Breedsmic temperaments: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 300719476 - Original comment: **
 
(107 intermediate revisions by 14 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Technical data page}}
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This page discusses miscellaneous [[Rank-2 temperament|rank-2]] [[temperament]]s [[tempering out]] the [[breedsma]], {{monzo| -5 -1 -2 4 }} = 2401/2400. This is the amount by which two [[49/40]] intervals exceed [[3/2]], and by which two [[60/49]] intervals fall short. Either of these represent a neutral third interval which is highly characteristic of breedsmic tempering; any tuning system ([[12edo]], for example) which does not possess a neutral third cannot be tempering out the breedsma.
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-02-11 02:07:11 UTC</tt>.<br>
: The original revision id was <tt>300719476</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]]


The breedsma is also the amount by which four stacked [[10/7]] intervals exceed 25/6: 10000/2401 × 2401/2400 = 10000/2400 = 25/6, which is two octaves above the classic chromatic semitone, [[25/24]]. We might note also that (49/40)(10/7) = 7/4 and (49/40)(10/7)<sup>2</sup> = 5/2, relationships which will be significant in any breedsmic temperament. As a consequence of these facts, the 49/40~60/49 neutral third and the 7/5 and 10/7 intervals tend to have relatively low complexity in a breedsmic system.


Breedsmic temperaments are rank two temperaments tempering out the breedsma, |-5 -1 -2 4&gt; = 2401/2400. This is the amount by which two 49/40 intervals exceed 3/2, and by which two 60/49 intervals fall short. Either of these represent a neutral third interval which is highly characteristic of breedsmic tempering; any tuning system (12edo, for example) which does not possess a neutral third cannot be tempering out the breedsma.
Temperaments discussed elsewhere include:
* ''[[Decimal]]'' (+25/24, 49/48 or 50/49) → [[Dicot family #Decimal|Dicot family]]
* ''[[Beatles]]'' (+64/63 or 686/675) → [[Archytas clan #Beatles|Archytas clan]]
* [[Squares]] (+81/80) → [[Meantone family #Squares|Meantone family]]
* [[Myna]] (+126/125) → [[Starling temperaments #Myna|Starling temperaments]]
* [[Miracle]] (+225/224) → [[Gamelismic clan #Miracle|Gamelismic clan]]
* ''[[Octacot]]'' (+245/243) → [[Tetracot family #Octacot|Tetracot family]]
* ''[[Greenwood]]'' (+405/392 or 1323/1280) → [[Greenwoodmic temperaments #Greenwood|Greenwoodmic temperaments]]
* ''[[Quasitemp]]'' (+875/864) → [[Keemic temperaments #Quasitemp|Keemic temperaments]]
* ''[[Quadrasruta]]'' (+2048/2025) → [[Diaschismic family #Quadrasruta|Diaschismic family]]
* ''[[Quadrimage]]'' (+3125/3072) → [[Magic family #Quadrimage|Magic family]]
* ''[[Hemiwürschmidt]]'' (+3136/3125 or 6144/6125) → [[Hemimean clan #Hemiwürschmidt|Hemimean clan]]
* [[Ennealimmal]] (+4375/4374) → [[Ragismic microtemperaments #Ennealimmal|Ragismic microtemperaments]]
* ''[[Quadritikleismic]]'' (+15625/15552) → [[Kleismic family #Quadritikleismic|Kleismic family]]
* [[Harry]] (+19683/19600) → [[Gravity family #Harry|Gravity family]]
* ''[[Sesquiquartififths]]'' (+32805/32768) → [[Schismatic family #Sesquiquartififths|Schismatic family]]
* ''[[Amicable]]'' (+1600000/1594323) → [[Amity family #Amicable|Amity family]]
* ''[[Neptune]]'' (+48828125/48771072) → [[Gammic family #Neptune|Gammic family]]
* ''[[Decoid]]'' (+67108864/66976875) → [[Quintosec family #Decoid|Quintosec family]]
* ''[[Tertiseptisix]]'' (+390625000/387420489) → [[Quartonic family #Tertiseptisix|Quartonic family]]
* ''[[Eagle]]'' (+10485760000/10460353203) → [[Vulture family #Eagle|Vulture family]]


It is also the amount by which four stacked 10/7 intervals exceed 25/6: 10000/2401 * 2401/2400 = 10000/2400 = 25/6, which is two octaves above the chromatic semitone, 25/24. We might note also that 49/40 * 10/7 = 7/4 and 49/40 * (10/7)^2 = 5/2, relationships which will be significant in any breedsmic temperament. As a consequence of these facts, the 49/40+60/49 neutral third and the 7/5 and 10/7 intervals tend to have relatively low complexity in a breedsmic system.
== Hemififths ==
{{Main| Hemififths }}


=Hemififths=
Hemififths may be described as the {{nowrap| 41 & 58 }} temperament, tempering out [[5120/5103]], the hemifamity comma, and [[10976/10935]], hemimage. It has a neutral third as a generator; its [[ploidacot]] is dicot. [[99edo]] and [[140edo]] provides good tunings, and [[239edo]] an even better one; and other possible tunings are 160<sup>(1/25)</sup>, giving just 5's, the 7- and 9-odd-limit minimax tuning, or 14<sup>(1/13)</sup>, giving just 7's. It requires 25 generator steps to get to the class for the harmonic 5, whereas the 7 is half as complex, and hence hemififths makes for a good no-fives temperament, to which the 17- and 24-note mos are suited. The full force of this highly accurate temperament can be found using the 41-note mos or even the 34-note 2mos{{clarify}}.
Hemififths tempers out 5120/5103, the hemifamity comma, and 10976/10935, hemimage. It has a neutral third as a generator, with [[99edo]] and [[140edo]] providing good tunings, and [[239edo]] an even better one; and other possible tunings are (160)^(1/25), giving just 5s, the 7 and 9 limit minimax tuning, or 14^(1/13), giving just 7s. It may be called the 41&amp;58 temperament and has wedgie &lt;&lt;2 25 13 35 15 -40||, which tells us that it requires 25 generator steps to get to the class for major thirds, whereas the 7 is half as complex, and hence hemififths makes for a good no-fives temperament, to which the 17 and 24 note MOS are suited. The full force of this highly accurate temperament can be found using the 41 note MOS or even the 34 note 2MOS.


By adding 243/242 (which also means 441/440, 540/539 and 896/891) to the commas, hemififths extends to a less accurate 11-limit version, but one where 11/4 is only five generator steps. [[99edo]] is an excellent tuning; one which loses little of the accuracy of the 7-limit but improves the 11-limit a bit. Now adding 144/143 brings in the 13-limit with less accuracy yet, but with very low complexity, as the generator can be taken to be 16/13. 99 remains a good tuning choice.
By adding [[243/242]] (which also means [[441/440]], [[540/539]] and [[896/891]]) to the commas, hemififths extends to a less accurate 11-limit version, but one where 11/4 is only five generator steps. 99edo is an excellent tuning; one which loses little of the accuracy of the 7-limit but improves the 11-limit a bit. Now adding [[144/143]] brings in the 13-limit with less accuracy yet, but with very low complexity, as the generator can be taken to be [[16/13]]. 99 remains a good tuning choice.


Commas: 2401/2400, 5120/5103
[[Subgroup]]: 2.3.5.7


7 and 9-limit minimax
[[Comma list]]: 2401/2400, 5120/5103
[|1 0 0 0&gt;, |7/5, 0, 2/25, 0&gt;, |0 0 1 0&gt;, |8/5 0 13/25 0&gt;]
Eigenvalues: 2, 5


Algebraic generator: (2 + sqrt(2))/2
{{Mapping|legend=1| 1 1 -5 -1 | 0 2 25 13 }}


Map: [&lt;1 1 -5 -1|, &lt;0 2 25 13|]
: mapping generators: ~2, ~49/40
EDOs: [[41edo|41]], [[58edo|58]], [[99edo|99]], [[239edo|239]], [[338edo|338]]
Badness: 0.0222


==11-limit==  
[[Optimal tuning]]s:
Commas: 243/242, 441/440, 896/891
* [[CTE]]: ~2 = 1200.0000, ~49/40 = 351.4464
: [[error map]]: {{val| 0.0000 +0.9379 -0.1531 -0.0224 }}
* [[POTE]]: ~2 = 1200.0000, ~49/40 = 351.4774
: error map: {{val| 0.0000 +0.9999 +0.6221 +0.0307 }}


POTE generator: ~11/9 = 351.521
[[Minimax tuning]]:
* [[7-odd-limit|7-]] and [[9-odd-limit]] minimax: ~49/40 = {{monzo| 1/5 0 1/25 }}
: {{monzo list| 1 0 0 0 | 7/5 0 2/25 0 | 0 0 1 0 | 8/5 0 13/25 0 }}
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5


Map: [&lt;1 1 -5 -1 2|, &lt;0 2 25 13 5|]
[[Algebraic generator]]: (2 + sqrt(2))/2
EDOs: 7, 17, 41, 58, 99
Badness: 0.0235


==13-limit==
{{Optimal ET sequence|legend=1| 41, 58, 99, 239, 338 }}
Commas: 144/143, 196/195, 243/242, 364/363


POTE generator: ~11/9 = 351.573
[[Badness]] (Smith): 0.022243


Map: [&lt;1 1 -5 -1 2 4|, &lt;0 2 25 13 5 -1|]
=== 11-limit ===
EDOs: 7, 17, 41, 58, 99
Subgroup: 2.3.5.7.11
Badness: 0.0191


=Semihemi=
Comma list: 243/242, 441/440, 896/891
Commas: 2401/2400, 3388/3375, 9801/9800


POTE generator: ~49/40 = 351.505
Mapping: {{mapping| 1 1 -5 -1 2 | 0 2 25 13 5 }}


Map: [&lt;2 0 -35 -15 -47|, &lt;0 2 25 13 34|]
Optimal tunings:  
EDOs: 58, 140, 198, 734bc, 932bcd, 1130bcd
* CTE: ~2 = 1200.0000, ~11/9 = 351.4289
Badness: 42.487
* POTE: ~2 = 1200.0000, ~11/9 = 351.5206


==13-limit==
{{Optimal ET sequence|legend=0| 17c, 41, 58, 99e }}
Commas: 352/351, 676/675, 847/845, 1716/1715


POTE generator: ~49/40 = 351.502
Badness (Smith): 0.023498


Map: [&lt;2 0 -35 -15 -47 -37|, &lt;0 2 25 13 34 28|]
==== 13-limit ====
EDOs: 58, 140, 198, 536f, 734bcf, 932bcdf
Subgroup: 2.3.5.7.11.13
Badness: 0.0212


=Tertiaseptal=
Comma list: 144/143, 196/195, 243/242, 364/363
Aside from the breedsma, tertiaseptal tempers out 65625/65536, the horwell comma, 703125/702464, the meter, and 2100875/2097152. It can be described as the 140&amp;171 temperament, and 256/245, 1029/1024 less than 21/20, serves as its generator. Three of these fall short of 8/7 by 2100875/2097152, and the generator can be taken as 1/3 of an 8/7 flattened by a fraction of a cent. [[171edo]] makes for an excellent tuning. The 15 or 16 note MOS can be used to explore no-threes harmony, and the 31 note MOS gives plenty of room for those as well.


Commas: 2401/2400, 65625/65536
Mapping: {{mapping| 1 1 -5 -1 2 4 | 0 2 25 13 5 -1 }}


POTE generator: ~256/245 = 77.191
Optimal tunings:
* CTE: ~2 = 1200.0000, ~11/9 = 351.4331
* POTE: ~2 = 1200.0000, ~11/9 = 351.5734


Map: [&lt;1 3 2 3|, &lt;0 -22 5 -3|]
{{Optimal ET sequence|legend=0| 17c, 41, 58, 99ef, 157eff }}
EDOs: 15, 16, 31, 109, 140, 171
Badness: 0.0130


==11-limit==
Badness (Smith): 0.019090
Commas: 243/242, 441/440, 65625/65536


POTE generator: ~256/245 = 77.227
=== Semihemi ===
Subgroup: 2.3.5.7.11


Map: [&lt;1 3 2 3 7|, &lt;0 -22 5 -3 -55|]
Comma list: 2401/2400, 3388/3375, 5120/5103
EDOs: 15, 16, 31, 171, 202
Badness: 0.0356


==Tertia==
Mapping: {{mapping| 2 0 -35 -15 -47 | 0 2 25 13 34 }}
Commas: 385/384, 1331/1323, 1375/1372


POTE generator: ~22/21 = 77.173
: mapping generators: ~99/70, ~400/231


Map: [&lt;1 3 2 3 5|, &lt;0 -22 5 -3 -24|]
Optimal tunings:  
EDOs: 31, 109, 140, 171e, 311e
* CTE: ~99/70 = 600.0000, ~49/40 = 351.4722
Badness: 0.0302
* POTE: ~99/70 = 600.0000, ~49/40 = 351.5047


=Harry=
{{Optimal ET sequence|legend=0| 58, 140, 198 }}
Commas: 2401/2400, 19683/19600


Harry adds cataharry, 19683/19600, to the set of commas. It may be described as the 58&amp;72 temperament, with wedgie &lt;&lt;12 34 20 26 -2 -49||. The period is half an octave, and the generator 21/20, with generator tunings of 9\130 or 14\202 being good choices. MOS of size 14, 16, 30, 44 or 58 are among the scale choices.
Badness (Smith): 0.042487


Harry becomes much more interesting as we move to the 11-limit, where we can add 243/242, 441/440 and 540/539 to the set of commas. 130 and especially 202 still make for good tuning choices, and the octave part of the wedgie is &lt;&lt;12 34 20 30 ...||.
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


Similar comments apply to the 13-limit, where we can add 351/350 and 364/363 to the commas, with &lt;&lt;12 34 20 30 52 ...|| as the octave wedgie. [[130edo]] is again a good tuning choice, but even better might be tuning 7s justly, which can be done via a generator of 83.1174 cents. 72 notes of harry gives plenty of room even for the 13-limit harmonies.
Comma list: 352/351, 676/675, 847/845, 1716/1715


[[POTE tuning|POTE generator]]: ~21/20 = 83.156
Mapping: {{mapping| 2 0 -35 -15 -47 -37 | 0 2 25 13 34 28 }}


Map: [&lt;2 4 7 7|, &lt;0 -6 -17 -10|]
Optimal tunings:  
Wedgie: &lt;&lt;12 34 20 26 -2 -49||
* CTE: ~99/70 = 600.0000, ~49/40 = 351.4674
EDOs: 14, 58, 72, 130, 202, 534, 938
* POTE: ~99/70 = 600.0000, ~49/40 = 351.5019
Badness: 0.0341


==11-limit==
{{Optimal ET sequence|legend=0| 58, 140, 198, 536f }}
Commas: 243/242, 441/440, 4000/3993


[[POTE tuning|POTE generator]]: ~21/20 = 83.167
Badness (Smith): 0.021188


Map: [&lt;2 4 7 7 9|, &lt;0 -6 -17 -10 -15|]
=== Quadrafifths ===
EDOs: 14, 58, 72, 130, 202
This has been logged as ''semihemififths'' in Graham Breed's temperament finder, but ''quadrafifths'' arguably makes more sense because it straight-up splits the fifth in four.  
Badness: 0.0159


==13-limit==
Subgroup: 2.3.5.7.11
Commas: 243/242, 351/350, 441/440, 676/675


[[POTE tuning|POTE generator]]: ~21/20 = 83.116
Comma list: 2401/2400, 3025/3024, 5120/5103


Map: [&lt;2 4 7 7 9 11|, &lt;0 -6 -17 -10 -15 -26|]
Mapping: {{mapping| 1 1 -5 -1 8 | 0 4 50 26 -31 }}
EDOs: 14, 58, 72, 130, 462
Badness: 0.0130


=Quasiorwell=
: Mapping generators: ~2, ~243/220
In addition to 2401/2400, quasiorwell tempers out 29360128/29296875 = |22 -1 -10 1&gt;. It has a wedgie &lt;&lt;38 -3 8 -93 -94 27||. It has a generator 1024/875, which is 6144/6125 more than 7/6. It may be described as the 31&amp;270 temperament, and as one might expect, 61/270 makes for an excellent tuning choice. Other possibilities are (7/2)^(1/8), giving just 7s, or 384^(1/38), giving pure fifths.


Adding 3025/3024 extends to the 11-limit and gives &lt;&lt;38 -3 8 64 ...|| for the initial wedgie, and as expected, 270 remains an excellent tuning.
Optimal tunings:
* CTE: ~2 = 1200.0000, ~243/220 = 175.7284
* POTE: ~2 = 1200.0000, ~243/220 = 175.7378


Commas: 2401/2400, 29360128/29296875
{{Optimal ET sequence|legend=0| 41, 157, 198, 239, 676b, 915be }}


POTE generator: ~1024/875 = 271.107
Badness (Smith): 0.040170


Map: [&lt;1 31 0 9|, &lt;0 -38 3 -8|]
==== 13-limit ====
EDOs: [[31edo|31]], [[177edo|177]], [[208edo|208]], [[239edo|239]], [[270edo|270]], [[571edo|571]], [[841edo|841]], [[1111edo|1111]]
Subgroup: 2.3.5.7.11.13
Badness: 0.0358


==11-limit==
Comma list: 352/351, 847/845, 2401/2400, 3025/3024
Commas: 2401/2400, 3025/3024, 5632/5625


POTE generator: ~90/77 = 271.111
Mapping: {{mapping| 1 1 -5 -1 8 10 | 0 4 50 26 -31 -43 }}


Map: [&lt;1 31 0 9 53|, &lt;0 -38 3 -8 -64|]
Optimal tunings:  
EDOs: [[31edo|31]], [[208edo|208]], [[239edo|239]], [[270edo|270]]
* CTE: ~2 = 1200.0000, ~72/65 = 175.7412
Badness: 0.0175
* POTE: ~2 = 1200.0000, ~72/65 = 175.7470


==13-limit==
{{Optimal ET sequence|legend=0| 41, 157, 198, 437f, 635bcff }}
Commas: 1001/1000, 1716/1715, 3025/3024, 4096/4095


POTE generator: ~90/77 = 271.107
Badness (Smith): 0.031144


Map: [&lt;1 31 0 9 53 -59|, &lt;0 -38 3 -8 -64 81|]
== Tertiaseptal ==
EDOs: [[31edo|31]], [[239edo|239]], [[270edo|270]], [[571edo|571]], [[841edo|841]], [[1111edo|1111]]
{{Main| Tertiaseptal }}
Badness: 0.0179


=Decoid=  
Aside from the breedsma, tertiaseptal tempers out [[65625/65536]], the horwell comma, [[703125/702464]], the meter, and [[2100875/2097152]], the rainy comma. It can be described as the 31 &amp; 171 temperament, and 256/245, 1029/1024 less than 21/20, serves as its generator. Three of these fall short of 8/7 by 2100875/2097152, and the generator can be taken as 1/3 of an 8/7 flattened by a fraction of a cent. [[171edo]] makes for an excellent tuning, although 171edo - [[31edo]] = [[140edo]] also makes sense, and in very high limits 140edo + 171edo = [[311edo]] is especially notable. The 15- or 16-note mos can be used to explore no-threes harmony, and the 31-note mos gives plenty of room for those as well.
Commas: 2401/2400, 67108864/66976875


POTE generator: ~8/7 = 231.099
[[Subgroup]]: 2.3.5.7


Map: [&lt;10 0 47 36|, &lt;0 2 -3 -1|]
[[Comma list]]: 2401/2400, 65625/65536
Wedgie: &lt;&lt;20 -30 -10 -94 -72 61||
EDOs: 10, 120, 130, 270
Badness: 0.0339


==11-limit==
{{Mapping|legend=1| 1 3 2 3 | 0 -22 5 -3 }}
Commas: 2401/2400, 5832/5825, 9801/9800


POTE generator: ~8/7 = 231.070
: Mapping generators: ~2, ~256/245


Map: [&lt;10 0 47 36 98|, &lt;0 2 -3 -1 -8|]
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~256/245 = 77.191
EDOs: 130, 270, 670, 940, 1210
Badness: 0.0187


==13-limit==
{{Optimal ET sequence|legend=1| 31, 109, 140, 171 }}
Commas: 676/675, 1001/1000, 1716/1715, 4225/4224


POTE generator: ~8/7 = 231.083
[[Badness]]: 0.012995


Map: [&lt;10 0 47 36 98 37|, &lt;0 2 -3 -1 -8 0|]
=== 11-limit ===
EDOs: 130, 270, 940, 1480
Subgroup: 2.3.5.7.11
Badness: 0.0135


=Neominor=
Comma list: 243/242, 441/440, 65625/65536
Commas: 2401/2400, 177147/175616


POTE generator: ~189/160 = 283.280
Mapping: {{mapping| 1 3 2 3 7 | 0 -22 5 -3 -55 }}


Map: [&lt;1 3 12 8|, &lt;0 -6 -41 -22|]
Optimal tuning (POTE): ~2 = 1\1, ~256/245 = 77.227
Weggie: &lt;&lt;6 41 22 51 18 -64||
EDOs: 72, 161, 233, 305
Badness: 0.0882


==11-limit==
Optimal ET sequence: {{Optimal ET sequence| 31, 109e, 140e, 171, 202 }}
Commas: 243/242, 441/440, 35937/35840


POTE: ~33/28 = 283.276
Badness: 0.035576


Map: [&lt;1 3 12 8 7|, &lt;0 -6 -41 -22 -15|]
==== 13-limit ====
EDOs: 72, 161, 233, 305
Subgroup: 2.3.5.7.11.13
Badness: 0.0280


==13-limit==
Comma list: 243/242, 441/440, 625/624, 3584/3575
Commas: 169/168, 243/242, 364/363, 441/440


POTE generator: ~13/11 = 283.294
Mapping: {{mapping| 1 3 2 3 7 1 | 0 -22 5 -3 -55 42 }}


Map: [&lt;1 3 12 8 7 7|, &lt;0 -6 -41 -22 -15 -14|]
Optimal tuning (POTE): ~2 = 1\1, ~117/112 = 77.203
EDOs: 72, 161f, 233f
Badness: 0.0269


=Emmthird=
Optimal ET sequence: {{Optimal ET sequence| 31, 109e, 140e, 171 }}
The generator for emmthird temperament is the hemimage third, sharper than 5/4 by the hemimage comma, 10976/10935.


Commas: 2401/2400, 14348907/14336000
Badness: 0.036876


POTE generator: ~2744/2187 = 392.988
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17


Map: [&lt;1 11 42 25|, &lt;0 -14 -59 -33|]
Comma list: 243/242, 375/374, 441/440, 625/624, 3584/3575
Wedgie: &lt;&lt;14 59 33 61 13 -89||
EDOs: 58, 113, 171, 742, 913, 1084, 1255, 2681d, 3936d
Badness: 0.0167


=Quinmite=
Mapping: {{mapping| 1 3 2 3 7 1 1 | 0 -22 5 -3 -55 42 48 }}
Commas: 2401/2400, 1959552/1953125


POTE generator: ~25/21 = 302.997
Optimal tuning (POTE): ~2 = 1\1, ~68/65 = 77.201


Map: [&lt;1 27 24 20|, &lt;0 -34 -29 -23|]
Optimal ET sequence: {{Optimal ET sequence| 31, 109eg, 140e, 171 }}
Wedgie: &lt;&lt;34 29 23 -33 -59 -28||
EDOs: 95, 99, 202, 301, 400, 701, 1001c, 1802c, 2903c
Badness: 0.0373


=Unthirds=
Badness: 0.027398
Commas: 2401/2400, 68359375/68024448


POTE generator: ~3969/3125 = 416.717
=== Tertia ===
Subgroup:2.3.5.7.11


Map: [&lt;1 29 33 25|, &lt;0 -42 -47 -34|]
Comma list: 385/384, 1331/1323, 1375/1372
Wedgie: &lt;&lt;42 47 34 -23 -64 -53||
EDOs: 72, 167, 239, 311, 694, 1005c
Badness: 0.0753


==11-limit==
Mapping: {{mapping| 1 3 2 3 5 | 0 -22 5 -3 -24 }}
Commas: 2401/2400, 3025/3024, 4000/3993


POTE generator: ~14/11 = 416.718
Optimal tuning (POTE): ~2 = 1\1, ~22/21 = 77.173


Map: [&lt;1 29 33 25 25|, &lt;0 -42 -47 -34 -33|]
Optimal ET sequence: {{Optimal ET sequence| 31, 109, 140, 171e, 311e }}
EDOs: 72, 167, 239, 311, 1316c
Badness: 0.0229


==13-limit==
Badness: 0.030171
Commas: 625/624, 1575/1573, 2080/2079, 2401/2400


POTE generator: ~14/11 = 416.716
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


Map: [&lt;1 29 33 25 25 99|, &lt;0 -42 -47 -34 -33 -146|]
Comma list: 352/351, 385/384, 625/624, 1331/1323
EDOs: 72, 311, 694, 1005c, 1699cd
Badness: 0.0209


=Newt=
Mapping: {{mapping| 1 3 2 3 5 1 | 0 -22 5 -3 -24 42 }}
Commas: 2401/2400, 33554432/33480783


POTE generator: ~49/40 = 351.113
Optimal tuning (POTE): ~2 = 1\1, ~22/21 = 77.158


Map: [&lt;1 1 19 11|, &lt;0 2 -57 -28|]
Optimal ET sequence: {{Optimal ET sequence| 31, 109, 140, 311e, 451ee }}
Wedgie: &lt;&lt;2 -57 -28 -95 -50 95||
EDOs: 41, 188, 229, 270, 1121, 1391, 1661, 1931, 2201, 6333bc
Badness: 0.0419


==11-limit==
Badness: 0.028384
Commas: 2401/2400, 3025/3024, 19712/19683


POTE generator: ~49/40 = 351.115
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17


Map: [&lt;1 1 19 11 -10|, &lt;0 2 -57 -28 46|]
Comma list: 352/351, 385/384, 561/560, 625/624, 715/714
EDOs: 41, 188, 229, 270, 581, 851, 1121, 1972, 3093b, 4214b
Badness: 0.0195


==13-limit==
Mapping: {{mapping| 1 3 2 3 5 1 1 | 0 -22 5 -3 -24 42 48 }}
Commas: 2080/2079, 2401/2400, 3025/3024, 4096/4095


POTE genertaor: ~49/40 = 351.117
Optimal tuning (POTE): ~2 = 1\1, ~22/21 = 77.162


Map: [&lt;1 1 19 11 -10 -20|, &lt;0 2 -57 -28 46 81|]
Optimal ET sequence: {{Optimal ET sequence| 31, 109g, 140, 311e, 451ee }}
EDOs: 41, 229, 270, 581, 851, 2283b, 3134b
Badness: 0.0138


Badness: 0.022416


=== Tertiaseptia ===
Subgroup: 2.3.5.7.11


Comma list: 2401/2400, 6250/6237, 65625/65536


</pre></div>
Mapping: {{mapping| 1 3 2 3 -4 | 0 -22 5 -3 116 }}
<h4>Original HTML content:</h4>
 
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Breedsmic temperaments&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:56:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:56 --&gt;&lt;!
Optimal tuning (POTE): ~2 = 1\1, ~256/245 = 77.169
 
Optimal ET sequence: {{Optimal ET sequence| 140, 171, 311, 1695c, 2006bcd, 2317bcd, 2628bccde, 2939bccde, 3250bccde }}
 
Badness: 0.056926
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 625/624, 2080/2079, 2200/2197, 2401/2400
 
Mapping: {{mapping| 1 3 2 3 -4 1 | 0 -22 5 -3 116 42 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~117/112 = 77.168
 
Optimal ET sequence: {{Optimal ET sequence| 140, 171, 311, 1073, 1384cf, 1695cf, 2006bcdf }}
 
Badness: 0.027474
 
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 595/594, 625/624, 833/832, 1156/1155, 2200/2197
 
Mapping: {{mapping| 1 3 2 3 -4 1 1 | 0 -22 5 -3 116 42 48 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~68/65 = 77.169
 
Optimal ET sequence: {{Optimal ET sequence| 140, 171, 311 }}
 
Badness: 0.018773
 
==== 19-limit ====
Subgroup: 2.3.5.7.11.13.17.19
 
Comma list: 595/594, 625/624, 833/832, 1156/1155, 1216/1215, 2200/2197
 
Mapping: {{mapping| 1 3 2 3 -4 1 1 11 | 0 -22 5 -3 116 42 48 -105 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~68/65 = 77.169
 
Optimal ET sequence: {{Optimal ET sequence| 140, 171, 311, 1384cfgg, 1695cfgg, 2006bcdfgg }}
 
Badness: 0.017653
 
==== 23-limit ====
Subgroup: 2.3.5.7.11.13.17.19.23
 
Comma list: 595/594, 625/624, 833/832, 875/874, 1105/1104, 1156/1155, 1216/1215
 
Mapping: {{mapping| 1 3 2 3 -4 1 1 11 -3 | 0 -22 5 -3 116 42 48 -105 117 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~23/22 = 77.168
 
Optimal ET sequence: {{Optimal ET sequence| 140, 311, 762g, 1073g, 1384cfgg }}
 
Badness: 0.015123
 
==== 29-limit ====
Subgroup: 2.3.5.7.11.13.17.19.23.29
 
Comma list: 595/594, 625/624, 784/783, 833/832, 875/874, 1015/1014, 1105/1104, 1156/1155
 
Mapping: {{mapping| 1 3 2 3 -4 1 1 11 -3 1 | 0 -22 5 -3 116 42 48 -105 117 60 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~23/22 = 77.167
 
Optimal ET sequence: {{Optimal ET sequence| 140, 311, 762g, 1073g, 1384cfggj }}
 
Badness: 0.012181
 
==== 31-limit ====
Subgroup: 2.3.5.7.11.13.17.19.23.29.31
 
Comma list: 595/594, 625/624, 714/713, 784/783, 833/832, 875/874, 900/899, 931/930, 1015/1014
 
Mapping: {{mapping| 1 3 2 3 -4 1 1 11 -3 1 11 | 0 -22 5 -3 116 42 48 -105 117 60 -94 }}
 
Optimal tuning (POTE): ~2 = 1\1, ~23/22 = 77.169
 
Optimal ET sequence: {{Optimal ET sequence| 140, 171, 311 }}
 
Badness: 0.012311
 
===