54edo: Difference between revisions
Instruments |
m →Octave stretch: temporary improvement until the roll out |
||
(21 intermediate revisions by 7 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ | {{ED intro}} | ||
== Theory == | == Theory == | ||
54edo is suitable for usage | 54edo is suitable for usage as a [[dual-fifth tuning]] system, or alternatively, a [[No-threes subgroup temperaments|no-fifth]] tuning system. Using the sharp fifth, it can be viewed as two [[ring number|rings]] of [[27edo]], which adds better approximations of the [[11/1|11th]] and [[15/1|15th harmonics]]. Using the flat fifth, it generates an ultrasoft [[diatonic scale]]. This scale is so [[soft]], with {{nowrap|L/s {{=}} 8/7}}, that it stops sounding like [[meantone]] or even [[flattone]], but just sounds like a [[circulating temperament]] of [[7edo]]. | ||
It | The [[patent val]] of this edo takes the same fifth as [[27edo]], but the [[mapping]] for harmonic 5 is different. It tempers out [[2048/2025]] in the 5-limit, making it a [[diaschismic]] system. It is the highest edo in which the best mappings of the major 3rd ([[5/4]]) and harmonic 7th ([[7/4]]), 17\54 and 44\54, are exactly 600{{c}} apart, making them suitable for harmonies using tritone substitutions. In other words, this is the last edo tempering out [[50/49]]. This means it extends quite simply to the 7- and 11-limit using the [[pajarous]] mapping and to the 13-limit using the 54f val, falling neatly between the 7- and 13-limit [[Target tuning #Minimax tuning|minimax tunings]]. | ||
The 54cd val makes for an excellent tuning of 7-limit [[hexe]] temperament, while the 54bdf val does higher limit [[muggles]] about as well as it can be tuned. However, even these best temperament interpretations of 54edo are quite high in [[badness]] compared to its immediate neighbours [[53edo|53-]] and [[55edo]], both of which are [[Historical temperaments|historically significant]] for different reasons, leaving it mostly unexplored so far. | |||
=== Odd harmonics === | |||
{{Harmonics in equal|54}} | |||
=== | === Octave stretch === | ||
54edo’s approximations of 3/1, 5/1, 7/1, 11/1, 13/1, 17/1, 19/1 and 23/1 are all improved by [[38ed5/3]], a [[Octave stretch|stretched-octave]] version of 54edo. The trade-off is a slightly worse 2/1. | |||
{| class="wikitable | If one prefers a ''[[Octave shrinking|compressed-octave]]'' tuning instead, [[86edt]], [[126ed5]] and [[152ed7]] are possible choices. They improve upon 54edo’s 3/1, 5/1, 7/1 and 17/1, at the cost of its 2/1, 11/1 and 13/1. | ||
|+Table of intervals | |||
!Degree | [[40ed5/3]] is another compressed octave option. It improves upon 54edo’s 3/1, 5/1, 11/1, 13/1, 17/1 and 19/1, at slight cost to the 2/1 and 7/1. Its 2/1 is the least accurate of all the tunings mentioned in this section, though still accurate enough that it has low [[harmonic entropy]]. | ||
!Cents | |||
![[Ups and downs notation]] ( | There are also some nearby [[Zeta peak index]] (ZPI) tunings which can be used to improve 54edo’s approximation of JI: 262zpi, 263zpi, 264zpi and 265zpi. The main Zeta peak index page details all four tunings. | ||
! | |||
=== Subsets and supersets === | |||
Since 54 factors into {{factorization|54}}, 54edo has subset edos {{EDOs| 2, 3, 6, 9, 18, and 27 }}. | |||
== Intervals == | |||
Using the sharp fifth as a [[generator]], 54edo requires up to quadruple ups and downs to notate. But using the flat fifth as a generator, it requires up to septuple sharps and flats. Because the flat fifth generates a diatonic scale with a [[chroma]] of 1 step, ups and downs are not needed in notation if the flat fifth is used. | |||
{| class="wikitable" | |||
|+ style="font-size: 105%;" | Table of intervals in 54edo | |||
|- | |||
! rowspan="2" | Degree | |||
! rowspan="2" | Cents | |||
! colspan="2" | [[Ups and downs notation]] | |||
|- | |||
! Flat fifth (31\54) | |||
! Sharp fifth (16\27) | |||
|- | |- | ||
|0 | | 0 | ||
|0.000 | | 0.000 | ||
|{{UDnote|fifth=31|step=0}} | | {{UDnote|fifth=31|step=0}} | ||
|{{UDnote|step=0}} | | {{UDnote|step=0}} | ||
|- | |- | ||
|1 | | 1 | ||
|22.222 | | 22.222 | ||
|{{UDnote|fifth=31|step=1}} | | {{UDnote|fifth=31|step=1}} | ||
|{{UDnote|step=1}} | | {{UDnote|step=1}} | ||
|- | |- | ||
|2 | | 2 | ||
|44.444 | | 44.444 | ||
|{{UDnote|fifth=31|step=2}} | | {{UDnote|fifth=31|step=2}} | ||
|{{UDnote|step=2}} | | {{UDnote|step=2}} | ||
|- | |- | ||
|3 | | 3 | ||
|66.667 | | 66.667 | ||
|{{UDnote|fifth=31|step=3}} | | {{UDnote|fifth=31|step=3}} | ||
|{{UDnote|step=3}} | | {{UDnote|step=3}} | ||
|- | |- | ||
|4 | | 4 | ||
|88.889 | | 88.889 | ||
|{{UDnote|fifth=31|step=4}} | | {{UDnote|fifth=31|step=4}} | ||
|{{UDnote|step=4}} | | {{UDnote|step=4}} | ||
|- | |- | ||
|5 | | 5 | ||
|111.111 | | 111.111 | ||
|{{UDnote|fifth=31|step=5}} | | {{UDnote|fifth=31|step=5}} | ||
|{{UDnote|step=5}} | | {{UDnote|step=5}} | ||
|- | |- | ||
|6 | | 6 | ||
|133.333 | | 133.333 | ||
|{{UDnote|fifth=31|step=6}} | | {{UDnote|fifth=31|step=6}} | ||
|{{UDnote|step=6}} | | {{UDnote|step=6}} | ||
|- | |- | ||
|7 | | 7 | ||
|155.556 | | 155.556 | ||
|{{UDnote|fifth=31|step=7}} | | {{UDnote|fifth=31|step=7}} | ||
|{{UDnote|step=7}} | | {{UDnote|step=7}} | ||
|- | |- | ||
|8 | | 8 | ||
|177.778 | | 177.778 | ||
|{{UDnote|fifth=31|step=8}} | | {{UDnote|fifth=31|step=8}} | ||
|{{UDnote|step=8}} | | {{UDnote|step=8}} | ||
|- | |- | ||
|9 | | 9 | ||
|200.000 | | 200.000 | ||
|{{UDnote|fifth=31|step=9}} | | {{UDnote|fifth=31|step=9}} | ||
|{{UDnote|step=9}} | | {{UDnote|step=9}} | ||
|- | |- | ||
|10 | | 10 | ||
|222.222 | | 222.222 | ||
|{{UDnote|fifth=31|step=10}} | | {{UDnote|fifth=31|step=10}} | ||
|{{UDnote|step=10}} | | {{UDnote|step=10}} | ||
|- | |- | ||
|11 | | 11 | ||
|244.444 | | 244.444 | ||
|{{UDnote|fifth=31|step=11}} | | {{UDnote|fifth=31|step=11}} | ||
|{{UDnote|step=11}} | | {{UDnote|step=11}} | ||
|- | |- | ||
|12 | | 12 | ||
|266.667 | | 266.667 | ||
|{{UDnote|fifth=31|step=12}} | | {{UDnote|fifth=31|step=12}} | ||
|{{UDnote|step=12}} | | {{UDnote|step=12}} | ||
|- | |- | ||
|13 | | 13 | ||
|288.889 | | 288.889 | ||
|{{UDnote|fifth=31|step=13}} | | {{UDnote|fifth=31|step=13}} | ||
|{{UDnote|step=13}} | | {{UDnote|step=13}} | ||
|- | |- | ||
|14 | | 14 | ||
|311.111 | | 311.111 | ||
|{{UDnote|fifth=31|step=14}} | | {{UDnote|fifth=31|step=14}} | ||
|{{UDnote|step=14}} | | {{UDnote|step=14}} | ||
|- | |- | ||
|15 | | 15 | ||
|333.333 | | 333.333 | ||
|{{UDnote|fifth=31|step=15}} | | {{UDnote|fifth=31|step=15}} | ||
|{{UDnote|step=15}} | | {{UDnote|step=15}} | ||
|- | |- | ||
|16 | | 16 | ||
|355.556 | | 355.556 | ||
|{{UDnote|fifth=31|step=16}} | | {{UDnote|fifth=31|step=16}} | ||
|{{UDnote|step=16}} | | {{UDnote|step=16}} | ||
|- | |- | ||
|17 | | 17 | ||
|377.778 | | 377.778 | ||
|{{UDnote|fifth=31|step=17}} | | {{UDnote|fifth=31|step=17}} | ||
|{{UDnote|step=17}} | | {{UDnote|step=17}} | ||
|- | |- | ||
|18 | | 18 | ||
|400.000 | | 400.000 | ||
|{{UDnote|fifth=31|step=18}} | | {{UDnote|fifth=31|step=18}} | ||
|{{UDnote|step=18}} | | {{UDnote|step=18}} | ||
|- | |- | ||
|19 | | 19 | ||
|422.222 | | 422.222 | ||
|{{UDnote|fifth=31|step=19}} | | {{UDnote|fifth=31|step=19}} | ||
|{{UDnote|step=19}} | | {{UDnote|step=19}} | ||
|- | |- | ||
|20 | | 20 | ||
|444.444 | | 444.444 | ||
|{{UDnote|fifth=31|step=20}} | | {{UDnote|fifth=31|step=20}} | ||
|{{UDnote|step=20}} | | {{UDnote|step=20}} | ||
|- | |- | ||
|21 | | 21 | ||
|466.667 | | 466.667 | ||
|{{UDnote|fifth=31|step=21}} | | {{UDnote|fifth=31|step=21}} | ||
|{{UDnote|step=21}} | | {{UDnote|step=21}} | ||
|- | |- | ||
|22 | | 22 | ||
|488.889 | | 488.889 | ||
|{{UDnote|fifth=31|step=22}} | | {{UDnote|fifth=31|step=22}} | ||
|{{UDnote|step=22}} | | {{UDnote|step=22}} | ||
|- | |- | ||
|23 | | 23 | ||
|511.111 | | 511.111 | ||
|{{UDnote|fifth=31|step=23}} | | {{UDnote|fifth=31|step=23}} | ||
|{{UDnote|step=23}} | | {{UDnote|step=23}} | ||
|- | |- | ||
|24 | | 24 | ||
|533.333 | | 533.333 | ||
|{{UDnote|fifth=31|step=24}} | | {{UDnote|fifth=31|step=24}} | ||
|{{UDnote|step=24}} | | {{UDnote|step=24}} | ||
|- | |- | ||
|25 | | 25 | ||
|555.556 | | 555.556 | ||
|{{UDnote|fifth=31|step=25}} | | {{UDnote|fifth=31|step=25}} | ||
|{{UDnote|step=25}} | | {{UDnote|step=25}} | ||
|- | |- | ||
|26 | | 26 | ||
|577.778 | | 577.778 | ||
|{{UDnote|fifth=31|step=26}} | | {{UDnote|fifth=31|step=26}} | ||
|{{UDnote|step=26}} | | {{UDnote|step=26}} | ||
|- | |- | ||
|27 | | 27 | ||
|600.000 | | 600.000 | ||
|{{UDnote|fifth=31|step=27}} | | {{UDnote|fifth=31|step=27}} | ||
|{{UDnote|step=27}} | | {{UDnote|step=27}} | ||
|- | |- | ||
|28 | | 28 | ||
|622.222 | | 622.222 | ||
|{{UDnote|fifth=31|step=28}} | | {{UDnote|fifth=31|step=28}} | ||
|{{UDnote|step=28}} | | {{UDnote|step=28}} | ||
|- | |- | ||
|29 | | 29 | ||
|644.444 | | 644.444 | ||
|{{UDnote|fifth=31|step=29}} | | {{UDnote|fifth=31|step=29}} | ||
|{{UDnote|step=29}} | | {{UDnote|step=29}} | ||
|- | |- | ||
|30 | | 30 | ||
|666.667 | | 666.667 | ||
|{{UDnote|fifth=31|step=30}} | | {{UDnote|fifth=31|step=30}} | ||
|{{UDnote|step=30}} | | {{UDnote|step=30}} | ||
|- | |- | ||
|31 | | 31 | ||
|688.889 | | 688.889 | ||
|{{UDnote|fifth=31|step=31}} | | {{UDnote|fifth=31|step=31}} | ||
|{{UDnote|step=31}} | | {{UDnote|step=31}} | ||
|- | |- | ||
|32 | | 32 | ||
|711.111 | | 711.111 | ||
|{{UDnote|fifth=31|step=32}} | | {{UDnote|fifth=31|step=32}} | ||
|{{UDnote|step=32}} | | {{UDnote|step=32}} | ||
|- | |- | ||
|33 | | 33 | ||
|733.333 | | 733.333 | ||
|{{UDnote|fifth=31|step=33}} | | {{UDnote|fifth=31|step=33}} | ||
|{{UDnote|step=33}} | | {{UDnote|step=33}} | ||
|- | |- | ||
|34 | | 34 | ||
|755.556 | | 755.556 | ||
|{{UDnote|fifth=31|step=34}} | | {{UDnote|fifth=31|step=34}} | ||
|{{UDnote|step=34}} | | {{UDnote|step=34}} | ||
|- | |- | ||
|35 | | 35 | ||
|777.778 | | 777.778 | ||
|{{UDnote|fifth=31|step=35}} | | {{UDnote|fifth=31|step=35}} | ||
|{{UDnote|step=35}} | | {{UDnote|step=35}} | ||
|- | |- | ||
|36 | | 36 | ||
|800.000 | | 800.000 | ||
|{{UDnote|fifth=31|step=36}} | | {{UDnote|fifth=31|step=36}} | ||
|{{UDnote|step=36}} | | {{UDnote|step=36}} | ||
|- | |- | ||
|37 | | 37 | ||
|822.222 | | 822.222 | ||
|{{UDnote|fifth=31|step=37}} | | {{UDnote|fifth=31|step=37}} | ||
|{{UDnote|step=37}} | | {{UDnote|step=37}} | ||
|- | |- | ||
|38 | | 38 | ||
|844.444 | | 844.444 | ||
|{{UDnote|fifth=31|step=38}} | | {{UDnote|fifth=31|step=38}} | ||
|{{UDnote|step=38}} | | {{UDnote|step=38}} | ||
|- | |- | ||
|39 | | 39 | ||
|866.667 | | 866.667 | ||
|{{UDnote|fifth=31|step=39}} | | {{UDnote|fifth=31|step=39}} | ||
|{{UDnote|step=39}} | | {{UDnote|step=39}} | ||
|- | |- | ||
|40 | | 40 | ||
|888.889 | | 888.889 | ||
|{{UDnote|fifth=31|step=40}} | | {{UDnote|fifth=31|step=40}} | ||
|{{UDnote|step=40}} | | {{UDnote|step=40}} | ||
|- | |- | ||
|41 | | 41 | ||
|911.111 | | 911.111 | ||
|{{UDnote|fifth=31|step=41}} | | {{UDnote|fifth=31|step=41}} | ||
|{{UDnote|step=41}} | | {{UDnote|step=41}} | ||
|- | |- | ||
|42 | | 42 | ||
|933.333 | | 933.333 | ||
|{{UDnote|fifth=31|step=42}} | | {{UDnote|fifth=31|step=42}} | ||
|{{UDnote|step=42}} | | {{UDnote|step=42}} | ||
|- | |- | ||
|43 | | 43 | ||
|955.556 | | 955.556 | ||
|{{UDnote|fifth=31|step=43}} | | {{UDnote|fifth=31|step=43}} | ||
|{{UDnote|step=43}} | | {{UDnote|step=43}} | ||
|- | |- | ||
|44 | | 44 | ||
|977.778 | | 977.778 | ||
|{{UDnote|fifth=31|step=44}} | | {{UDnote|fifth=31|step=44}} | ||
|{{UDnote|step=44}} | | {{UDnote|step=44}} | ||
|- | |- | ||
|45 | | 45 | ||
|1000.000 | | 1000.000 | ||
|{{UDnote|fifth=31|step=45}} | | {{UDnote|fifth=31|step=45}} | ||
|{{UDnote|step=45}} | | {{UDnote|step=45}} | ||
|- | |- | ||
|46 | | 46 | ||
|1022.222 | | 1022.222 | ||
|{{UDnote|fifth=31|step=46}} | | {{UDnote|fifth=31|step=46}} | ||
|{{UDnote|step=46}} | | {{UDnote|step=46}} | ||
|- | |- | ||
|47 | | 47 | ||
|1044.444 | | 1044.444 | ||
|{{UDnote|fifth=31|step=47}} | | {{UDnote|fifth=31|step=47}} | ||
|{{UDnote|step=47}} | | {{UDnote|step=47}} | ||
|- | |- | ||
|48 | | 48 | ||
|1066.667 | | 1066.667 | ||
|{{UDnote|fifth=31|step=48}} | | {{UDnote|fifth=31|step=48}} | ||
|{{UDnote|step=48}} | | {{UDnote|step=48}} | ||
|- | |- | ||
|49 | | 49 | ||
|1088.889 | | 1088.889 | ||
|{{UDnote|fifth=31|step=49}} | | {{UDnote|fifth=31|step=49}} | ||
|{{UDnote|step=49}} | | {{UDnote|step=49}} | ||
|- | |- | ||
|50 | | 50 | ||
|1111.111 | | 1111.111 | ||
|{{UDnote|fifth=31|step=50}} | | {{UDnote|fifth=31|step=50}} | ||
|{{UDnote|step=50}} | | {{UDnote|step=50}} | ||
|- | |- | ||
|51 | | 51 | ||
|1133.333 | | 1133.333 | ||
|{{UDnote|fifth=31|step=51}} | | {{UDnote|fifth=31|step=51}} | ||
|{{UDnote|step=51}} | | {{UDnote|step=51}} | ||
|- | |- | ||
|52 | | 52 | ||
|1155.556 | | 1155.556 | ||
|{{UDnote|fifth=31|step=52}} | | {{UDnote|fifth=31|step=52}} | ||
|{{UDnote|step=52}} | | {{UDnote|step=52}} | ||
|- | |- | ||
|53 | | 53 | ||
|1177.778 | | 1177.778 | ||
|{{UDnote|fifth=31|step=53}} | | {{UDnote|fifth=31|step=53}} | ||
|{{UDnote|step=53}} | | {{UDnote|step=53}} | ||
|- | |- | ||
|54 | | 54 | ||
|1200.000 | | 1200.000 | ||
|{{UDnote|fifth=31|step=54}} | | {{UDnote|fifth=31|step=54}} | ||
|{{UDnote|step=54}} | | {{UDnote|step=54}} | ||
|} | |} | ||
== Notation == | |||
=== Ups and downs notation === | |||
Using [[Helmholtz–Ellis]] accidentals, 54edo can also be notated using [[ups and downs notation]]: | |||
{{Sharpness-sharp8}} | |||
Here, a sharp raises by eight steps, and a flat lowers by eight steps, so single, double, and triple arrows along with Stein–Zimmerman [[24edo#Notation|quarter-tone]] accidentals can be used to fill in the gap. | |||
=== Sagittal notation === | |||
This notation uses the same sagittal sequence as [[61edo#Sagittal notation|61-EDO]], and is a superset of the notation for [[27edo#Sagittal notation|27-EDO]]. | |||
==== Evo flavor ==== | |||
<imagemap> | |||
File:54-EDO_Evo_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 650 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 140 106 [[513/512]] | |||
rect 140 80 240 106 [[81/80]] | |||
rect 240 80 360 106 [[33/32]] | |||
rect 360 80 480 106 [[27/26]] | |||
default [[File:54-EDO_Evo_Sagittal.svg]] | |||
</imagemap> | |||
==== Revo flavor ==== | |||
<imagemap> | |||
File:54-EDO_Revo_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 650 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 140 106 [[513/512]] | |||
rect 140 80 240 106 [[81/80]] | |||
rect 240 80 360 106 [[33/32]] | |||
rect 360 80 480 106 [[27/26]] | |||
default [[File:54-EDO_Revo_Sagittal.svg]] | |||
</imagemap> | |||
==== Evo-SZ flavor ==== | |||
<imagemap> | |||
File:54-EDO_Evo-SZ_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 642 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 140 106 [[513/512]] | |||
rect 140 80 240 106 [[81/80]] | |||
rect 240 80 360 106 [[33/32]] | |||
rect 360 80 480 106 [[27/26]] | |||
default [[File:54-EDO_Evo-SZ_Sagittal.svg]] | |||
</imagemap> | |||
In the diagrams above, a sagittal symbol followed by an equals sign (=) means that the following comma is the symbol's [[Sagittal notation#Primary comma|primary comma]] (the comma it ''exactly'' represents in JI), while an approximately equals sign (≈) means it is a secondary comma (a comma it ''approximately'' represents in JI). In both cases the symbol exactly represents the tempered version of the comma in this EDO. | |||
== Scales == | |||
* Approximations of [[gamelan]] scales: | |||
** 5-tone pelog: 5 7 19 4 19 | |||
** 7-tone pelog: 5 7 11 8 4 13 6 | |||
** 5-tone slendro: 11 11 10 11 11 | |||
== Instruments == | == Instruments == | ||
; Lumatone | |||
See [[Lumatone mapping for | See [[Lumatone mapping for 54edo]] | ||
[[Category:Todo:add rank 2 temperaments table]] | [[Category:Todo:add rank 2 temperaments table]] | ||
== Music == | |||
; [[Bryan Deister]] | |||
* [https://www.youtube.com/shorts/Bi5-YQUQHek ''microtonal improvisation in 54edo''] (2025) |