9L 5s: Difference between revisions

Wikispaces>Chartrekhan
**Imported revision 585826461 - Original comment: **
ArrowHead294 (talk | contribs)
mNo edit summary
 
(19 intermediate revisions by 9 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Todo|confirm|inline=1|text=Verify temperaments that correspond with 9L 5s}}
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
{{Infobox MOS}}
: This revision was by author [[User:Chartrekhan|Chartrekhan]] and made on <tt>2016-06-20 04:48:35 UTC</tt>.<br>
{{MOS intro}}
: The original revision id was <tt>585826461</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">9L 5s refers to the structure of moment of symmetry scales with generators ranging from 2\9edo (three degrees of 9edo = 266¢) to 3\14 (three degrees of 14edo = 257¢). In the case of 14edo, L and s are the same size; in the case of 9edo, s becomes so small it disappears. The generator can be said to approximate 7/6, but just 7/6 is larger than 2\9edo, so it cannot be used as a generator. The simplest just interval that works as a generator is 29/25. Two generators are said to create a fourth like Godzilla, but in reality it is closer to 27/20, if that is considered a consonance.


9L5s is third smallest MOS of [[Semiphore]].
The [[generator]] can be said to approximate [[7/6]], but just 7/6 is larger than 2\9edo, so it cannot be used as a generator. The simplest just interval that works as a generator is [[36/31]]. Two generators are said to create a fourth like [[Godzilla]], but in reality it is closer to [[27/20]], if that is considered a consonance. 9L&nbsp;5s is third smallest MOS of [[Semiphore]].  


||generator in degrees of an edo|| generator in cents||L in cents||s in cents||notes||
== Scale properties ==
||3\14||257¢||86¢||86¢|| L=s||
{{TAMNAMS use}}
|| ||258.87¢||94¢||70¢|| Just interval 36/31 ||
||8\37||259¢||97¢||65¢|| ||
||5\23||261¢||104¢||52¢||L≈2s||
|| ||~261.5¢||104¢||52¢||L=2s||
||7\32||262¢||113¢||38¢|| ||
||2\9||266¢||266¢||0¢||s=0||
</pre></div>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;9L 5s&lt;/title&gt;&lt;/head&gt;&lt;body&gt;9L 5s refers to the structure of moment of symmetry scales with generators ranging from 2\9edo (three degrees of 9edo = 266¢) to 3\14 (three degrees of 14edo = 257¢). In the case of 14edo, L and s are the same size; in the case of 9edo, s becomes so small it disappears. The generator can be said to approximate 7/6, but just 7/6 is larger than 2\9edo, so it cannot be used as a generator. The simplest just interval that works as a generator is 29/25. Two generators are said to create a fourth like Godzilla, but in reality it is closer to 27/20, if that is considered a consonance.&lt;br /&gt;
&lt;br /&gt;
9L5s is third smallest MOS of &lt;a class="wiki_link" href="/Semiphore"&gt;Semiphore&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;


=== Intervals ===
{{MOS intervals}}


&lt;table class="wiki_table"&gt;
=== Generator chain ===
    &lt;tr&gt;
{{MOS genchain}}
        &lt;td&gt;generator in degrees of an edo&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;generator in cents&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;L in cents&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;s in cents&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;notes&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3\14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;257¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;86¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;86¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;L=s&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;258.87¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;94¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;70¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;Just interval 36/31&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8\37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;259¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;97¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;65¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5\23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;261¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;104¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;52¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;L≈2s&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;~261.5¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;104¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;52¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;L=2s&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7\32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;262¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;113¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;38¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2\9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;266¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;266¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0¢&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;s=0&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;/body&gt;&lt;/html&gt;</pre></div>
=== Modes ===
{{MOS mode degrees}}
 
== Scale tree ==
{{MOS tuning spectrum}}
 
{{todo|expand}}
 
[[Category:14-tone scales]]