line 2,014:
|-
|-
|3
|3
|Dob, Solb
|F/C/G utb
Dob, Solb
 
دb, صb
|diminished fourth
|diminished fourth
| -3
| -3
|Do#, Sol#
|F/C/G ut#
Do#, Sol#
 
د, #ص#
|augmented unison (chroma)
|augmented unison (chroma)
|-
|-
|4
|4
|Mibb, Sibb
|A/E/B mibb
Mibb, Sibb
 
مbb, صbb
|doubly diminished third
|doubly diminished third
| -4
| -4
|Re#, La#
|G/D/A re#
Re#, La#
 
ر ,# ل#
|augmented second
|augmented second
|}
|}
Line 1,795: Line 2,042:
The generator chain for this scale is as follows:
The generator chain for this scale is as follows:
{| class="wikitable"
{| class="wikitable"
|A/E/B mibb
|F/C/G utb
|G/D/A reb
|A/E/B mib
|F/C/G ut
|G/D/A re
|A/E/B mi
|F/C/G ut#
|G/D/A re#
|A/E/B mi#
|-
|Mibb
|Mibb
Sibb
Sibb
Line 1,815: Line 2,073:
|Mi#
|Mi#
Si#
Si#
|-
|مbb
تbb
|دb
صb
|رb
لb
|مb
تb
ص
ل
ت
|د#
ص#
|ر#
ل#
|م#
ت#
|-
|-
|dd3
|dd3
Line 1,854: Line 2,133:
|-
|-
|Phrygian
|Phrygian
|LsLL
|sLL
|<nowiki>0|2</nowiki>
|<nowiki>0|2</nowiki>
|d
|d
Line 1,866: Line 2,145:
[[Comma]] list: [[81/80]]
[[Comma]] list: [[81/80]]


[[POL2]] generator: ~9/8 = 193.6725
[[POL2]] generator: ~9/8 = 193.6725¢


[[Mapping]]: [{{val|1 0 1}}, {{val|0 2 1}}]
[[Mapping]]: [{{val|1 0 1}}, {{val|0 2 1}}]


[[Optimal ET sequence]]: ~(5ed4/3, 8ed4/3, 13ed4/3)
[[Optimal ET sequence]]: [[15ed12/5]], [[24ed12/5]], [[39ed12/5]] ≈ [[5ed4/3]], [[8ed4/3]], [[13ed4/3]]
==='''Mahuric-Superpyth'''===
==='''Mahuric-Superpyth'''===
[[Subgroup]]: 4/3.9/7.3/2
[[Subgroup]]: 4/3.9/7.3/2
Line 1,876: Line 2,155:
[[Comma]] list: [[64/63]]
[[Comma]] list: [[64/63]]


[[POL2]] generator: ~8/7 = 216.7325
[[POL2]] generator: ~8/7 = 216.7325¢


[[Mapping]]: [{{val|1 0 1}}, {{val|0 2 1}}]
[[Mapping]]: [{{val|1 0 1}}, {{val|0 2 1}}]


[[Optimal ET sequence]]: ~(5ed4/3, 7ed4/3, 9ed4/3, 11ed4/3)
[[Optimal ET sequence]]: [[15ed7/3]], [[21ed7/3]], [[27ed7/3]], [[33ed7/3]] ≈ [[5ed4/3]], [[7ed4/3]], [[9ed4/3]], [[11ed4/3]]
====Scale tree====
====Scale tree====
The spectrum looks like this:
The spectrum looks like this:
{| class="wikitable"
{| class="wikitable"
! colspan="3" rowspan="2" |Generator
!Generator
(bright)
(bright)
! colspan="2" |Cents
!Cents
! rowspan="2" |L
!L
! rowspan="2" |s
!s
! rowspan="2" |L/s
!L/s
! rowspan="2" |Comments
!Comments
|-
!Normalised<ref name=":05" />
!''ed5\12<ref name=":05" />''
|-
|-
|1\3
|1\3
|
|171.429
|
|171; 2.{{Overline|3}}
|''166.{{Overline|6}}''
|1
|1
|1
|1
Line 1,906: Line 2,179:
|-
|-
|6\17
|6\17
|
|180.000
|
|180
|''176; 2.125''
|6
|6
|5
|5
|1.200
|1.200
|
|-
|
|11\31
|
|180; 1.21{{Overline|6}}
|''177; 2, 2.6''
|11
|9
|1.222
|
|
|-
|-
|5\14
|5\14
|
|181.818
|
|181.{{Overline|81}}
|''178; 1.75''
|5
|5
|4
|4
Line 1,935: Line 2,192:
|
|
|-
|-
|
|14\39
|14\39
|
|182.609
|182; 1, 1.5
|''179; 2, 19''
|14
|14
|11
|11
Line 1,945: Line 2,199:
|
|
|-
|-
|
|9\25
|9\25
|
|183.051
|183; 19.{{Overline|6}}
|''180''
|9
|9
|7
|7
Line 1,956: Line 2,207:
|-
|-
|4\11
|4\11
|
|184.615
|
|184; 1.625
|''181.{{Overline|81}}''
|4
|4
|3
|3
Line 1,965: Line 2,213:
|
|
|-
|-
|
|15\41
|
|185; 1.7{{Overline|63}}
|''182; 1, 12.{{Overline|6}}''
|15
|11
|1.364
|
|-
|
|11\30
|11\30
|
|185.915
|185, 1, 10.8{{Overline|3}}
|''183.{{Overline|3}}''
|11
|11
|8
|8
Line 1,985: Line 2,220:
|
|
|-
|-
|
|7\19
|7\19
|
|186.667
|186.{{Overline|6}}
|''184; 4.75''
|7
|7
|5
|5
Line 1,995: Line 2,227:
|
|
|-
|-
|
|10\27
|10\27
|
|187.500
|187.5
|''185.{{Overline|185}}''
|10
|10
|7
|7
Line 2,005: Line 2,234:
|
|
|-
|-
|
|13\35
|13\35
|
|187.952
|187; 1, 19.75
|''185; 1.4''
|13
|13
|9
|9
Line 2,015: Line 2,241:
|
|
|-
|-
|
|16\43
|16\43
|
|188.253
|188; 4.25
|''186; 21.5''
|16
|16
|11
|11
Line 2,026: Line 2,249:
|-
|-
|3\8
|3\8
|
|189.474
|
|189; 2.{{Overline|1}}
|''187.5''
|3
|3
|2
|2
Line 2,035: Line 2,255:
|Mahuric-Meantone starts here
|Mahuric-Meantone starts here
|-
|-
|
|17\45
|
|190; 1, 1.{{Overline|12}}
|''188.{{Overline|8}}''
|17
|11
|1.5455
|
|-
|
|14\37
|14\37
|
|190.909
|190.{{Overline|90}}
|''189.{{Overline|189}}''
|14
|14
|9
|9
Line 2,055: Line 2,262:
|
|
|-
|-
|
|11\29
|11\29
|
|191.304
|191; 3, 2.{{Overline|3}}
|''189; 1, 1.9''
|11
|11
|7
|7
Line 2,065: Line 2,269:
|
|
|-
|-
|
|8\21
|8\21
|
|192.000
|192
|''190; 2.1''
|8
|8
|5
|5
Line 2,075: Line 2,276:
|
|
|-
|-
|
|
|13\34
|192.{{Overline|592}}
|''191; 5.{{Overline|6}}''
|13
|8
|1.625
|
|-
|
|5\13
|5\13
|
|193.548
|193; 1, 1, 4.{{Overline|6}}
|''192; 4.{{Overline|3}}''
|5
|5
|3
|3
Line 2,095: Line 2,283:
|
|
|-
|-
|
|
|12\31
|12\31
|194.{{Overline|594}}
|194.595
|''193; 1, 1, 4.{{Overline|6}}''
|12
|12
|7
|7
Line 2,105: Line 2,290:
|
|
|-
|-
|
|7\18
|7\18
|
|195.348
|195; 2.8{{Overline|6}}
|''194.{{Overline|4}}''
|7
|7
|4
|4
Line 2,115: Line 2,297:
|
|
|-
|-
|
|9\23
|9\23
|
|196.364
|196.{{Overline|36}}
|''195; 1.5{{Overline|3}}''
|9
|9
|5
|5
Line 2,125: Line 2,304:
|
|
|-
|-
|
|11\28
|11\28
|
|197.015
|197; 67
|''196; 2.{{Overline|3}}''
|11
|11
|6
|6
Line 2,135: Line 2,311:
|
|
|-
|-
|
|13\33
|13\33
|
|197.468
|197; 2.{{Overline|135}}
|''196.{{Overline|96}}''
|13
|13
|7
|7
Line 2,145: Line 2,318:
|
|
|-
|-
|
|15\38
|15\38
|
|197.802
|197; 1, 2, 1, 1.{{Overline|54}}
|''197; 2, 1.4''
|15
|15
|8
|8
Line 2,155: Line 2,325:
|
|
|-
|-
|
|17\43
|17\43
|
|198.058
|198; 17.1{{Overline|6}}
|''197; 1, 2, 14''
|17
|17
|9
|9
Line 2,165: Line 2,332:
|
|
|-
|-
|
|19\48
|19\48
|
|198.261
|198: 3, 1, 28
|''197.91{{Overline|6}}''
|19
|19
|10
|10
Line 2,175: Line 2,339:
|
|
|-
|-
|
|21\53
|21\53
|
|198.425
|198; 2.3{{Overline|518}}
|''198; 8.8{{Overline|3}}''
|21
|21
|11
|11
Line 2,185: Line 2,346:
|
|
|-
|-
|
|23\58
|23\58
|
|198.561
|198; 1, 3, 1.7
|''198; 3.625''
|23
|23
|12
|12
Line 2,195: Line 2,353:
|
|
|-
|-
|
|25\63
|25\63
|
|198.675
|198; 1, 2, 12.25
|''198; 2, 2.{{Overline|36}}''
|25
|25
|13
|13
Line 2,205: Line 2,360:
|
|
|-
|-
|
|27\68
|27\68
|
|198.773
|198; 1, 3.{{Overline|405}}
|''198; 1.{{Overline|8}}''
|27
|27
|14
|14
Line 2,215: Line 2,367:
|
|
|-
|-
|
|29\73
|29\73
|
|198.857
|198; 1, 1.1{{Overline|6}}
|''198; 1, 1.{{Overline|703}}''
|29
|29
|15
|15
Line 2,225: Line 2,374:
|
|
|-
|-
|
|31\78
|31\78
|
|198.930
|198; 1, 12, 2.8
|''198; 1, 2.{{Overline|54}}''
|31
|31
|16
|16
Line 2,235: Line 2,381:
|
|
|-
|-
|
|33\83
|33\83
|
|198.995
|198; 1.{{Overline|005}}
|''198; 1.2{{Overline|57}}''
|33
|33
|17
|17
Line 2,245: Line 2,388:
|
|
|-
|-
|
|35\88
|35\88
|
|199.052
|199; 19.{{Overline|18}}
|''198.8{{Overline|63}}''
|35
|35
|18
|18
Line 2,256: Line 2,396:
|-
|-
|2\5
|2\5
|
|200.000
|
|200
|''200''
|2
|2
|1
|1
Line 2,265: Line 2,402:
|Mahuric-Meantone ends, Mahuric-Pythagorean begins
|Mahuric-Meantone ends, Mahuric-Pythagorean begins
|-
|-
|
|17\42
|17\42
|
|201.980
|201.{{Overline|9801}}
|''202; 2.625''
|17
|17
|8
|8
Line 2,275: Line 2,409:
|
|
|-
|-
|
|15\37
|15\37
|
|202.247
|202; 4.0{{Overline|45}}
|''202.{{Overline|702}}''
|15
|15
|7
|7
Line 2,285: Line 2,416:
|
|
|-
|-
|
|13\32
|13\32
|
|202.597
|202; 1, 1, 2.0{{Overline|6}}
|''203.125''
|13
|13
|6
|6
Line 2,295: Line 2,423:
|
|
|-
|-
|
|11\27
|11\27
|
|203.077
|203; 13
|''203.{{Overline|703}}''
|11
|11
|5
|5
Line 2,305: Line 2,430:
|
|
|-
|-
|
|9\22
|9\22
|
|203.774
|203; 1, 3.41{{Overline|6}}
|''204.{{Overline|54}}''
|9
|9
|4
|4
Line 2,315: Line 2,437:
|
|
|-
|-
|
|7\17
|7\17
|
|204.878
|204; 1. 7.2
|''205; 1.1{{Overline|3}}''
|7
|7
|3
|3
Line 2,325: Line 2,444:
|
|
|-
|-
|
|
|12\29
|12\29
|205; 1.4
|205.714
|''206; 1, 8.{{Overline|6}}''
|12
|12
|5
|5
Line 2,335: Line 2,451:
|
|
|-
|-
|
|
|17\41
|206.{{Overline|06}}
|''207; 3, 6.5''
|17
|7
|2.429
|
|-
|
|5\12
|5\12
|
|206.897
|206; 1, 8.{{Overline|6}}
|''208.{{Overline|3}}''
|5
|5
|2
|2
Line 2,355: Line 2,458:
|Mahuric-Neogothic heartland is from here…
|Mahuric-Neogothic heartland is from here…
|-
|-
|
|
|18\43
|18\43
|207; 1.{{Overline|4}}
|207.693
|''209; 3, 4.{{Overline|3}}''
|18
|18
|7
|7
Line 2,365: Line 2,465:
|
|
|-
|-
|
|
|13\31
|13\31
|208
|208.000
|''209; 1, 2.1''
|13
|13
|5
|5
Line 2,375: Line 2,472:
|
|
|-
|-
|
|8\19
|8\19
|
|208.696
|208; 1.4375
|''210; 1.9''
|8
|8
|3
|3
Line 2,385: Line 2,479:
|…to here
|…to here
|-
|-
|
|11\26
|11\26
|
|209.524
|209; 1.{{Overline|90}}
|''211; 1, 1.1{{Overline|6}}''
|11
|11
|4
|4
Line 2,395: Line 2,486:
|
|
|-
|-
|
|14\33
|14\33
|
|210.000
|210
|''212.{{Overline|12}}''
|14
|14
|5
|5
|2.800
|2.800
|
|-
|
|17\40
|
|210; 3.2{{Overline|3}}
|''212.5''
|17
|6
|2.833
|
|-
|
|20\47
|
|210; 1.9
|''212; 1.{{Overline|30}}''
|20
|7
|2.857
|
|-
|
|23\54
|
|210; 1.4{{Overline|5}}
|''212.{{Overline|962}}''
|23
|8
|2.875
|
|-
|
|26\61
|
|210.{{Overline|810}}
|''213; 8, 1.4''
|26
|9
|2.889
|
|
|-
|-
|3\7
|3\7
|
|211.755
|
|211; 1, 3.25
|''214; 3.5''
|3
|3
|1
|1
Line 2,455: Line 2,500:
|Mahuric-Pythagorean ends, Mahuric-Superpyth begins
|Mahuric-Pythagorean ends, Mahuric-Superpyth begins
|-
|-
|
|22\51
|22\51
|
|212.903
|212; 1, 9.{{Overline|3}}
|''215; 1, 2,1875''
|22
|22
|7
|7
Line 2,465: Line 2,507:
|
|
|-
|-
|
|19\44
|19\44
|
|213.084
|213; 11.{{Overline|8}}
|''215.{{Overline|90}}''
|19
|19
|6
|6
Line 2,475: Line 2,514:
|
|
|-
|-
|
|16\37
|16\37
|
|213.333
|213.
|''216.{{Overline|216}}''
|16
|16
|5
|5
Line 2,485: Line 2,521:
|
|
|-
|-
|
|13\30
|13\30
|
|213.699
|213; 1, 2.3{{Overline|18}}
|''216.{{Overline|6}}''
|13
|13
|4
|4
Line 2,495: Line 2,528:
|
|
|-
|-
|
|10\23
|10\23
|
|214.286
|214; 3.5
|''217; 5.75''
|10
|10
|3
|3
Line 2,505: Line 2,535:
|
|
|-
|-
|
|7\16
|7\16
|
|215.385
|215; 2.6
|''218.75''
|7
|7
|2
|2
Line 2,515: Line 2,542:
|
|
|-
|-
|
|
|18\41
|216
|''219; 1, 1.05''
|18
|5
|3.600
|
|-
|
|11\25
|11\25
|
|216.393
|216; 2.541{{Overline|6}}
|''220''
|11
|11
|3
|3
Line 2,535: Line 2,549:
|
|
|-
|-
|
|15\34
|15\34
|
|216.867
|216; 1.152{{Overline|7}}
|''220; 1.7''
|15
|15
|4
|4
Line 2,545: Line 2,556:
|
|
|-
|-
|
|19\43
|19\43
|
|217.143
|217; 7
|''220; 1, 7.6''
|19
|19
|5
|5
|3.800
|3.800
|
|-
|
|23\52
|
|217; 3, 10.25
|''221; 6.5''
|23
|6
|3.833
|
|
|-
|-
|4\9
|4\9
|
|218.182
|
|218.{{Overline|18}}
|''222.{{Overline|2}}''
|4
|4
|1
|1
Line 2,575: Line 2,570:
|
|
|-
|-
|
|17\38
|
|219; 1, 2.{{Overline|90}}
|''223; 1.58{{Overline|3}}''
|17
|4
|4.250
|
|-
|
|13\29
|13\29
|
|219.718
|219; 1, 2.55
|''224; 7.25''
|13
|13
|3
|3
Line 2,595: Line 2,577:
|
|
|-
|-
|
|9\20
|9\20
|
|220.408
|220; 2.45
|''225''
|9
|9
|2
|2
Line 2,605: Line 2,584:
|
|
|-
|-
|
|14\31
|14\31
|
|221.053
|221; 19
|''225; 1.24''
|14
|14
|3
|3
|4.667
|4.667
|
|-
|
|19\42
|
|221; 2.{{Overline|783}}
|''226; 4.2''
|19
|4
|4.750
|
|
|-
|-
|5\11
|5\11
|
|222.222
|
|222.{{Overline|2}}
|''227.{{Overline|27}}''
|5
|5
|1
|1
Line 2,635: Line 2,598:
|Mahuric-Superpyth ends
|Mahuric-Superpyth ends
|-
|-
|
|16\35
|
|223; 3.{{Overline|90}}
|''228; 1.75''
|16
|3
|5.333
|
|-
|
|11\24
|11\24
|
|223.728
|223; 1, 2.6875
|''229.1{{Overline|6}}''
|11
|11
|2
|2
Line 2,655: Line 2,605:
|
|
|-
|-
|
|17\37
|17\37
|
|224.176
|224; 5.7{{Overline|2}}
|''229.{{Overline|729}}''
|17
|17
|3
|3
Line 2,666: Line 2,613:
|-
|-
|6\13
|6\13
|
|225.000
|
|225
|''230; 1.3''
|6
|6
|1
|1
Line 2,675: Line 2,619:
|
|
|-
|-
|1\3
|1\2
|
|240.000
|
|240
|''250''
|1
|1
|0
|0
Line 2,686: Line 2,627:
|}
|}


== See also ==
==See also==
[[2L 1s (4/3-equivalent)]] - idealized tuning<references />
[[2L 1s (4/3-equivalent)]] - idealized tuning
 
[[4L 2s (7/4-equivalent)]] - Mixolydian and Dorian hexatonic Archytas temperament
 
[[4L 2s (39/22-equivalent)]] - Mixolydian and Dorian hexatonic Neogothic temperament
 
[[4L 2s (Komornik–Loreti constant-equivalent)]] - Mixolydian and Dorian hexatonic Komornik–Loreti temperament
 
[[4L 2s (9/5-equivalent)]] - Mixolydian and Dorian hexatonic Meantone temperament
 
[[6L 3s (7/3-equivalent)]] - Mahuric-Archytas temperament
 
[[6L 3s (26/11-equivalent)]] - Mahuric-Neogothic temperament
 
[[6L 3s (12/5-equivalent)]] - Mahuric-Meantone temperament
 
[[8L 4s (28/9-equivalent)]] - Bijou Archytas temperament
 
[[8L 4s (22/7-equivalent)]] and [[8L 4s (π-equivalent)|8L 4s ([math]π[/math]-equivalent)]] - Bijou Neogothic temperament
 
[[8L 4s (16/5-equivalent)]] - Bijou Meantone temperament
 
[[10L 5s (112/27-equivalent)]] - Hyperionic Archytas temperament
 
[[10L 5s (88/21-equivalent)]] - Hyperionic Neogothic temperament
 
[[10L 5s (64/15-equivalent)]] - Hyperionic Meantone temperament
 
[[10L 5s (30/7-equivalent)]] - Hyperionic septimal Meantone temperament
 
[[12L 6s (16/3-equivalent)]] - Warped Pythagorean Subsextal temperament
 
[[12L 6s (343/64-equivalent)]] - 1/2 comma Archytas Subsextal temperament]
 
[[12L 6s (11/2-equivalent)]] - Low undecimal Subsextal temperament
 
[[12L 6s (448/81-equivalent)]] - 1/6 comma Archytas Subsextal temperament
 
[[12L 6s (4096/729-equivalent)]] - Pythagorean Subsextal temperament
 
[[12L 6s (28/5-equivalent)]] - Low septimal (meantone) Subsextal temperament
 
[[12L 6s (45/16-equivalent)|12L 6s (256/45-equivalent)]] - 1/6 comma meantone Subsextal temperament
 
[[12L 6s (40/7-equivalent)]] - High septimal Subsextal temperament
 
[[12L 6s (64/11-equivalent)]] - High undecimal Subsextal temperament
 
[[12L 6s (729/125-equivalent)]] - 1/2 comma meantone Subsextal temperament <references />