37th-octave temperaments: Difference between revisions

Eliora (talk | contribs)
13-limit: correction
ArrowHead294 (talk | contribs)
mNo edit summary
 
(11 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Infobox fractional-octave|37}}
[[37edo]] has an extremely precise mapping for the 11th harmonic, and it is a strong 2.5.7.13 tuning besides that, therefore various 37th-octave temperaments occur naturally between any two numbers whose greatest common divisor is 37.
[[37edo]] has an extremely precise mapping for the 11th harmonic, and it is a strong 2.5.7.13 tuning besides that, therefore various 37th-octave temperaments occur naturally between any two numbers whose greatest common divisor is 37.
== 37-11-commatic (rank-1) ==
{{Main|37-11-comma}}
Subgroup: 2.11
Comma list: {{monzo|128 -37}}
{{mapping|legend=2| 37 28 }}
: mapping generators: ~35184372088832/34522712143931 = 1\37
[[Support]]ing [[ET]]s: 37N, N = 1 to 485


== Rubidium ==
== Rubidium ==
Line 14: Line 27:
[[Optimal tuning]] ([[POTE]]): ~3/2 = 703.3903
[[Optimal tuning]] ([[POTE]]): ~3/2 = 703.3903


{{Val list|legend=1| 37, 74, 111 }}
{{Optimal ET sequence|legend=1| 37, 74, 111 }}


[[Badness]]: 0.312105
[[Badness]]: 0.312105
Line 27: Line 40:
Optimal tuning (POTE): ~3/2 = 703.0355
Optimal tuning (POTE): ~3/2 = 703.0355


Optimal GPV sequence: {{Val list| 37, 74, 111 }}
{{Optimal ET sequence|legend=1| 37, 74, 111 }}


Badness: 0.101001
Badness: 0.101001
Line 40: Line 53:
Optimal tuning (POTE): ~3/2 = 703.0520
Optimal tuning (POTE): ~3/2 = 703.0520


Optimal GPV sequence: {{Val list| 37, 74, 111 }}
{{Optimal ET sequence|legend=1| 37, 74, 111 }}


Badness: 0.048732
Badness: 0.048732
Line 55: Line 68:
[[Optimal tuning]] ([[CTE]]): ~24000/16807 = 612.4003
[[Optimal tuning]] ([[CTE]]): ~24000/16807 = 612.4003


{{Val list|legend=1| 37, 222b, 259b, 296, 629 }}
{{Optimal ET sequence|legend=1| 37, 222b, 259b, 296, 629 }}


[[Badness]]: 0.784746
[[Badness]]: 0.784746
Line 68: Line 81:
Optimal tuning (CTE): ~768/359 = 612.4003
Optimal tuning (CTE): ~768/359 = 612.4003


Optimal GPV sequence: {{Val list| 37, 259b, 296, 629 }}
{{Optimal ET sequence|legend=1| 37, 259b, 296, 629 }}


Badness: 0.167327
Badness: 0.167327
Line 81: Line 94:
Optimal tuning (CTE): ~462/325 = 612.4206
Optimal tuning (CTE): ~462/325 = 612.4206


Optimal GPV sequence: {{Val list| 37, 259b, 296, 629f }}
{{Optimal ET sequence|legend=1| 37, 259b, 296, 629f }}


Badness: 0.076183
Badness: 0.076183
Line 94: Line 107:
Optimal tuning (CTE): ~121/85 = 612.4187
Optimal tuning (CTE): ~121/85 = 612.4187


Optimal GPV sequence: {{Val list| 37, 259b, 296, 629f }}
{{Optimal ET sequence|legend=1| 37, 259b, 296, 629f }}


Badness: 0.052475
Badness: 0.052475
Line 123: Line 136:


===13-limit===
===13-limit===
14 periods map to [[13/10]], thus equating a stack of three 11/8 with one 13/10 and making dzelic a [[jacobin]] temperament.
14 periods map to [[13/10]], thus equating a stack of three 11/8 with one 13/10 and making dzelic a [[6656/6655|jacobin]] temperament.


Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13
Line 129: Line 142:
Comma list: 4375/4374, 6656/6655, 405769/405504, 34034175/34027136
Comma list: 4375/4374, 6656/6655, 405769/405504, 34034175/34027136


Mapping: [{{val|37 0 -23 129 128}}, {{val|0 7 13 -3 0}]
Mapping: [{{val|37 0 -23 129 128 28}}, {{val|0 7 13 -3 0 13}}]


Mapping generators: ~1248/1225 = 1\37, ~117/100 = 271.712
Mapping generators: ~1248/1225 = 1\37, ~117/100 = 271.712
Line 135: Line 148:
Optimal tuning (CTE): ~11979/10240 = 271.712
Optimal tuning (CTE): ~11979/10240 = 271.712


Optimal GPV sequence: {{EDOs|296, 1369, 1665}}, ...
{{Optimal ET sequence|legend=1|296, 1369, 1665}}, ...


[[Category:37edo]]
{{Navbox fractional-octave}}
[[Category:Rank-2]]