|
|
(19 intermediate revisions by 10 users not shown) |
Line 1: |
Line 1: |
| '''101 EDO''' divides the [[octave]] into 101 equal parts of 11.881 [[cent]]s each. It can be used to tune the [[grackle]] temperament. It is the 26th [[prime EDO]]. The 101cd val provides an excellent tuning for [[witchcraft]] temperament, falling between the 13 and 15 limit least squares tuning.
| | {{Infobox ET}} |
| | {{ED intro}} |
|
| |
|
| ; [[5-limit]] commas: 32805/32768 ( {{monzo| -15 8 1 }} ), 51018336/48828125 ( {{monzo| 5 13 -11 }} )
| | == Theory == |
| ; [[7-limit]] commas: 126/125, 32805/32768, 2430/2401 | | 101edo is in[[consistent]] in the [[5-odd-limit]], with [[harmonic]]s [[5/1|5]] and [[7/1|7]] falling about halfway between its steps. As such, {{val| 101 160 '''235''' '''284''' }} ([[patent val]]) and {{val| 101 160 '''234''' '''283''' }} (101cd) are about as viable. Using the patent val, it [[tempering out|tempers out]] 32805/32768 ([[schisma]]) and 51018336/48828125 in the 5-limit; [[126/125]] and [[2430/2401]] in the [[7-limit]]. It can be used to tune the [[grackle]] temperament. The 101cd val provides an excellent tuning for [[witchcraft]] temperament, falling between the 13- and 15-odd-limit least squares tuning. |
|
| |
|
| == Intervals == | | === Odd harmonics === |
| {| class="wikitable" | | {{Harmonics in equal|101}} |
| !Degree
| |
| !Cents
| |
| |-
| |
| |0
| |
| |0.000
| |
| |-
| |
| |1
| |
| |11.881
| |
| |-
| |
| |2
| |
| |23.762
| |
| |-
| |
| |3
| |
| |35.644
| |
| |-
| |
| |4
| |
| |47.525
| |
| |-
| |
| |5
| |
| |59.406
| |
| |-
| |
| |6
| |
| |71.287
| |
| |-
| |
| |7
| |
| |83.168
| |
| |-
| |
| |8
| |
| |95.050
| |
| |-
| |
| |9
| |
| |106.931
| |
| |-
| |
| |10
| |
| |118.812
| |
| |-
| |
| |11
| |
| |130.693
| |
| |-
| |
| |12
| |
| |142.574
| |
| |-
| |
| |13
| |
| |154.455
| |
| |-
| |
| |14
| |
| |166.337
| |
| |-
| |
| |15
| |
| |178.218
| |
| |-
| |
| |16
| |
| |190.099
| |
| |-
| |
| |17
| |
| |201.980
| |
| |-
| |
| |18
| |
| |213.861
| |
| |-
| |
| |19
| |
| |225.743
| |
| |-
| |
| |20
| |
| |237.624
| |
| |-
| |
| |21
| |
| |249.505
| |
| |-
| |
| |22
| |
| |261.386
| |
| |-
| |
| |23
| |
| |273.267
| |
| |-
| |
| |24
| |
| |285.149
| |
| |-
| |
| |25
| |
| |297.030
| |
| |-
| |
| |26
| |
| |308.911
| |
| |-
| |
| |27
| |
| |320.792
| |
| |-
| |
| |28
| |
| |332.673
| |
| |-
| |
| |29
| |
| |344.554
| |
| |-
| |
| |30
| |
| |356.436
| |
| |-
| |
| |31
| |
| |368.317
| |
| |-
| |
| |32
| |
| |380.198
| |
| |-
| |
| |33
| |
| |392.079
| |
| |-
| |
| |34
| |
| |403.960
| |
| |-
| |
| |35
| |
| |415.842
| |
| |-
| |
| |36
| |
| |427.723
| |
| |-
| |
| |37
| |
| |439.604
| |
| |-
| |
| |38
| |
| |451.485
| |
| |-
| |
| |39
| |
| |463.366
| |
| |-
| |
| |40
| |
| |475.248
| |
| |-
| |
| |41
| |
| |487.129
| |
| |-
| |
| |42
| |
| |499.010
| |
| |-
| |
| |43
| |
| |510.891
| |
| |-
| |
| |44
| |
| |522.772
| |
| |-
| |
| |45
| |
| |534.653
| |
| |-
| |
| |46
| |
| |546.535
| |
| |-
| |
| |47
| |
| |558.416
| |
| |-
| |
| |48
| |
| |570.297
| |
| |-
| |
| |49
| |
| |582.178
| |
| |-
| |
| |50
| |
| |594.059
| |
| |-
| |
| |...
| |
| |...
| |
| |}
| |
|
| |
|
| == Some important MOS scales == | | === Subsets and supersets === |
| | 101edo is the 26th [[prime edo]], following [[97edo]] and before [[103edo]]. [[202edo]], which doubles it, provides a good correction to the 5th, 7th, and 11th harmonics. |
|
| |
|
| '''25 13 25 25 13:''' ''3L2s MOS'' (Pentatonic)
| | == Intervals == |
| | | {{Interval table}} |
| {| class="wikitable right-all"
| |
| ! Steps
| |
| ! Cents
| |
| |-
| |
| | 25
| |
| | 297.030
| |
| |-
| |
| | 38
| |
| | 451.485
| |
| |-
| |
| | 63
| |
| | 748.515
| |
| |-
| |
| | 88
| |
| | 1045.545
| |
| |}
| |
| | |
| '''17 17 8 17 17 17 8:''' ''5L2s MOS'' (Diatonic Pythagorean)
| |
| | |
| {| class="wikitable right-all"
| |
| ! Steps
| |
| ! Cents
| |
| |-
| |
| | 17
| |
| | 201.980
| |
| |-
| |
| | 34
| |
| | 403.960
| |
| |-
| |
| | 42
| |
| | 499.010
| |
| |-
| |
| | 59
| |
| | 700.990
| |
| |-
| |
| | 76
| |
| | 902.970
| |
| |-
| |
| | 93
| |
| | 1104.950
| |
| |}
| |
| | |
| '''13 13 13 13 13 13 13 10:''' ''7L1s MOS'' (Grumpy Octatonic)
| |
| | |
| {| class="wikitable right-all" | |
| ! Steps
| |
| ! Cents
| |
| |-
| |
| | 13
| |
| | 154.455
| |
| |-
| |
| | 26
| |
| | 308.911
| |
| |-
| |
| | 39
| |
| | 463.366
| |
| |-
| |
| | 52
| |
| | 617.822
| |
| |-
| |
| | 65
| |
| | 772.277
| |
| |-
| |
| | 78
| |
| | 926.733
| |
| |-
| |
| | 91
| |
| | 1081.188
| |
| |}
| |
| | |
| '''13 13 13 5 13 13 13 13 5:''' ''7L2s MOS'' (Superdiatonic 1/13-tone 13;5 relation)
| |
| | |
| {| class="wikitable right-all" | |
| ! Steps
| |
| ! Cents
| |
| |-
| |
| | 13
| |
| | 154.455
| |
| |-
| |
| | 26
| |
| | 308.911
| |
| |-
| |
| | 39
| |
| | 463.366
| |
| |-
| |
| | 44
| |
| | 522.772
| |
| |-
| |
| | 57
| |
| | 677.228
| |
| |-
| |
| | 70
| |
| | 831.683
| |
| |-
| |
| | 83
| |
| | 986.139
| |
| |-
| |
| | 96
| |
| | 1045.545
| |
| |}
| |
| | |
| '''10 10 7 10 10 10 7 10 10 10 7:''' ''8L3s MOS'' (Improper Sensi-11)
| |
| | |
| {| class="wikitable right-all"
| |
| ! Steps
| |
| ! Cents
| |
| |-
| |
| | 10
| |
| | 118.812
| |
| |-
| |
| | 20
| |
| | 237.624
| |
| |-
| |
| | 27
| |
| | 320.792
| |
| |-
| |
| | 37
| |
| | 439.604
| |
| |-
| |
| | 47
| |
| | 558.416
| |
| |-
| |
| | 57
| |
| | 677.228
| |
| |-
| |
| | 64
| |
| | 760.396
| |
| |-
| |
| | 74
| |
| | 879.218
| |
| |-
| |
| | 84
| |
| | 998.020
| |
| |-
| |
| | 94
| |
| | 1116.842
| |
| |}
| |
|
| |
|
| '''7 7 7 8 7 7 7 7 8 7 7 7 7 8:''' ''3L11s MOS'' (Anti-Ketradektriatoh)
| | == Scales == |
| | === Mos scales === |
| | * 3L 2s: 25 13 25 25 13 ((25 38 63 88 101)\101){{clarify}} <!-- why is this significant? --> |
| | * Grackle[7] 5L 2s: 17 17 8 17 17 17 8 ((17 34 42 59 76 93)\101) |
| | * Pine 7L 1s: 13 13 13 13 13 13 13 10 ((13 26 39 52 65 78 91 101)\101) |
| | * Superdiatonic 1/13-tone 13;5 relation: 13 13 13 5 13 13 13 13 5 ((13 26 39 44 57 70 83 96 101)\101) |
| | * Sensi[11] 8L 3s: 10 10 7 10 10 10 7 10 10 10 7 ((10 20 27 37 47 57 64 74 84 94)\101){{clarify}} <!-- which val? --> |
| | * Anti-Ketradektriatoh 3L 11s: 7 7 7 8 7 7 7 7 8 7 7 7 7 8 ((7 14 22 29 36 43 50 58 65 72 79 86 93 101)\101) |
|
| |
|
| {| class="wikitable right-all"
| | == Instruments == |
| ! Steps
| | * [[Lumatone mapping for 101edo]] |
| ! Cents
| |
| |-
| |
| | 7
| |
| | 83.168
| |
| |-
| |
| | 14
| |
| | 166.337
| |
| |-
| |
| | 22
| |
| | 261.386
| |
| |-
| |
| | 29
| |
| | 344.554
| |
| |-
| |
| | 36
| |
| | 427.723
| |
| |-
| |
| | 43
| |
| | 510.891
| |
| |-
| |
| | 50
| |
| | 594.059
| |
| |-
| |
| | 58
| |
| | 689.119
| |
| |-
| |
| | 65
| |
| | 772.287
| |
| |-
| |
| | 72
| |
| | 855.446
| |
| |-
| |
| | 79
| |
| | 938.614
| |
| |-
| |
| | 86
| |
| | 1021.782
| |
| |-
| |
| | 93
| |
| | 1104.950
| |
| |}
| |
|
| |
|
| == Links == | | == Music == |
| | ; [[Francium]] |
| | * "Eggclent" from ''Eggs'' (2025) – [https://open.spotify.com/track/4S0BTeb9yDdMUuT1QJy26H Spotify] | [https://francium223.bandcamp.com/track/eggclent Bandcamp] | [https://www.youtube.com/watch?v=FAe4O71Mvj0 YouTube] |
|
| |
|
| [http://tech.groups.yahoo.com/group/tuning-math/message/11157 The Ellis duodene in 101-equal] {{dead link}} | | == External links == |
| | * [http://tech.groups.yahoo.com/group/tuning-math/message/11157 The Ellis duodene in 101-equal] {{dead link}} |
|
| |
|
| [[Category:Armodue]] | | [[Category:Armodue]] |
| [[Category:Equal divisions of the octave]]
| |
| [[Category:Grackle]] | | [[Category:Grackle]] |
| [[Category:Prime EDO]]
| |
| [[Category:3-limit]]
| |