Breedsmic temperaments: Difference between revisions
Wikispaces>genewardsmith **Imported revision 300719476 - Original comment: ** |
|||
(107 intermediate revisions by 14 users not shown) | |||
Line 1: | Line 1: | ||
{{Technical data page}} | |||
This page discusses miscellaneous [[Rank-2 temperament|rank-2]] [[temperament]]s [[tempering out]] the [[breedsma]], {{monzo| -5 -1 -2 4 }} = 2401/2400. This is the amount by which two [[49/40]] intervals exceed [[3/2]], and by which two [[60/49]] intervals fall short. Either of these represent a neutral third interval which is highly characteristic of breedsmic tempering; any tuning system ([[12edo]], for example) which does not possess a neutral third cannot be tempering out the breedsma. | |||
The breedsma is also the amount by which four stacked [[10/7]] intervals exceed 25/6: 10000/2401 × 2401/2400 = 10000/2400 = 25/6, which is two octaves above the classic chromatic semitone, [[25/24]]. We might note also that (49/40)(10/7) = 7/4 and (49/40)(10/7)<sup>2</sup> = 5/2, relationships which will be significant in any breedsmic temperament. As a consequence of these facts, the 49/40~60/49 neutral third and the 7/5 and 10/7 intervals tend to have relatively low complexity in a breedsmic system. | |||
Temperaments discussed elsewhere include: | |||
* ''[[Decimal]]'' (+25/24, 49/48 or 50/49) → [[Dicot family #Decimal|Dicot family]] | |||
* ''[[Beatles]]'' (+64/63 or 686/675) → [[Archytas clan #Beatles|Archytas clan]] | |||
* [[Squares]] (+81/80) → [[Meantone family #Squares|Meantone family]] | |||
* [[Myna]] (+126/125) → [[Starling temperaments #Myna|Starling temperaments]] | |||
* [[Miracle]] (+225/224) → [[Gamelismic clan #Miracle|Gamelismic clan]] | |||
* ''[[Octacot]]'' (+245/243) → [[Tetracot family #Octacot|Tetracot family]] | |||
* ''[[Greenwood]]'' (+405/392 or 1323/1280) → [[Greenwoodmic temperaments #Greenwood|Greenwoodmic temperaments]] | |||
* ''[[Quasitemp]]'' (+875/864) → [[Keemic temperaments #Quasitemp|Keemic temperaments]] | |||
* ''[[Quadrasruta]]'' (+2048/2025) → [[Diaschismic family #Quadrasruta|Diaschismic family]] | |||
* ''[[Quadrimage]]'' (+3125/3072) → [[Magic family #Quadrimage|Magic family]] | |||
* ''[[Hemiwürschmidt]]'' (+3136/3125 or 6144/6125) → [[Hemimean clan #Hemiwürschmidt|Hemimean clan]] | |||
* [[Ennealimmal]] (+4375/4374) → [[Ragismic microtemperaments #Ennealimmal|Ragismic microtemperaments]] | |||
* ''[[Quadritikleismic]]'' (+15625/15552) → [[Kleismic family #Quadritikleismic|Kleismic family]] | |||
* [[Harry]] (+19683/19600) → [[Gravity family #Harry|Gravity family]] | |||
* ''[[Sesquiquartififths]]'' (+32805/32768) → [[Schismatic family #Sesquiquartififths|Schismatic family]] | |||
* ''[[Amicable]]'' (+1600000/1594323) → [[Amity family #Amicable|Amity family]] | |||
* ''[[Neptune]]'' (+48828125/48771072) → [[Gammic family #Neptune|Gammic family]] | |||
* ''[[Decoid]]'' (+67108864/66976875) → [[Quintosec family #Decoid|Quintosec family]] | |||
* ''[[Tertiseptisix]]'' (+390625000/387420489) → [[Quartonic family #Tertiseptisix|Quartonic family]] | |||
* ''[[Eagle]]'' (+10485760000/10460353203) → [[Vulture family #Eagle|Vulture family]] | |||
== Hemififths == | |||
{{Main| Hemififths }} | |||
Hemififths may be described as the {{nowrap| 41 & 58 }} temperament, tempering out [[5120/5103]], the hemifamity comma, and [[10976/10935]], hemimage. It has a neutral third as a generator; its [[ploidacot]] is dicot. [[99edo]] and [[140edo]] provides good tunings, and [[239edo]] an even better one; and other possible tunings are 160<sup>(1/25)</sup>, giving just 5's, the 7- and 9-odd-limit minimax tuning, or 14<sup>(1/13)</sup>, giving just 7's. It requires 25 generator steps to get to the class for the harmonic 5, whereas the 7 is half as complex, and hence hemififths makes for a good no-fives temperament, to which the 17- and 24-note mos are suited. The full force of this highly accurate temperament can be found using the 41-note mos or even the 34-note 2mos{{clarify}}. | |||
By adding 243/242 (which also means 441/440, 540/539 and 896/891) to the commas, hemififths extends to a less accurate 11-limit version, but one where 11/4 is only five generator steps. | By adding [[243/242]] (which also means [[441/440]], [[540/539]] and [[896/891]]) to the commas, hemififths extends to a less accurate 11-limit version, but one where 11/4 is only five generator steps. 99edo is an excellent tuning; one which loses little of the accuracy of the 7-limit but improves the 11-limit a bit. Now adding [[144/143]] brings in the 13-limit with less accuracy yet, but with very low complexity, as the generator can be taken to be [[16/13]]. 99 remains a good tuning choice. | ||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 2401/2400, 5120/5103 | |||
[ | |||
{{Mapping|legend=1| 1 1 -5 -1 | 0 2 25 13 }} | |||
: mapping generators: ~2, ~49/40 | |||
== | [[Optimal tuning]]s: | ||
* [[CTE]]: ~2 = 1200.0000, ~49/40 = 351.4464 | |||
: [[error map]]: {{val| 0.0000 +0.9379 -0.1531 -0.0224 }} | |||
* [[POTE]]: ~2 = 1200.0000, ~49/40 = 351.4774 | |||
: error map: {{val| 0.0000 +0.9999 +0.6221 +0.0307 }} | |||
[[Minimax tuning]]: | |||
* [[7-odd-limit|7-]] and [[9-odd-limit]] minimax: ~49/40 = {{monzo| 1/5 0 1/25 }} | |||
: {{monzo list| 1 0 0 0 | 7/5 0 2/25 0 | 0 0 1 0 | 8/5 0 13/25 0 }} | |||
: [[Eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5 | |||
[[Algebraic generator]]: (2 + sqrt(2))/2 | |||
= | {{Optimal ET sequence|legend=1| 41, 58, 99, 239, 338 }} | ||
[[Badness]] (Smith): 0.022243 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 243/242, 441/440, 896/891 | |||
Mapping: {{mapping| 1 1 -5 -1 2 | 0 2 25 13 5 }} | |||
Optimal tunings: | |||
* CTE: ~2 = 1200.0000, ~11/9 = 351.4289 | |||
* POTE: ~2 = 1200.0000, ~11/9 = 351.5206 | |||
= | {{Optimal ET sequence|legend=0| 17c, 41, 58, 99e }} | ||
Badness (Smith): 0.023498 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 144/143, 196/195, 243/242, 364/363 | |||
Mapping: {{mapping| 1 1 -5 -1 2 4 | 0 2 25 13 5 -1 }} | |||
POTE | Optimal tunings: | ||
* CTE: ~2 = 1200.0000, ~11/9 = 351.4331 | |||
* POTE: ~2 = 1200.0000, ~11/9 = 351.5734 | |||
{{Optimal ET sequence|legend=0| 17c, 41, 58, 99ef, 157eff }} | |||
Badness (Smith): 0.019090 | |||
=== Semihemi === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 2401/2400, 3388/3375, 5120/5103 | |||
Mapping: {{mapping| 2 0 -35 -15 -47 | 0 2 25 13 34 }} | |||
: mapping generators: ~99/70, ~400/231 | |||
Optimal tunings: | |||
* CTE: ~99/70 = 600.0000, ~49/40 = 351.4722 | |||
* POTE: ~99/70 = 600.0000, ~49/40 = 351.5047 | |||
= | {{Optimal ET sequence|legend=0| 58, 140, 198 }} | ||
Badness (Smith): 0.042487 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 352/351, 676/675, 847/845, 1716/1715 | |||
Mapping: {{mapping| 2 0 -35 -15 -47 -37 | 0 2 25 13 34 28 }} | |||
Optimal tunings: | |||
* CTE: ~99/70 = 600.0000, ~49/40 = 351.4674 | |||
* POTE: ~99/70 = 600.0000, ~49/40 = 351.5019 | |||
= | {{Optimal ET sequence|legend=0| 58, 140, 198, 536f }} | ||
Badness (Smith): 0.021188 | |||
=== Quadrafifths === | |||
This has been logged as ''semihemififths'' in Graham Breed's temperament finder, but ''quadrafifths'' arguably makes more sense because it straight-up splits the fifth in four. | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 2401/2400, 3025/3024, 5120/5103 | |||
Mapping: {{mapping| 1 1 -5 -1 8 | 0 4 50 26 -31 }} | |||
: Mapping generators: ~2, ~243/220 | |||
Optimal tunings: | |||
* CTE: ~2 = 1200.0000, ~243/220 = 175.7284 | |||
* POTE: ~2 = 1200.0000, ~243/220 = 175.7378 | |||
{{Optimal ET sequence|legend=0| 41, 157, 198, 239, 676b, 915be }} | |||
Badness (Smith): 0.040170 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 352/351, 847/845, 2401/2400, 3025/3024 | |||
Mapping: {{mapping| 1 1 -5 -1 8 10 | 0 4 50 26 -31 -43 }} | |||
Optimal tunings: | |||
* CTE: ~2 = 1200.0000, ~72/65 = 175.7412 | |||
* POTE: ~2 = 1200.0000, ~72/65 = 175.7470 | |||
= | {{Optimal ET sequence|legend=0| 41, 157, 198, 437f, 635bcff }} | ||
Badness (Smith): 0.031144 | |||
== Tertiaseptal == | |||
{{Main| Tertiaseptal }} | |||
= | Aside from the breedsma, tertiaseptal tempers out [[65625/65536]], the horwell comma, [[703125/702464]], the meter, and [[2100875/2097152]], the rainy comma. It can be described as the 31 & 171 temperament, and 256/245, 1029/1024 less than 21/20, serves as its generator. Three of these fall short of 8/7 by 2100875/2097152, and the generator can be taken as 1/3 of an 8/7 flattened by a fraction of a cent. [[171edo]] makes for an excellent tuning, although 171edo - [[31edo]] = [[140edo]] also makes sense, and in very high limits 140edo + 171edo = [[311edo]] is especially notable. The 15- or 16-note mos can be used to explore no-threes harmony, and the 31-note mos gives plenty of room for those as well. | ||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 2401/2400, 65625/65536 | |||
= | {{Mapping|legend=1| 1 3 2 3 | 0 -22 5 -3 }} | ||
: Mapping generators: ~2, ~256/245 | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~256/245 = 77.191 | |||
= | {{Optimal ET sequence|legend=1| 31, 109, 140, 171 }} | ||
[[Badness]]: 0.012995 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 243/242, 441/440, 65625/65536 | |||
Mapping: {{mapping| 1 3 2 3 7 | 0 -22 5 -3 -55 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~256/245 = 77.227 | |||
Optimal ET sequence: {{Optimal ET sequence| 31, 109e, 140e, 171, 202 }} | |||
Badness: 0.035576 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 243/242, 441/440, 625/624, 3584/3575 | |||
Mapping: {{mapping| 1 3 2 3 7 1 | 0 -22 5 -3 -55 42 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~117/112 = 77.203 | |||
Optimal ET sequence: {{Optimal ET sequence| 31, 109e, 140e, 171 }} | |||
Badness: 0.036876 | |||
==== 17-limit ==== | |||
Subgroup: 2.3.5.7.11.13.17 | |||
Comma list: 243/242, 375/374, 441/440, 625/624, 3584/3575 | |||
Mapping: {{mapping| 1 3 2 3 7 1 1 | 0 -22 5 -3 -55 42 48 }} | |||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~68/65 = 77.201 | ||
Optimal ET sequence: {{Optimal ET sequence| 31, 109eg, 140e, 171 }} | |||
Badness: 0.027398 | |||
=== Tertia === | |||
Subgroup:2.3.5.7.11 | |||
Comma list: 385/384, 1331/1323, 1375/1372 | |||
Mapping: {{mapping| 1 3 2 3 5 | 0 -22 5 -3 -24 }} | |||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~22/21 = 77.173 | ||
Optimal ET sequence: {{Optimal ET sequence| 31, 109, 140, 171e, 311e }} | |||
Badness: 0.030171 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 352/351, 385/384, 625/624, 1331/1323 | |||
Mapping: {{mapping| 1 3 2 3 5 1 | 0 -22 5 -3 -24 42 }} | |||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~22/21 = 77.158 | ||
Optimal ET sequence: {{Optimal ET sequence| 31, 109, 140, 311e, 451ee }} | |||
Badness: 0.028384 | |||
==== 17-limit ==== | |||
Subgroup: 2.3.5.7.11.13.17 | |||
Comma list: 352/351, 385/384, 561/560, 625/624, 715/714 | |||
Mapping: {{mapping| 1 3 2 3 5 1 1 | 0 -22 5 -3 -24 42 48 }} | |||
POTE | Optimal tuning (POTE): ~2 = 1\1, ~22/21 = 77.162 | ||
Optimal ET sequence: {{Optimal ET sequence| 31, 109g, 140, 311e, 451ee }} | |||
Badness: 0.022416 | |||
=== Tertiaseptia === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 2401/2400, 6250/6237, 65625/65536 | |||
Mapping: {{mapping| 1 3 2 3 -4 | 0 -22 5 -3 116 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~256/245 = 77.169 | |||
Optimal ET sequence: {{Optimal ET sequence| 140, 171, 311, 1695c, 2006bcd, 2317bcd, 2628bccde, 2939bccde, 3250bccde }} | |||
Badness: 0.056926 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 625/624, 2080/2079, 2200/2197, 2401/2400 | |||
Mapping: {{mapping| 1 3 2 3 -4 1 | 0 -22 5 -3 116 42 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~117/112 = 77.168 | |||
Optimal ET sequence: {{Optimal ET sequence| 140, 171, 311, 1073, 1384cf, 1695cf, 2006bcdf }} | |||
Badness: 0.027474 | |||
==== 17-limit ==== | |||
Subgroup: 2.3.5.7.11.13.17 | |||
Comma list: 595/594, 625/624, 833/832, 1156/1155, 2200/2197 | |||
Mapping: {{mapping| 1 3 2 3 -4 1 1 | 0 -22 5 -3 116 42 48 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~68/65 = 77.169 | |||
Optimal ET sequence: {{Optimal ET sequence| 140, 171, 311 }} | |||
Badness: 0.018773 | |||
==== 19-limit ==== | |||
Subgroup: 2.3.5.7.11.13.17.19 | |||
Comma list: 595/594, 625/624, 833/832, 1156/1155, 1216/1215, 2200/2197 | |||
Mapping: {{mapping| 1 3 2 3 -4 1 1 11 | 0 -22 5 -3 116 42 48 -105 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~68/65 = 77.169 | |||
Optimal ET sequence: {{Optimal ET sequence| 140, 171, 311, 1384cfgg, 1695cfgg, 2006bcdfgg }} | |||
Badness: 0.017653 | |||
==== 23-limit ==== | |||
Subgroup: 2.3.5.7.11.13.17.19.23 | |||
Comma list: 595/594, 625/624, 833/832, 875/874, 1105/1104, 1156/1155, 1216/1215 | |||
Mapping: {{mapping| 1 3 2 3 -4 1 1 11 -3 | 0 -22 5 -3 116 42 48 -105 117 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~23/22 = 77.168 | |||
Optimal ET sequence: {{Optimal ET sequence| 140, 311, 762g, 1073g, 1384cfgg }} | |||
Badness: 0.015123 | |||
==== 29-limit ==== | |||
Subgroup: 2.3.5.7.11.13.17.19.23.29 | |||
Comma list: 595/594, 625/624, 784/783, 833/832, 875/874, 1015/1014, 1105/1104, 1156/1155 | |||
Mapping: {{mapping| 1 3 2 3 -4 1 1 11 -3 1 | 0 -22 5 -3 116 42 48 -105 117 60 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~23/22 = 77.167 | |||
Optimal ET sequence: {{Optimal ET sequence| 140, 311, 762g, 1073g, 1384cfggj }} | |||
Badness: 0.012181 | |||
==== 31-limit ==== | |||
Subgroup: 2.3.5.7.11.13.17.19.23.29.31 | |||
Comma list: 595/594, 625/624, 714/713, 784/783, 833/832, 875/874, 900/899, 931/930, 1015/1014 | |||
Mapping: {{mapping| 1 3 2 3 -4 1 1 11 -3 1 11 | 0 -22 5 -3 116 42 48 -105 117 60 -94 }} | |||
Optimal tuning (POTE): ~2 = 1\1, ~23/22 = 77.169 | |||
Optimal ET sequence: {{Optimal ET sequence| 140, 171, 311 }} | |||
Badness: 0.012311 | |||
=== |