87edo: Difference between revisions
Tags: Mobile edit Mobile web edit |
→Approximation to JI: -zeta peak index |
||
(86 intermediate revisions by 15 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
== Theory == | == Theory == | ||
87edo is solid as both a [[13-limit]] (or [[15-odd-limit]]) and as a [[5-limit]] system, and does well enough in any limit in between. It is the smallest edo that is [[distinctly consistent]] in the [[13-odd-limit]] [[tonality diamond]], the smallest edo that is [[purely consistent]]{{idiosyncratic}} in the [[15-odd-limit]] (maintains [[relative interval error]]s of no greater than 25% on all of the first 16 [[harmonic]]s of the [[harmonic series]]). It is also a [[zeta peak integer edo]]. Since {{nowrap|87 {{=}} 3 × 29}}, 87edo shares the same perfect fifth with [[29edo]]. | |||
87edo also shows some potential in limits beyond 13. The next four prime harmonics [[17/1|17]], [[19/1|19]], [[23/1|23]], and [[29/1|29]] are all near-critically sharp, but the feature of it is that the overtones and undertones are distinct, and most intervals are usable as long as they do not combine with [[7/1|7]], which is flat. Actually, as a no-sevens system, it is consistent in the 33-odd-limit. | |||
It [[tempering out|tempers out]] 15625/15552 ([[15625/15552|kleisma]]), {{monzo| 26 -12 -3 }} ([[misty comma]]), and {{monzo| 46 -29 }} ([[29-comma]]) in the 5-limit, in addition to [[245/243]], [[1029/1024]], [[3136/3125]], and [[5120/5103]] in the 7-limit. In the 13-limit, notably [[196/195]], [[325/324]], [[352/351]], [[364/363]], [[385/384]], [[441/440]], [[625/624]], [[676/675]], and [[1001/1000]]. | |||
87edo is a particularly good tuning for [[rodan]], the {{nowrap|41 & 46}} temperament. The 8/7 generator of 17\87 is a remarkable 0.00061{{c}} sharper than the 13-limit [[CWE tuning|CWE generator]]. Also, the 32\87 generator for [[Kleismic family #Clyde|clyde temperament]] is 0.01479{{c}} sharp of the 13-limit CWE generator. | |||
=== Prime harmonics === | |||
In higher limits it excels as a [[subgroup]] temperament, especially as an incomplete 71-limit temperament with [[128/127]] and [[129/128]] (the subharmonic and harmonic hemicomma-sized intervals, respectively) mapped accurately to a single step. Generalizing a single step of 87edo harmonically yields harmonics 115 through 138, which when detempered is the beginning of the construction of [[Ringer scale|Ringer]] 87, thus tempering [[S-expression|S116 through S137]] by patent val and corresponding to the gravity of the fact that 87edo is a circle of [[126/125]]'s, meaning ([[126/125]])<sup>87</sup> only very slightly exceeds the octave. | |||
{{Harmonics in equal|87|columns=12}} | |||
{{Harmonics in equal|87|columns=12|start=13|collapsed=1|title=Approximation of prime harmonics in 87edo (continued)}} | |||
=== Subsets and supersets === | |||
87edo contains [[3edo]] and [[29edo]] as subset edos. | |||
== Intervals == | == Intervals == | ||
{| class="wikitable center-all right-2 left-3 left-4" | {| class="wikitable center-all right-2 left-3 left-4" | ||
|- | |||
! rowspan="2" | # | ! rowspan="2" | # | ||
! rowspan="2" | Cents | ! rowspan="2" | Cents | ||
! colspan="2" | Approximated | ! colspan="2" | Approximated ratios | ||
! colspan="2" rowspan="2" |[[Ups and | ! colspan="2" rowspan="2" | [[Ups and downs notation]] | ||
|- | |- | ||
!13- | ! 13-limit | ||
!31- | ! 31-limit extension | ||
|- | |- | ||
|0 | | 0 | ||
|0. | | 0.0 | ||
|[[1/1]] | | [[1/1]] | ||
| | | | ||
|P1 | | P1 | ||
|D | | D | ||
|- | |- | ||
|1 | | 1 | ||
|13. | | 13.8 | ||
|[[ | | [[91/90]], [[100/99]], [[126/125]] | ||
| | | | ||
|^1 | | ^1 | ||
|^D | | ^D | ||
|- | |- | ||
|2 | | 2 | ||
|27. | | 27.6 | ||
|[[ | | ''[[49/48]]'', [[55/54]], [[64/63]], [[65/64]], [[81/80]] | ||
| | | | ||
|^^1 | | ^^1 | ||
|^^D | | ^^D | ||
|- | |- | ||
|3 | | 3 | ||
|41. | | 41.4 | ||
|[[ | | [[40/39]], [[45/44]], [[50/49]] | ||
|[[39/38]] | | [[39/38]] | ||
|^<sup>3</sup>1 | | ^<sup>3</sup>1 | ||
|^<sup>3</sup>D/v<sup>3</sup>Eb | | ^<sup>3</sup>D/v<sup>3</sup>Eb | ||
|- | |- | ||
|4 | | 4 | ||
|55. | | 55.2 | ||
|[[28/27]], [[ | | ''[[28/27]]'', [[33/32]], [[36/35]] | ||
|[[ | | [[30/29]], [[31/30]], [[32/31]], [[34/33]] | ||
|vvm2 | | vvm2 | ||
|vvEb | | vvEb | ||
|- | |- | ||
|5 | | 5 | ||
| | | 69.0 | ||
|[[25/24]], [[ | | [[25/24]], [[26/25]], [[27/26]] | ||
|[[24/23]] | | [[24/23]] | ||
|vm2 | | vm2 | ||
|vEb | | vEb | ||
|- | |- | ||
|6 | | 6 | ||
|82. | | 82.8 | ||
|[[21/20]], [[22/21]] | | [[21/20]], [[22/21]] | ||
|[[20/19]], [[23/22]] | | [[20/19]], [[23/22]] | ||
|m2 | | m2 | ||
|Eb | | Eb | ||
|- | |- | ||
|7 | | 7 | ||
|96. | | 96.6 | ||
|[[35/33]] | | [[35/33]] | ||
|[[18/17]], [[19/18]] | | [[18/17]], [[19/18]] | ||
|^m2 | | ^m2 | ||
|^Eb | | ^Eb | ||
|- | |- | ||
|8 | | 8 | ||
|110. | | 110.3 | ||
|[[16/15]] | | [[16/15]] | ||
|[[17/16]], [[ | | [[17/16]], [[31/29]], [[33/31]] | ||
|^^m2 | | ^^m2 | ||
|^^Eb | | ^^Eb | ||
|- | |- | ||
|9 | | 9 | ||
|124. | | 124.1 | ||
|[[ | | [[14/13]], [[15/14]] | ||
|[[29/27]] | | [[29/27]] | ||
|vv~2 | | vv~2 | ||
|^<sup>3</sup>Eb | | ^<sup>3</sup>Eb | ||
|- | |- | ||
|10 | | 10 | ||
|137. | | 137.9 | ||
|[[13/12]], [[27/25]] | | [[13/12]], [[27/25]] | ||
|[[25/23]] | | [[25/23]] | ||
|v~2 | | v~2 | ||
|^<sup>4</sup>Eb | | ^<sup>4</sup>Eb | ||
|- | |- | ||
|11 | | 11 | ||
|151. | | 151.7 | ||
|[[12/11]], [[35/32]] | | [[12/11]], [[35/32]] | ||
| | | | ||
|^~2 | | ^~2 | ||
|v<sup>4</sup>E | | v<sup>4</sup>E | ||
|- | |- | ||
|12 | | 12 | ||
|165. | | 165.5 | ||
|[[11/10]] | | [[11/10]] | ||
|[[32/29]], [[34/31]] | | [[32/29]], [[34/31]] | ||
|^^~2 | | ^^~2 | ||
|v<sup>3</sup>E | | v<sup>3</sup>E | ||
|- | |- | ||
|13 | | 13 | ||
|179. | | 179.3 | ||
|[[10/9]] | | [[10/9]] | ||
| | | | ||
|vvM2 | | vvM2 | ||
|vvE | | vvE | ||
|- | |- | ||
|14 | | 14 | ||
|193. | | 193.1 | ||
|[[28/25]] | | [[28/25]] | ||
|[[19/17]], [[29/26]] | | [[19/17]], [[29/26]] | ||
|vM2 | | vM2 | ||
|vE | | vE | ||
|- | |- | ||
|15 | | 15 | ||
|206. | | 206.9 | ||
|[[9/8]] | | [[9/8]] | ||
|[[26/23]] | | [[26/23]] | ||
|M2 | | M2 | ||
|E | | E | ||
|- | |- | ||
|16 | | 16 | ||
|220. | | 220.7 | ||
|[[25/22]] | | [[25/22]] | ||
|[[17/15]], [[33/29]] | | [[17/15]], [[33/29]] | ||
|^M2 | | ^M2 | ||
|^E | | ^E | ||
|- | |- | ||
|17 | | 17 | ||
|234. | | 234.5 | ||
|[[8/7]] | | [[8/7]] | ||
|[[31/27]] | | [[31/27]] | ||
|^^M2 | | ^^M2 | ||
|^^E | | ^^E | ||
|- | |- | ||
|18 | | 18 | ||
|248. | | 248.3 | ||
|[[15/13]] | | [[15/13]] | ||
|[[22/19]], [[ | | [[22/19]], [[23/20]], [[38/33]] | ||
|^<sup>3</sup>M2/v<sup>3</sup>m3 | | ^<sup>3</sup>M2/v<sup>3</sup>m3 | ||
|^<sup>3</sup>E/v<sup>3</sup>F | | ^<sup>3</sup>E/v<sup>3</sup>F | ||
|- | |- | ||
|19 | | 19 | ||
|262. | | 262.1 | ||
|[[7/6]] | | [[7/6]] | ||
|[[29/25]], [[36/31]] | | [[29/25]], [[36/31]] | ||
|vvm3 | | vvm3 | ||
|vvF | | vvF | ||
|- | |- | ||
|20 | | 20 | ||
|275. | | 275.9 | ||
|[[75/64]] | | [[75/64]] | ||
|[[27/23]], [[34/29]] | | [[20/17]], [[27/23]], [[34/29]] | ||
|vm3 | | vm3 | ||
|vF | | vF | ||
|- | |- | ||
|21 | | 21 | ||
|289. | | 289.7 | ||
|[[ | | [[13/11]], [[32/27]], [[33/28]] | ||
| | | | ||
|m3 | | m3 | ||
|F | | F | ||
|- | |- | ||
|22 | | 22 | ||
|303. | | 303.4 | ||
|[[25/21]] | | [[25/21]] | ||
|[[19/16]], [[31/26]] | | [[19/16]], [[31/26]] | ||
|^m3 | | ^m3 | ||
|^F | | ^F | ||
|- | |- | ||
|23 | | 23 | ||
|317. | | 317.2 | ||
|[[6/5]] | | [[6/5]] | ||
| | | | ||
|^^m3 | | ^^m3 | ||
|^^F | | ^^F | ||
|- | |- | ||
|24 | | 24 | ||
|331. | | 331.0 | ||
|[[40/33]] | | [[40/33]] | ||
|[[23/19]], [[29/24]] | | [[23/19]], [[29/24]] | ||
|vv~3 | | vv~3 | ||
|^<sup>3</sup>F | | ^<sup>3</sup>F | ||
|- | |- | ||
|25 | | 25 | ||
|344. | | 344.8 | ||
|[[11/9]], [[39/32]] | | [[11/9]], [[39/32]] | ||
| | | | ||
|v~3 | | v~3 | ||
|^<sup>4</sup>F | | ^<sup>4</sup>F | ||
|- | |- | ||
|26 | | 26 | ||
|358. | | 358.6 | ||
|[[ | | [[16/13]], [[27/22]] | ||
|[[38/31]] | | [[38/31]] | ||
|^~3 | | ^~3 | ||
|v<sup>4</sup>F# | | v<sup>4</sup>F# | ||
|- | |- | ||
|27 | | 27 | ||
|372. | | 372.4 | ||
|[[26/21]] | | [[26/21]] | ||
|[[31/25]], [[36/29]] | | [[31/25]], [[36/29]] | ||
|^^3 | | ^^3 | ||
|v<sup>3</sup>F# | | v<sup>3</sup>F# | ||
|- | |- | ||
|28 | | 28 | ||
|386. | | 386.2 | ||
|[[5/4]] | | [[5/4]] | ||
| | | | ||
|vvM3 | | vvM3 | ||
|vvF# | | vvF# | ||
|- | |- | ||
|29 | | 29 | ||
|400. | | 400.0 | ||
|[[44/35]] | | [[44/35]] | ||
|[[ | | [[24/19]], [[29/23]], [[34/27]] | ||
|vM3 | | vM3 | ||
|vF# | | vF# | ||
|- | |- | ||
|30 | | 30 | ||
|413. | | 413.8 | ||
|[[ | | [[14/11]], [[33/26]], [[81/64]] | ||
|[[19/15]] | | [[19/15]] | ||
|M3 | | M3 | ||
|F# | | F# | ||
|- | |- | ||
|31 | | 31 | ||
|427. | | 427.6 | ||
|[[32/25]] | | [[32/25]] | ||
|[[23/18]] | | [[23/18]] | ||
|^M3 | | ^M3 | ||
|^F# | | ^F# | ||
|- | |- | ||
|32 | | 32 | ||
|441. | | 441.4 | ||
|[[9/7]], [[35/27]] | | [[9/7]], [[35/27]] | ||
|[[22/17]], [[31/24]], [[40/31]] | | [[22/17]], [[31/24]], [[40/31]] | ||
|^^M3 | | ^^M3 | ||
|^^F# | | ^^F# | ||
|- | |- | ||
|33 | | 33 | ||
|455. | | 455.2 | ||
|[[13/10]] | | [[13/10]] | ||
|[[30/23]] | | [[30/23]] | ||
|^<sup>3</sup>M3/v<sup>3</sup>4 | | ^<sup>3</sup>M3/v<sup>3</sup>4 | ||
|^<sup>3</sup>F#/v<sup>3</sup>G | | ^<sup>3</sup>F#/v<sup>3</sup>G | ||
|- | |- | ||
|34 | | 34 | ||
| | | 469.0 | ||
|[[21/16]] | | [[21/16]] | ||
|[[17/13]], [[25/19]], [[38/29]] | | [[17/13]], [[25/19]], [[38/29]] | ||
|vv4 | | vv4 | ||
|vvG | | vvG | ||
|- | |- | ||
|35 | | 35 | ||
|482. | | 482.8 | ||
|[[33/25]] | | [[33/25]] | ||
| | | | ||
|v4 | | v4 | ||
|vG | | vG | ||
|- | |- | ||
|36 | | 36 | ||
|496. | | 496.6 | ||
|[[4/3]] | | [[4/3]] | ||
| | | | ||
|P4 | | P4 | ||
|G | | G | ||
|- | |- | ||
|37 | | 37 | ||
|510. | | 510.3 | ||
|[[35/26]] | | [[35/26]] | ||
|[[31/23]] | | [[31/23]] | ||
|^4 | | ^4 | ||
|^G | | ^G | ||
|- | |- | ||
|38 | | 38 | ||
|524. | | 524.1 | ||
|[[27/20]] | | [[27/20]] | ||
|[[23/17]] | | [[23/17]] | ||
|^^4 | | ^^4 | ||
|^^G | | ^^G | ||
|- | |- | ||
|39 | | 39 | ||
|537. | | 537.9 | ||
|[[15/11]] | | [[15/11]] | ||
|[[26/19]], [[34/25]] | | [[26/19]], [[34/25]] | ||
|^<sup>3</sup>4 | | ^<sup>3</sup>4 | ||
|^<sup>3</sup>G | | ^<sup>3</sup>G | ||
|- | |- | ||
|40 | | 40 | ||
|551. | | 551.7 | ||
|[[11/8]], [[48/35]] | | [[11/8]], [[48/35]] | ||
| | | | ||
|^<sup>4</sup>4 | | ^<sup>4</sup>4 | ||
|^<sup>4</sup>G | | ^<sup>4</sup>G | ||
|- | |||
| 41 | |||
| 565.5 | |||
| [[18/13]] | |||
| [[32/23]] | |||
| v<sup>4</sup>A4, vd5 | |||
| v<sup>4</sup>G#, vAb | |||
|- | |- | ||
| | | 42 | ||
| | | 579.3 | ||
|[[ | | [[7/5]] | ||
|[[ | | [[46/33]] | ||
|v<sup> | | v<sup>3</sup>A4, d5 | ||
|v<sup> | | v<sup>3</sup>G#, Ab | ||
|- | |- | ||
| | | 43 | ||
| | | 593.1 | ||
|[[ | | [[45/32]] | ||
|[[ | | [[24/17]], [[31/22]], [[38/27]] | ||
| | | vvA4, ^d5 | ||
| | | vvG#, ^Ab | ||
|- | |- | ||
| | | … | ||
| | | … | ||
| | | … | ||
| | | … | ||
| | | … | ||
| | | … | ||
|} | |} | ||
=== | == Approximation to JI == | ||
{| class="wikitable center- | === Interval mappings === | ||
! | {{Q-odd-limit intervals|87}} | ||
! | |||
! | == Regular temperament properties == | ||
! | {| class="wikitable center-4 center-5 center-6" | ||
|- | |||
! rowspan="2" | [[Subgroup]] | |||
! rowspan="2" | [[Comma list]] | |||
! rowspan="2" | [[Mapping]] | |||
! rowspan="2" | Optimal<br>8ve stretch (¢) | |||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.3.5 | |||
| 15625/15552, 67108864/66430125 | |||
| {{mapping| 87 138 202 }} | |||
| −0.299 | |||
| 0.455 | |||
| 3.30 | |||
|- | |||
| 2.3.5.7 | |||
| 245/243, 1029/1024, 3136/3125 | |||
| {{mapping| 87 138 202 244 }} | |||
| +0.070 | |||
| 0.752 | |||
| 5.45 | |||
|- | |||
| 2.3.5.7.11 | |||
| 245/243, 385/384, 441/440, 3136/3125 | |||
| {{mapping| 87 138 202 244 301 }} | |||
| +0.033 | |||
| 0.676 | |||
| 4.90 | |||
|- | |||
| 2.3.5.7.11.13 | |||
| 196/195, 245/243, 352/351, 364/363, 625/624 | |||
| {{mapping| 87 138 202 244 301 322 }} | |||
| −0.011 | |||
| 0.625 | |||
| 4.53 | |||
|- | |- | ||
| 2.3.5.7.11.13.17 | |||
| 154/153, 196/195, 245/243, 273/272, 364/363, 375/374 | |||
| {{mapping| 87 138 202 244 301 322 356 }} | |||
| −0.198 | |||
| 0.738 | |||
| 5.35 | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |- | ||
| 2.3.5.7.11.13.17.19 | |||
| | | 154/153, 196/195, 210/209, 245/243, 273/272, 286/285, 364/363 | ||
| {{mapping| 87 138 202 244 301 322 356 370 }} | |||
| −0.348 | |||
| 0.796 | |||
| | | 5.77 | ||
| | |||
| | |||
| | |||
| | |||
| | |||
|} | |} | ||
== 13-limit detempering | === 13-limit detempering === | ||
{{Main|87edo/13-limit detempering}} | |||
{| class="wikitable center-all | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | |||
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | |||
|- | |- | ||
! Periods <br> per | ! Periods<br>per 8ve | ||
! Generator | ! Generator* | ||
! Cents | ! Cents* | ||
! Associated <br> ratio | ! Associated<br>ratio* | ||
! Temperament | ! Temperament | ||
|- | |||
| 1 | |||
| 2\87 | |||
| 27.586 | |||
| 64/63 | |||
| [[Arch]] | |||
|- | |- | ||
| 1 | | 1 | ||
| 4\87 | | 4\87 | ||
| 55.172 | | 55.172 | ||
| [[ | | 33/32 | ||
| [[Escapade]] / [[escaped]] / [[alphaquarter]] | |||
|- | |- | ||
| 1 | | 1 | ||
| 10\87 | | 10\87 | ||
| 137.931 | | 137.931 | ||
| | | 13/12 | ||
| [[Quartemka]] | | [[Quartemka]] | ||
|- | |- | ||
Line 402: | Line 439: | ||
| 14\87 | | 14\87 | ||
| 193.103 | | 193.103 | ||
| | | 28/25 | ||
| [[Luna]] / [[ | | [[Luna]] / [[didacus]] / [[hemithirds]] | ||
|- | |- | ||
| 1 | | 1 | ||
| 17\87 | | 17\87 | ||
| 234.483 | | 234.483 | ||
| | | 8/7 | ||
| [[Slendric]] / [[rodan]] | |||
|- | |- | ||
| 1 | | 1 | ||
| 23\87 | | 23\87 | ||
| 317.241 | | 317.241 | ||
| | | 6/5 | ||
| [[Hanson]] / [[ | | [[Hanson]] / [[countercata]] / [[metakleismic]] | ||
|- | |||
| 1 | |||
| 26\87 | |||
| 358.621 | |||
| 16/13 | |||
| [[Restles]] | |||
|- | |- | ||
| 1 | | 1 | ||
| 32\87 | | 32\87 | ||
| 441.379 | | 441.379 | ||
| | | 9/7 | ||
| [[Clyde]] | | [[Clyde]] | ||
|- | |- | ||
Line 426: | Line 469: | ||
| 38\87 | | 38\87 | ||
| 524.138 | | 524.138 | ||
| | | 65/48 | ||
| [[Widefourth]] | | [[Widefourth]] | ||
|- | |- | ||
Line 432: | Line 475: | ||
| 40\87 | | 40\87 | ||
| 551.724 | | 551.724 | ||
| | | 11/8 | ||
| [[Emka]] / [[emkay]] | |||
|- | |- | ||
| 3 | | 3 | ||
| 23\87 | | 18\87<br>(11\87) | ||
| 317.241 | | 248.276<br>(151.724) | ||
| | | 15/13<br>(12/11) | ||
| [[Hemimist]] | |||
|- | |||
| 3 | |||
| 23\87<br>(6\87) | |||
| 317.241<br>(82.759) | |||
| 6/5<br>(21/20) | |||
| [[Tritikleismic]] | | [[Tritikleismic]] | ||
|- | |||
| 3 | |||
| 28\87<br>(1\87) | |||
| 386.207<br>(13.793) | |||
| 5/4<br>(126/125) | |||
| [[Mutt]] | |||
|- | |||
| 3 | |||
| 36\87<br>(7\87) | |||
| 496.552<br>(96.552) | |||
| 4/3<br>(18/17~19/18) | |||
| [[Misty]] | |||
|- | |- | ||
| 29 | | 29 | ||
| 28\87 | | 28\87<br>(1\87) | ||
| 386.207 | | 386.207<br>(13.793) | ||
| | | 5/4<br>(121/120) | ||
| [[Mystery]] | | [[Mystery]] | ||
|} | |} | ||
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | |||
87 can serve as a | 87 can serve as a mos in these: | ||
* [[ | * [[Avicenna (temperament)|Avicenna]] ([[Breed|87 & 270]]) | ||
* [[ | * [[Breed|87 & 494]] | ||
== Scales == | == Scales == | ||
=== Mos scales === | |||
{{main|List of MOS scales in 87edo}} | |||
=== Harmonic | === Harmonic scales === | ||
87edo accurately approximates the mode 8 of [[harmonic series]], and the only | 87edo accurately approximates the mode 8 of [[harmonic series]], and the only interval pair not distinct is 14/13 and 15/14. It can also do mode 12 decently. | ||
==== Mode 8 ==== | ==== (Mode 8) ==== | ||
{| class="wikitable center-all" | {| class="wikitable center-all" | ||
|- | |- | ||
! Overtones | |||
| | | 8 | ||
|9 | | 9 | ||
| | | 10 | ||
|11 | | 11 | ||
| | | 12 | ||
|13 | | 13 | ||
| | | 14 | ||
|15 | | 15 | ||
| | | 16 | ||
|- | |- | ||
| | ! JI Ratios | ||
| | | 1/1 | ||
| | | 9/8 | ||
| | | 5/4 | ||
| | | 11/8 | ||
| | | 3/2 | ||
| | | 13/8 | ||
| | | 7/4 | ||
| | | 15/8 | ||
| 2/1 | |||
|- | |- | ||
! … in cents | |||
|0 | | 0.0 | ||
| | | 203.9 | ||
| | | 386.3 | ||
| | | 551.3 | ||
| | | 702.0 | ||
| | | 840.5 | ||
| | | 968.8 | ||
| | | 1088.3 | ||
| | | 1200.0 | ||
|- | |- | ||
|… in cents | ! Degrees in 87edo | ||
|0.0 | | 0 | ||
|206.9 | | 15 | ||
|386.2 | | 28 | ||
|551.7 | | 40 | ||
|703.5 | | 51 | ||
|841.4 | | 61 | ||
|965.5 | | 70 | ||
|1089.7 | | 79 | ||
|1200.0 | | 87 | ||
|- | |||
! … in cents | |||
| 0.0 | |||
| 206.9 | |||
| 386.2 | |||
| 551.7 | |||
| 703.5 | |||
| 841.4 | |||
| 965.5 | |||
| 1089.7 | |||
| 1200.0 | |||
|} | |} | ||
==== Mode | The scale in adjacent steps is 15, 13, 12, 11, 10, 9, 9, 8. | ||
==== (Mode 12) ==== | |||
{| class="wikitable center-all" | {| class="wikitable center-all" | ||
|- | |- | ||
| | ! Overtones | ||
|17 | | 12 | ||
| | | 13 | ||
| | | 14 | ||
| | | 15 | ||
| | | 16 | ||
| | | 17 | ||
| | | 18 | ||
| | | 19 | ||
| 20 | |||
| 21 | |||
| 22 | |||
| 23 | |||
| 24 | |||
|- | |- | ||
| | ! JI Ratios | ||
| | | 1/1 | ||
| | | 13/12 | ||
| | | 7/6 | ||
| | | 5/4 | ||
| | | 4/3 | ||
| | | 17/12 | ||
| | | 3/2 | ||
| | | 19/12 | ||
| 5/3 | |||
| 7/4 | |||
| 11/6 | |||
| 23/12 | |||
| 2/1 | |||
|- | |- | ||
| | ! … in cents | ||
| | | 0.0 | ||
| | | 138.6 | ||
| | | 266.9 | ||
| | | 386.3 | ||
| | | 498.0 | ||
| | | 603.0 | ||
| | | 702.0 | ||
| | | 795.6 | ||
| 884.4 | |||
| 968.8 | |||
| 1049.4 | |||
| 1126.3 | |||
| 1200.0 | |||
|- | |- | ||
|… in cents | ! Degrees in 87edo | ||
| | | 0 | ||
| | | 10 | ||
| | | 19 | ||
| | | 28 | ||
| | | 36 | ||
| | | 44 | ||
| | | 51 | ||
| | | 58 | ||
| 64 | |||
| 70 | |||
| 76 | |||
| 82 | |||
| 87 | |||
|- | |||
! … in cents | |||
| 0.0 | |||
| 137.9 | |||
| 262.1 | |||
| 386.2 | |||
| 496.6 | |||
| 606.9 | |||
| 703.4 | |||
| 800.0 | |||
| 882.8 | |||
| 965.5 | |||
| 1048.3 | |||
| 1131.0 | |||
| 1200.0 | |||
|} | |} | ||
The scale in adjacent steps is 10, 9, 9, 8, 7, 7, 6, 6, 6, 6, 5. | |||
13, 15, 16, 18, 20, and 22 are close matches. | |||
14 and 21 are flat; 17, 19, and 23 are sharp. Still decent all things considered. | |||
* | === Other scales === | ||
* [[Sequar5m]] | |||
* | == Instruments == | ||
* [[Lumatone mapping for 87edo]] | |||
* [[Skip fretting system 87 2 17]] | |||
== Music == | == Music == | ||
; [[Bryan Deister]] | |||
* [https://www.youtube.com/shorts/ecxELXmkYAs ''microtonal improvisation in 87edo''] (2025) | |||
* [http://www.archive.org/details/Pianodactyl | ; [[Gene Ward Smith]] | ||
* ''Pianodactyl'' (archived 2010) – [https://soundcloud.com/genewardsmith/pianodactyl SoundCloud] | [http://www.archive.org/details/Pianodactyl detail] | [http://www.archive.org/download/Pianodactyl/pianodactyl.mp3 play] – rodan[26] in 87edo tuning | |||
[[Category: | [[Category:Zeta|##]] <!-- 2-digit number --> | ||
[[Category: | [[Category:Listen]] | ||
[[Category: | [[Category:Clyde]] | ||
[[Category: | [[Category:Countercata]] | ||
[[Category: | [[Category:Hemithirds]] | ||
[[Category: | [[Category:Mystery]] | ||
[[Category: | [[Category:Rodan]] | ||
[[Category: | [[Category:Tritikleismic]] | ||