33edo: Difference between revisions

CompactStar (talk | contribs)
No edit summary
21st century: Add Bryan Deister's ''33edo riff'' (2025)
 
(94 intermediate revisions by 10 users not shown)
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
{{EDO intro|33}}
{{ED intro}}
==Theory==
33edo is not especially good at representing all rational intervals in the [[7-limit]], but it does very well on the 7-limit [[k*N_subgroups|3*33 subgroup]] 2.27.15.21.11.13. On this subgroup it tunes things to the same tuning as [[99edo]], and as a subgroup patent val it tempers out the same commas. The 99 equal temperaments hemififths, amity, parakleismic, hemiwuerschmidt, ennealimmal and hendecatonic can be reduced to this subgroup and give various possibilities for MOS scales, etc. In particular, the [[Chromatic_pairs#Terrain|terrain]] subgroup temperament can be tuned via the 5\33 generator. The full system of harmony provides the optimal patent val for [[Mint_temperaments#Slurpee|slurpee temperament]] in the 5, 7, 11 and 13 limits.


While relatively uncommon, 33edo is actually quite an interesting system. As a multiple of [[11edo]], it approximates the 7th and 11th harmonics via [[orgone]] temperament (see [[26edo]]). 33edo also tunes the 13th harmonic slightly flat, allowing it to approximate the 21st and 17th harmonics as well, having a [[3L 7s|3L 7s]] with L=4 s=3. It tunes the perfect fifth about 11 cents flat, leading to a near perfect 10/9. The <33 52 76| or 33c val tempers out 81/80 and so leads to a very flat meantone tuning where the major tone is approximately 10/9 in size. Leaving the scale be would result in a "flattone" [[5L 2s]] with L=5, s=4.
== Theory ==
=== Structural properties ===
While relatively uncommon, 33edo is actually quite an interesting system. As a multiple of [[11edo]], it approximates the 7th and 11th harmonics via [[orgone]] temperament (see [[26edo]]). 33edo also tunes the 13th harmonic slightly flat, allowing it to approximate the 21st and 17th harmonics as well, having a [[3L 7s]] with {{nowrap|L {{=}} 4|s {{=}} 3}}. The 33c ({{val| 33 52 76 93 }}) and 33cd ({{val| 33 52 76 92 }}) mappings temper out [[81/80]] and can be used to represent [[1/2-comma meantone]], a [[Meantone family#Flattertone|"flattertone"]] tuning where the whole tone is [[10/9]] in size. Indeed, the perfect fifth is tuned about 11{{c}} flat, and two stacked fifths fall only 0.6{{c}} flat of 10/9. Leaving the scale be would result in the standard diatonic scale ([[5L 2s]]) having minor seconds of four steps and whole tones of five steps. This also results in common practice minor and major chords becoming more supraminor and submajor in character, making everything sound almost neutral in quality.


Instead of the flat 19\33 fifth you may use the sharp fifth of 20\33, over 25 cents sharp. Two of these lead to a 9/8 of 7\33, which is about 22/19 in size and may be counted as a small third. Between the flat 5\33 version of 9/8 and the sharp 7\33 version there is, of course, a 6\33 = 2\11 [[11edo]] interval of 218 cents. Now 6\33 + 5\33 = 11\33 = 1\3 of an octave, or 400 cents, the same major third as 12edo. Also, we have both a 327 minor third from 9\33 = 3\11, the same as the [[22edo]] minor third, and a flatter 8\33 third of 291 cents, which if you like could also be called a flat 19th harmonic, but much more accurately a 13/11 sharp by 1.7 cents (if you use the patent val it is an extremely inaccurate 6/5). Another talent it has is that 7/5 is tuned quite accurately by 16\33, and we may put two 8\33 versions of 13/11 together to produce the [[cuthbert triad]]. The 8\33 generator, with MOS of size 5, 9 and 13, gives plenty of scope for these, as well as the 11, 13 and 19 harmonics (taking the generator as a 19/16) which are relatively well in tune.
Instead of the flat 19-step fifth you may use the 20-step sharp fifth, over 25{{c}} sharp. Two of these lead to a 9/8 of 7\33, which is about 22/19 in size and may be counted as a small third. Between the flat 5\33 version of 9/8 and the sharp 7\33 version there is, of course, a {{nowrap|6\33 {{=}} 2\[[11edo|11]]}} interval of 218{{c}}. Together, these add up to {{nowrap|6\33 + 5\33 {{=}} 11\33 {{=}} 1\3}}, or 400{{c}}, the same major third as 12edo. We also have both a 327{{c}} minor third ({{nowrap|9\33 {{=}} 6\22 {{=}} 3\11}}), the same as that of [[22edo]], and a flatter 8\33 third of 291{{c}}, which if you like could also be called a flat 19th harmonic, but much more accurately a 13/11 sharp by 1.7{{c}} (if you use the patent val it is an extremely inaccurate 6/5). Another talent it has is that 7/5 is tuned quite accurately by 16\33, and we may put two 8\33 versions of 13/11 together to produce the [[cuthbert triad]]. The 8\33 generator, with MOS of size 5, 9, and 13, gives plenty of scope for these, as well as the 11th, 13th, and 19th harmonics (taking the generator as a 19/16) which are relatively well in tune.


So while it might not be the most harmonically accurate temperament, it's structurally quite interesting, and it approximates the full 19-limit consort in it's way. You could even say it tunes the 23rd and 29th harmonics ten cents flat if you were so inclined; as well as getting within two cents of the 37th.
33edo contains an accurate approximation of the [[Bohlen–Pierce]] scale with 4\33 near [[13edt|1\13edt]].


Other notable 33edo scales are [[diasem]] with L:m:s = 5:3:1 and [[5L 4s]] with L:s = 5:2. This step ratio for 5L 4s is great for its semitone size of 72..
Other notable 33edo scales are [[diasem]] with {{nowrap|L:m:s {{=}} 5:3:1}} and [[5L 4s]] with {{nowrap|L:s {{=}} 5:2}}. This step ratio for 5L 4s is great for its semitone size of 72.7{{c}}.


33 is also the number of years in the Iranian calendar's leap cycle, where leap year is inserted once every 4 or 5 years. This corresponds to the [[1L 7s]] with the step ratio of 5:4.
=== Odd harmonics ===
{{Harmonics in equal|33}}
 
33edo is not especially good at representing all rational intervals in the [[7-limit]], but it does very well on the 7-limit [[k*N subgroups|3*33 subgroup]] 2.27.15.21.11.13. On this subgroup it tunes things to the same tuning as [[99edo]], and as a subgroup patent val it tempers out the same commas. The 99 equal temperaments hemififths, amity, parakleismic, hemiwuerschmidt, ennealimmal and hendecatonic can be reduced to this subgroup and give various possibilities for MOS scales, etc. In particular, the [[terrain]] 2.7/5.9/5 subgroup temperament can be tuned via the 5\33 generator. The full system of harmony provides the optimal patent val for [[slurpee]] temperament in the 5-, 7-, 11-, and 13-limits.
 
While it might not be the most harmonically accurate temperament, it is structurally quite interesting, and it approximates the full 19-limit consort in its own way. You could even say it tunes the 23rd and 29th harmonics ten cents flat if you were so inclined; as well as getting within two cents of the 37th.
 
=== Miscellany ===
33 is also the number of years in the Iranian calendar's leap cycle, where leap year is inserted once every 4 or 5 years. This corresponds to the [[1L 7s]] with the step ratio of 5:4.


Becaus the chromatic semitone in 33edo is 1 step, 33edo is notated using sharps and flats only in [[ups and downs notation]].
{{Odd harmonics in edo|edo=33}}
== Intervals ==
== Intervals ==
{| class="wikitable center-all"
{| class="wikitable center-all"
|-
|-
! #
! rowspan="2" |Step #
! ET
! colspan="2" | Just
! rowspan="2" | Difference<br>(ET minus Just)
! rowspan="2" colspan="3" | Extended Pythagorean notation
|-
! Cents
! Interval
! Cents
! Cents
! Approximate ratios
! colspan="3" |Notation
|-
|-
| 0
| 0
|
| 0
| [[1/1]]
| [[1/1]]
| 0
| 0
| Perfect Unison
| Perfect Unison
| P1
| P1
Line 35: Line 47:
| 36.364
| 36.364
| [[48/47]]
| [[48/47]]
| 36.448
| −0.085
| Augmented Unison
| Augmented Unison
| A1
| A1
Line 42: Line 56:
| 72.727
| 72.727
| [[24/23]]
| [[24/23]]
| 73.681
| −0.953
| Double-aug 1sn
| Double-aug 1sn
| AA1
| AA1
Line 49: Line 65:
| 109.091
| 109.091
| [[16/15]]
| [[16/15]]
| 111.731
| −2.640
| Diminished 2nd
| Diminished 2nd
| d2
| d2
Line 56: Line 74:
| 145.455
| 145.455
| [[12/11]]
| [[12/11]]
| 150.637
| −5.183
| Minor 2nd
| Minor 2nd
| m2
| m2
Line 63: Line 83:
| 181.818
| 181.818
| [[10/9]]
| [[10/9]]
| 182.404
| −0.586
| Major 2nd
| Major 2nd
| M2
| M2
Line 70: Line 92:
| 218.182
| 218.182
| [[17/15]]
| [[17/15]]
| 216.687
| +1.495
| Augmented 2nd
| Augmented 2nd
| A2
| A2
Line 77: Line 101:
| 254.545
| 254.545
| [[15/13]]
| [[15/13]]
| 247.741
| +6.804
| Double-aug 2nd/Double-dim 3rd
| Double-aug 2nd/Double-dim 3rd
| AA2/dd3
| AA2/dd3
Line 84: Line 110:
| 290.909
| 290.909
| [[13/11]]
| [[13/11]]
| 289.210
| +1.699
| Diminished 3rd
| Diminished 3rd
| d3
| d3
Line 91: Line 119:
| 327.273
| 327.273
| [[6/5]]
| [[6/5]]
| 315.641
| +11.631
| Minor 3rd
| Minor 3rd
| m3
| m3
Line 97: Line 127:
| 10
| 10
| 363.636
| 363.636
| [[16/11]], [[5/4]]
| [[16/13]]
| 359.472
| +4.164
| Major 3rd
| Major 3rd
| M3
| M3
Line 105: Line 137:
| 400.000
| 400.000
| [[5/4]]
| [[5/4]]
| 386.314
| +13.686
| Augmented 3rd
| Augmented 3rd
| A3
| A3
Line 112: Line 146:
| 436.364
| 436.364
| [[9/7]]
| [[9/7]]
| 435.084
| +1.280
| Double-dim 4th
| Double-dim 4th
| dd4
| dd4
Line 119: Line 155:
| 472.727
| 472.727
| [[21/16]]
| [[21/16]]
| 470.781
| +1.946
| Diminished 4th
| Diminished 4th
| d4
| d4
Line 126: Line 164:
| 509.091
| 509.091
| [[4/3]]
| [[4/3]]
| 498.045
| +11.046
| Perfect 4th
| Perfect 4th
| P4
| P4
Line 133: Line 173:
| 545.455
| 545.455
| [[11/8]]
| [[11/8]]
| 551.318
| −5.863
| Augmented 4th
| Augmented 4th
| A4
| A4
Line 140: Line 182:
| 581.818
| 581.818
| [[7/5]]
| [[7/5]]
| 582.513
| −0.694
| Double-aug 4th
| Double-aug 4th
| AA4
| AA4
Line 148: Line 192:
| [[10/7]]
| [[10/7]]
| 617.488
| 617.488
| +0.694
| Double-dim 5th
| Double-dim 5th
| dd5
| dd5
Line 155: Line 200:
| 654.545
| 654.545
| [[16/11]]
| [[16/11]]
| 648.682
| +5.863
| Diminished 5th
| Diminished 5th
| d5
| d5
Line 162: Line 209:
| 690.909
| 690.909
| [[3/2]]
| [[3/2]]
| 701.955
| −11.046
| Perfect 5th
| Perfect 5th
| P5
| P5
Line 169: Line 218:
| 727.273
| 727.273
| [[32/21]]
| [[32/21]]
| 729.219
| -1.946
| Augmented 5th
| Augmented 5th
| A5
| A5
Line 176: Line 227:
| 763.636
| 763.636
| [[14/9]]
| [[14/9]]
| 764.916
| −1.280
| Double-aug 5th
| Double-aug 5th
| AA5
| AA5
Line 183: Line 236:
| 800.000
| 800.000
| [[8/5]]
| [[8/5]]
| 813.686
| −13.686
| Double-dim 6th
| Double-dim 6th
| d6
| d6
Line 190: Line 245:
| 836.364
| 836.364
| [[13/8]]
| [[13/8]]
| 840.528
| −4.164
| Minor 6th
| Minor 6th
| m6
| m6
Line 197: Line 254:
| 872.727
| 872.727
| [[5/3]]
| [[5/3]]
| 884.359
| −11.631
| Major 6th
| Major 6th
| M6
| M6
Line 204: Line 263:
| 909.091
| 909.091
| [[22/13]]
| [[22/13]]
| 910.790
| −1.699
| Augmented 6th
| Augmented 6th
| A6
| A6
Line 211: Line 272:
| 945.455
| 945.455
| [[12/7]]
| [[12/7]]
| 933.129
| +12.325
| Double-aug 6th/Double-dim 7th
| Double-aug 6th/Double-dim 7th
| AA6/dd7
| AA6/dd7
Line 218: Line 281:
| 981.818
| 981.818
| [[30/17]]
| [[30/17]]
| 983.313
| −1.495
| Diminished 7th
| Diminished 7th
| d7
| d7
Line 225: Line 290:
| 1018.182
| 1018.182
| [[9/5]]
| [[9/5]]
| 1017.596
| +0.586
| Minor 7th
| Minor 7th
| m7
| m7
Line 232: Line 299:
| 1054.545
| 1054.545
| [[11/6]]
| [[11/6]]
| 1049.363
| +5.183
| Major 7th
| Major 7th
| M7
| M7
Line 239: Line 308:
| 1090.909
| 1090.909
| [[15/8]]
| [[15/8]]
| 1088.268
| +2.640
| Augmented 7th
| Augmented 7th
| A7
| A7
Line 246: Line 317:
| 1127.273
| 1127.273
| [[23/12]]
| [[23/12]]
| 1126.319
| −0.953
| Double-dim 8ve
| Double-dim 8ve
| dd8
| dd8
Line 253: Line 326:
| 1163.636
| 1163.636
| [[47/24]]
| [[47/24]]
| 1163.551
| +0.085
| Diminished 8ve
| Diminished 8ve
| d8
| d8
Line 267: Line 342:
|}
|}


Nearby Equal Temperaments:
== Notation ==
=== Standard notation ===
Because the [[chromatic semitone]] in 33edo is 1 step, 33edo can be notated using only naturals, sharps, and flats. However, many key signatures will require double- and triple-sharps and flats, which means that notation in distant keys can be very unwieldy.
 
{{sharpness-sharp1}}
 
=== Sagittal notation ===
This notation uses the same sagittal sequence as EDOs [[23edo#Sagittal notation|23]] and [[28edo#Sagittal notation|28]].


<imagemap>
File:33-EDO_Sagittal.svg
desc none
rect 80 0 300 50 [[Sagittal_notation]]
rect 399 0 559 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation]
rect 20 80 399 106 [[Fractional_3-limit_notation#Bad-fifths_limma-fraction_notation | limma-fraction notation]]
default [[File:33-EDO_Sagittal.svg]]
</imagemap>
== Approximation to JI ==
{{Q-odd-limit intervals}}
{{Q-odd-limit intervals|32.87|apx=val|header=none|tag=none|title=15-odd-limit intervals by 33cd val mapping}}
== Nearby equal temperaments ==
[[File:33edo.png|alt=33edo.png|966x199px|33edo.png]]
[[File:33edo.png|alt=33edo.png|966x199px|33edo.png]]
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
| 2.3
| {{monzo| -52 33 }}
| {{mapping| 33 52 }}
| +3.48
| 3.49
| 9.59
|-
| 2.3.5
| 81/80, 1171875/1048576
| {{mapping| 33 52 76 }} (33c)
| +5.59
| 4.13
| 11.29
|-
| 2.3.5.7
| 49/48, 81/80, 1875/1792
| {{mapping| 33 52 76 92 }} (33cd)
| +6.29
| 3.77
| 10.31
|-
| 2.3.5.7.11
| 45/44, 49/48, 81/80, 1375/1344
| {{mapping| 33 52 76 92 114 }} (33cd)
| +5.36
| 3.84
| 10.50
|-
| 2.3.5.7.11.13
| 45/44, 49/48, 65/64, 81/80, 275/273
| {{mapping| 33 52 76 92 114 122 }} (33cd)
| +4.65
| 3.84
| 10.52
|}
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|-
! Periods<br>per 8ve
! Generator*
! Cents*
! Associated<br>ratio*
! Temperaments
|-
| 1
| 2\33
| 72.73
| 21/20
| [[Slurpee]] (33)
|-
| 1
| 4\33
| 145.45
| 12/11
| [[Bohpier]] (33cd)
|-
| 1
| 7\33
| 254.55
| 8/7
| [[Godzilla]] (33cd)
|-
| 1
| 8\33
| 290.91
| 25/21
| [[Quasitemp]] (33b)
|-
| 1
| 10\33
| 363.64
| 49/40
| [[Submajor]] (33ee) / [[interpental]] (33e)
|-
| 1
| 14\33
| 509.09
| 4/3
| [[Flattertone]] (33cd)<br>[[Deeptone]] a.k.a. tragicomical (33)
|-
| 1
| 16\33
| 581.82
| 7/5
| [[Tritonic]] (33)
|-
| 3
| 7\33<br>(4\33)
| 254.55<br>(145.45)
| 8/7<br>(12/11)
| [[Triforce]] (33d)
|-
| 3
| 13\33<br>(2\33)
| 472.73<br>(72.73)
| 4/3<br>(25/24)
| [[Inflated]] (33bcddd)
|-
| 3
| 14\33<br>(3\33)
| 509.09<br>(98.09)
| 4/3<br>(16/15)
| [[August]] (33cd)
|}
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct


== Scales ==
== Scales ==
* {{main|List of MOS scales in {{ROOTPAGENAME}}}}
Brightest mode is listed except where noted.
Brightest mode is listed except where noted.
* Flattone[7], 5554554 (diatonic)
* Deeptone[7], 5 5 5 4 5 5 4 (diatonic)
* Flattone[12], 441414414141 (chromatic)
** Fun 5-tone subset of Deeptone[7] 9 5 5 4 10
* Flattone[19], 3131131131311311311 (enharmonic)
* Deeptone[12], 4 4 1 4 1 4 4 1 4 1 4 1 (chromatic)
* Semiquartal[9], 552525252
* Deeptone[19], 3 1 3 1 1 3 1 1 3 1 3 1 1 3 1 1 3 1 1 (enharmonic)
* Semiquartal[14], 32322322322
* Semiquartal, 5 5 2 5 2 5 2 5 2
* Iranian Calendar, 54444444
* Semiquartal[14], 3 2 3 2 2 3 2 2 3 2 2
* Diasem[9], 535153515 (*right-handed)
* Iranian Calendar, 5 4 4 4 4 4 4 4
* Diasem[9], 515351535 (*left-handed)
* [[Diasem]], 5 3 5 1 5 3 5 1 5 (*right-handed)
* Diasem, 5 1 5 3 5 1 5 3 5 (*left-handed)
* [[Diaslen]] (4sR), 1 5 1 5 2 5 1 5 1 5 2
* Diaslen (4sL), 2 5 1 5 1 5 2 5 1 5 1
* Diaslen (4sC), 1 5 2 5 1 5 1 5 2 5 1
 
== Delta-rational harmony ==
The tables below show chords that approximate 3-integer-limit [[delta-rational]] chords with least-squares error less than 0.001.
 
=== Fully delta-rational triads ===
{| class="mw-collapsible mw-collapsed class="wikitable sortable"
|-
! Steps
! Delta signature
! Least-squares error
|-
| 0,1,2
| +1+1
| 0.00021
|-
| 0,1,3
| +1+2
| 0.00048
|-
| 0,1,4
| +1+3
| 0.00078
|-
| 0,2,3
| +2+1
| 0.00039
|-
| 0,2,4
| +1+1
| 0.00087
|-
| 0,3,4
| +3+1
| 0.00056
|-
| 0,3,11
| +1+3
| 0.00007
|-
| 0,5,8
| +3+2
| 0.00084
|-
| 0,8,18
| +2+3
| 0.00082
|-
| 0,9,20
| +2+3
| 0.00076
|-
| 0,12,17
| +2+1
| 0.00048
|-
| 0,13,20
| +3+2
| 0.00063
|-
| 0,15,21
| +2+1
| 0.00063
|-
| 0,16,28
| +1+1
| 0.00082
|-
| 0,18,25
| +2+1
| 0.00081
|-
| 0,18,31
| +1+1
| 0.00058
|-
| 0,19,24
| +3+1
| 0.00095
|}
 
=== Partially delta-rational tetrads ===
{| class="mw-collapsible mw-collapsed class="wikitable sortable"
|-
! Steps
! Delta signature
! Least-squares error
|-
| 0,1,2,3
| +1+?+1
| 0.00053
|-
| 0,1,2,4
| +1+?+2
| 0.00094
|-
| 0,1,3,4
| +1+?+1
| 0.00080
|-
| 0,1,17,18
| +2+?+3
| 0.00073
|-
| 0,1,17,19
| +1+?+3
| 0.00071
|-
| 0,1,18,19
| +2+?+3
| 0.00042
|-
| 0,1,18,20
| +1+?+3
| 0.00032
|-
| 0,1,19,20
| +2+?+3
| 0.00010
|-
| 0,1,19,21
| +1+?+3
| 0.00008
|-
| 0,1,20,21
| +2+?+3
| 0.00023
|-
| 0,1,20,22
| +1+?+3
| 0.00049
|-
| 0,1,21,22
| +2+?+3
| 0.00056
|-
| 0,1,21,23
| +1+?+3
| 0.00091
|-
| 0,1,22,23
| +2+?+3
| 0.00090
|-
| 0,1,31,32
| +1+?+2
| 0.00071
|-
| 0,2,3,4
| +2+?+1
| 0.00077
|-
| 0,2,6,11
| +1+?+3
| 0.00094
|-
| 0,2,7,12
| +1+?+3
| 0.00013
|-
| 0,2,8,13
| +1+?+3
| 0.00069
|-
| 0,2,12,13
| +3+?+2
| 0.00083
|-
| 0,2,12,15
| +1+?+2
| 0.00087
|-
| 0,2,13,14
| +3+?+2
| 0.00045
|-
| 0,2,13,16
| +1+?+2
| 0.00014
|-
| 0,2,14,15
| +3+?+2
| 0.00008
|-
| 0,2,14,17
| +1+?+2
| 0.00060
|-
| 0,2,15,16
| +3+?+2
| 0.00031
|-
| 0,2,16,17
| +3+?+2
| 0.00071
|-
| 0,2,18,20
| +2+?+3
| 0.00084
|-
| 0,2,18,22
| +1+?+3
| 0.00024
|-
| 0,2,19,21
| +2+?+3
| 0.00020
|-
| 0,2,19,23
| +1+?+3
| 0.00058
|-
| 0,2,20,22
| +2+?+3
| 0.00046
|-
| 0,3,4,5
| +3+?+1
| 0.00097
|-
| 0,3,5,9
| +2+?+3
| 0.00010
|-
| 0,3,6,10
| +2+?+3
| 0.00090
|-
| 0,3,7,12
| +1+?+2
| 0.00074
|-
| 0,3,8,13
| +1+?+2
| 0.00037
|-
| 0,3,10,17
| +1+?+3
| 0.00009
|-
| 0,3,17,23
| +1+?+3
| 0.00096
|-
| 0,3,18,22
| +1+?+2
| 0.00088
|-
| 0,3,18,24
| +1+?+3
| 0.00027
|-
| 0,3,19,20
| +2+?+1
| 0.00059
|-
| 0,3,19,21
| +1+?+1
| 0.00063
|-
| 0,3,19,22
| +2+?+3
| 0.00030
|-
| 0,3,19,23
| +1+?+2
| 0.00023
|-
| 0,3,20,21
| +2+?+1
| 0.00014
|-
| 0,3,20,22
| +1+?+1
| 0.00015
|-
| 0,3,20,23
| +2+?+3
| 0.00070
|-
| 0,3,21,22
| +2+?+1
| 0.00032
|-
| 0,3,21,23
| +1+?+1
| 0.00095
|-
| 0,3,22,23
| +2+?+1
| 0.00078
|-
| 0,3,27,32
| +1+?+3
| 0.00004
|-
| 0,4,5,12
| +1+?+2
| 0.00026
|-
| 0,4,6,16
| +1+?+3
| 0.00066
|-
| 0,4,8,13
| +2+?+3
| 0.00023
|-
| 0,4,11,20
| +1+?+3
| 0.00023
|-
| 0,4,13,14
| +3+?+1
| 0.00091
|-
| 0,4,13,19
| +1+?+2
| 0.00048
|-
| 0,4,14,15
| +3+?+1
| 0.00050
|-
| 0,4,14,16
| +3+?+2
| 0.00055
|-
| 0,4,14,17
| +1+?+1
| 0.00021
|-
| 0,4,15,16
| +3+?+1
| 0.00009
|-
| 0,4,15,17
| +3+?+2
| 0.00023
|-
| 0,4,15,18
| +1+?+1
| 0.00085
|-
| 0,4,16,17
| +3+?+1
| 0.00034
|-
| 0,4,17,18
| +3+?+1
| 0.00077
|-
| 0,4,17,25
| +1+?+3
| 0.00043
|-
| 0,4,19,23
| +2+?+3
| 0.00041
|-
| 0,4,20,24
| +2+?+3
| 0.00094
|-
| 0,4,22,27
| +1+?+2
| 0.00020
|-
| 0,4,24,31
| +1+?+3
| 0.00022
|-
| 0,5,6,9
| +3+?+2
| 0.00003
|-
| 0,5,7,10
| +3+?+2
| 0.00097
|-
| 0,5,7,19
| +1+?+3
| 0.00004
|-
| 0,5,9,17
| +1+?+2
| 0.00017
|-
| 0,5,10,16
| +2+?+3
| 0.00019
|-
| 0,5,11,13
| +2+?+1
| 0.00087
|-
| 0,5,11,15
| +1+?+1
| 0.00018
|-
| 0,5,12,14
| +2+?+1
| 0.00011
|-
| 0,5,12,23
| +1+?+3
| 0.00067
|-
| 0,5,13,15
| +2+?+1
| 0.00067
|-
| 0,5,16,23
| +1+?+2
| 0.00008
|-
| 0,5,17,27
| +1+?+3
| 0.00055
|-
| 0,5,19,24
| +2+?+3
| 0.00051
|-
| 0,5,22,31
| +1+?+3
| 0.00057
|-
| 0,5,24,30
| +1+?+2
| 0.00036
|-
| 0,5,25,26
| +3+?+1
| 0.00071
|-
| 0,5,25,27
| +3+?+2
| 0.00082
|-
| 0,5,25,28
| +1+?+1
| 0.00045
|-
| 0,5,26,27
| +3+?+1
| 0.00018
|-
| 0,5,26,28
| +3+?+2
| 0.00016
|-
| 0,5,26,29
| +1+?+1
| 0.00090
|-
| 0,5,27,28
| +3+?+1
| 0.00035
|-
| 0,5,28,29
| +3+?+1
| 0.00090
|-
| 0,6,7,17
| +1+?+2
| 0.00087
|-
| 0,6,8,22
| +1+?+3
| 0.00045
|-
| 0,6,9,14
| +1+?+1
| 0.00031
|-
| 0,6,11,18
| +2+?+3
| 0.00093
|-
| 0,6,12,21
| +1+?+2
| 0.00036
|-
| 0,6,12,25
| +1+?+3
| 0.00032
|-
| 0,6,15,18
| +3+?+2
| 0.00026
|-
| 0,6,16,19
| +3+?+2
| 0.00095
|-
| 0,6,16,28
| +1+?+3
| 0.00053
|-
| 0,6,18,26
| +1+?+2
| 0.00064
|-
| 0,6,19,25
| +2+?+3
| 0.00062
|-
| 0,6,20,24
| +1+?+1
| 0.00052
|-
| 0,6,21,23
| +2+?+1
| 0.00031
|-
| 0,6,21,32
| +1+?+3
| 0.00033
|-
| 0,6,22,24
| +2+?+1
| 0.00063
|-
| 0,6,25,32
| +1+?+2
| 0.00034
|-
| 0,7,8,14
| +1+?+1
| 0.00029
|-
| 0,7,8,24
| +1+?+3
| 0.00080
|-
| 0,7,9,11
| +3+?+1
| 0.00066
|-
| 0,7,9,12
| +2+?+1
| 0.00041
|-
| 0,7,9,13
| +3+?+2
| 0.00019
|-
| 0,7,10,12
| +3+?+1
| 0.00009
|-
| 0,7,10,13
| +2+?+1
| 0.00070
|-
| 0,7,11,13
| +3+?+1
| 0.00087
|-
| 0,7,12,27
| +1+?+3
| 0.00041
|-
| 0,7,16,30
| +1+?+3
| 0.00098
|-
| 0,7,17,22
| +1+?+1
| 0.00008
|-
| 0,7,19,26
| +2+?+3
| 0.00073
|-
| 0,7,20,29
| +1+?+2
| 0.00002
|-
| 0,7,23,26
| +3+?+2
| 0.00010
|-
| 0,7,28,32
| +1+?+1
| 0.00033
|-
| 0,7,29,31
| +2+?+1
| 0.00020
|-
| 0,7,30,32
| +2+?+1
| 0.00091
|-
| 0,8,12,29
| +1+?+3
| 0.00097
|-
| 0,8,13,22
| +2+?+3
| 0.00051
|-
| 0,8,15,21
| +1+?+1
| 0.00062
|-
| 0,8,15,31
| +1+?+3
| 0.00047
|-
| 0,8,16,18
| +3+?+1
| 0.00066
|-
| 0,8,16,19
| +2+?+1
| 0.00031
|-
| 0,8,16,20
| +3+?+2
| 0.00043
|-
| 0,8,16,27
| +1+?+2
| 0.00090
|-
| 0,8,17,19
| +3+?+1
| 0.00022
|-
| 0,8,17,20
| +2+?+1
| 0.00098
|-
| 0,8,19,27
| +2+?+3
| 0.00085
|-
| 0,8,24,29
| +1+?+1
| 0.00020
|-
| 0,9,11,16
| +3+?+2
| 0.00051
|-
| 0,9,13,20
| +1+?+1
| 0.00002
|-
| 0,9,14,24
| +2+?+3
| 0.00073
|-
| 0,9,18,30
| +1+?+2
| 0.00090
|-
| 0,9,19,28
| +2+?+3
| 0.00096
|-
| 0,9,21,27
| +1+?+1
| 0.00040
|-
| 0,9,22,24
| +3+?+1
| 0.00087
|-
| 0,9,22,25
| +2+?+1
| 0.00053
|-
| 0,9,22,26
| +3+?+2
| 0.00026
|-
| 0,9,23,25
| +3+?+1
| 0.00013
|-
| 0,9,23,26
| +2+?+1
| 0.00093
|-
| 0,10,11,26
| +1+?+2
| 0.00035
|-
| 0,10,11,32
| +1+?+3
| 0.00081
|-
| 0,10,12,20
| +1+?+1
| 0.00098
|-
| 0,10,14,18
| +2+?+1
| 0.00050
|-
| 0,10,14,25
| +2+?+3
| 0.00088
|-
| 0,10,15,29
| +1+?+2
| 0.00041
|-
| 0,10,16,21
| +3+?+2
| 0.00055
|-
| 0,10,19,32
| +1+?+2
| 0.00021
|-
| 0,10,27,31
| +3+?+2
| 0.00082
|-
| 0,10,28,30
| +3+?+1
| 0.00045
|-
| 0,10,28,31
| +2+?+1
| 0.00016
|-
| 0,10,29,31
| +3+?+1
| 0.00068
|-
| 0,11,12,18
| +3+?+2
| 0.00030
|-
| 0,11,13,16
| +3+?+1
| 0.00081
|-
| 0,11,14,17
| +3+?+1
| 0.00044
|-
| 0,11,16,31
| +1+?+2
| 0.00064
|-
| 0,11,17,25
| +1+?+1
| 0.00091
|-
| 0,11,19,23
| +2+?+1
| 0.00045
|-
| 0,11,21,26
| +3+?+2
| 0.00074
|-
| 0,12,15,24
| +1+?+1
| 0.00087
|-
| 0,12,15,28
| +2+?+3
| 0.00013
|-
| 0,12,17,23
| +3+?+2
| 0.00054
|-
| 0,12,18,21
| +3+?+1
| 0.00043
|-
| 0,12,19,22
| +3+?+1
| 0.00095
|-
| 0,12,23,27
| +2+?+1
| 0.00083
|-
| 0,12,26,31
| +3+?+2
| 0.00005
|-
| 0,13,14,24
| +1+?+1
| 0.00019
|-
| 0,13,17,22
| +2+?+1
| 0.00085
|-
| 0,13,21,27
| +3+?+2
| 0.00035
|-
| 0,13,22,25
| +3+?+1
| 0.00097
|-
| 0,13,23,26
| +3+?+1
| 0.00054
|-
| 0,13,28,32
| +2+?+1
| 0.00055
|-
| 0,14,17,24
| +3+?+2
| 0.00099
|-
| 0,14,18,28
| +1+?+1
| 0.00043
|-
| 0,14,21,26
| +2+?+1
| 0.00080
|-
| 0,14,25,31
| +3+?+2
| 0.00054
|-
| 0,14,27,30
| +3+?+1
| 0.00050
|-
| 0,15,16,20
| +3+?+1
| 0.00055
|-
| 0,15,17,28
| +1+?+1
| 0.00064
|-
| 0,15,21,28
| +3+?+2
| 0.00045
|-
| 0,15,22,32
| +1+?+1
| 0.00039
|-
| 0,16,18,26
| +3+?+2
| 0.00049
|-
| 0,16,19,25
| +2+?+1
| 0.00031
|-
| 0,16,20,24
| +3+?+1
| 0.00018
|-
| 0,16,25,32
| +3+?+2
| 0.00095
|-
| 0,17,22,28
| +2+?+1
| 0.00091
|-
| 0,17,23,27
| +3+?+1
| 0.00066
|-
| 0,18,27,31
| +3+?+1
| 0.00095
|-
| 0,19,21,28
| +2+?+1
| 0.00065
|-
| 0,20,24,31
| +2+?+1
| 0.00078
|-
| 0,21,22,32
| +3+?+2
| 0.00091
|-
| 0,22,27,32
| +3+?+1
| 0.00038
|}
 
== Instruments ==
[[Lumatone mapping for 33edo]]


== Music ==
== Music ==
* [https://www.youtube.com/watch?v=SXgUFxyuLZo Deluge] Peter Kosmorsky
=== Modern renderings ===
* [http://chrisvaisvil.com/5-5-1-mode-of-33-equal-with-video/ 5 5 1 mode of 33 equal (with video)] [http://micro.soonlabel.com/33edo/20130827_551of33.mp3 play] by [[Chris Vaisvil]]
; {{W|Johann Sebastian Bach}}
* [http://soonlabel.com/xenharmonic/wp-content/uploads/2014/02/Bach_Contrapunctus_4-Jeux14-E33.mp3 Bach Contrapunctus 4] Claudi Meneghin version
* [https://www.youtube.com/watch?v=IhR9oFt5zx4 "Contrapunctus 4" from ''The Art of Fugue'', BWV 1080] (1742–1749) – rendered by Claudi Meneghin (2024)
* [https://www.youtube.com/watch?v=ynPQPm_ekos "Contrapunctus 11" from ''The Art of Fugue'', BWV 1080] (1742–1749) – rendered by Claudi Meneghin (2024)
 
=== 21st century ===
; [[Bryan Deister]]
* [https://www.youtube.com/watch?v=swyP6tB78k0 ''groove 33edo''] (2023)
* [https://www.youtube.com/watch?v=GypR6x_Ih1I ''33edo jam''] (2025)
* [https://www.youtube.com/shorts/mkaaAJEyGFU ''33edo riff''] (2025)
 
; [[Peter Kosmorsky]]
* [https://www.youtube.com/watch?v=SXgUFxyuLZo ''Deluge'']
 
; [[Budjarn Lambeth]]
* [https://youtu.be/scCuGXnj5IY ''Music in 33EDO (33-Tone Equal Temperament) – Feb 2024''] (2024)
 
; [[Claudi Meneghin]]
* [https://www.youtube.com/watch?v=REkrbdesbLo ''Rising Canon on a Ground'', for Baroque Oboe, Bassoon, Violone] (2024) – ([https://www.youtube.com/watch?v=4fhcNPjFv14 for Organ])
* [https://www.youtube.com/watch?v=pkYN8SX6luY ''Lytel Twyelyghte Musicke (Little Twilight Music)'', for Brass and Timpani] (2024)
 
; [[Relyt R]]
* from ''Xuixo'' (2023)
** "Nongenerate" [https://relytr.bandcamp.com/track/nondegenerate-33-edo Bandcamp] | [https://open.spotify.com/track/3e2WbgFlAYC4BccPGOWHMo Spotify]
** "Kolmekymmentäkolme" [https://relytr.bandcamp.com/track/kolme-kymment-kolme-33-edo Bandcamp] | [https://open.spotify.com/track/4fx1yQ1RQtEu8EYhNUtN79 Spotify]
 
; [[Chris Vaisvil]]
* [http://chrisvaisvil.com/5-5-1-mode-of-33-equal-with-video/ 5 5 1 mode of 33 equal (with video)] [http://micro.soonlabel.com/33edo/20130827_551of33.mp3 play]
 
; [[Xeno*n*]]
* [https://www.youtube.com/watch?v=EPB1Rzjwguk ''Mysteries of Thirty-Three''] (2024)


[[Category:Equal divisions of the octave|##]] <!-- 2-digit number -->
[[Category:Listen]]
[[Category:Listen]]
[[Category:Subgroup]]
[[Category:Meantone]]
[[Category:Subgroup temperaments]]