List of superparticular intervals: Difference between revisions

Wikispaces>Andrew_Heathwaite
**Imported revision 255047254 - Original comment: **
Xenllium (talk | contribs)
mNo edit summary
 
(383 intermediate revisions by 36 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is a list of [[superparticular]] [[interval]]s ordered by [[prime limit]]. It reaches to the 127-limit and is complete up to the [[37-limit]].
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:Andrew_Heathwaite|Andrew_Heathwaite]] and made on <tt>2011-09-17 11:06:14 UTC</tt>.<br>
: The original revision id was <tt>255047254</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=&lt;span style="color: #800080;"&gt;List of Superparticular Intervals&lt;/span&gt;=


[[Superparticular]] numbers are ratios of the form (n+1)/n, or 1+1/n, where n is a whole number other than 1. They appear frequently in [[Just Intonation]] and [[OverToneSeries|Harmonic Series]] music. Adjacent tones in the harmonic series are separated by superparticular intervals: for instance, the 20th and 21st by the superparticular ratio [[20_21|20/21]]. As the overtones get closer together, the superparticular intervals get smaller and smaller. Thus, an examination of the superparticular intervals is an examination of some of the simplest small intervals in rational tuning systems. Indeed, many but not all common [[comma]]s are superparticular ratios.
[[Wikipedia: Størmer's theorem|Størmer's theorem]] states that, in each limit, there are only a finite number of superparticular ratios. Many of the sections below are complete. For example, there is no 3-limit superparticular ratio other than [[2/1]], [[3/2]], [[4/3]], and [[9/8]]. {{OEIS| A002071 }} gives the number of superparticular ratios in each prime limit, {{OEIS| A145604 }} shows the increment from limit to limit, and {{OEIS| A117581 }} gives the largest numerator for each prime limit (with some exceptions, such as the 23-limit, where the largest value is smaller than that of a smaller prime limit, in this case the 19-limit).


In addition to names and cents values, the list below includes the factorization of each superparticular ratio as well as the largest prime involved. This is relevant when considering which intervals are characteristic of which [[harmonic limit]]s. [[36_35|36/35]], for instance, is an interval of the [[7-limit]], as it factors to (2&lt;span style="vertical-align: super;"&gt;2&lt;/span&gt;*3&lt;span style="vertical-align: super;"&gt;2&lt;/span&gt;)/(5*7), while 37/36 would belong to the 37-limit.
== List of superparticular intervals ==
=== 2-limit ===
{| class="wikitable center-6" style="width:100%"
|-
! width="10%" | [[Ratio]]
! width="10%" | [[Cent]]s
! width="15%" | Factorization
! width="15%" | [[Monzo]]
! width="45%" | Name(s)
! width="5%" | Meta<ref name="ssp">Denoted by S-expressions, where s''k'' is defined as (''k''/(''k'' - 1))/((''k'' + 1)/''k''). See [[square superparticular]] for details.</ref>
|-
| [[2/1]]
| 1200.000
| 2/1
| {{Monzo| 1 }}
| Octave, duple, 2nd harmonic, diapason
|
|}


||~ Ratio ||~ Cents Value ||~ Factorization ||~ Prime Limit ||~ Name(s) ||
=== 3-limit ===
|| [[2_1|2/1]] || 1200.000 || 2/1 || 2 || (perfect) unison, unity, perfect prime, tonic, duple ||
{| class="wikitable center-6" style="width:100%"
|| [[3_2|3/2]] || 701.995 || 3/2 || 3 || [[perfect fifth]], 3rd harmonic (octave reduced), diapente ||
! width="10%" | [[Ratio]]
|| [[4_3|4/3]] || 498.045 || 2&lt;span style="vertical-align: super;"&gt;2&lt;/span&gt;/3 || 3 || perfect fourth, 3rd subharmonic (octave reduced), diatessaron ||
! width="10%" | [[Cent]]s
|| [[5_4|5/4]] || 386.314 || 5/2&lt;span style="vertical-align: super;"&gt;2&lt;/span&gt; || 5 || (classic) (5-limit) major third, 5th harmonic (octave reduced) ||
! width="15%" | Factorization
|| [[6_5|6/5]] || 315.641 || (2*3)/5 || 5 || (classic) (5-limit) minor third ||
! width="15%" | [[Monzo]]
|| [[7_6|7/6]] || 266.871 || 7/(2*3) || 7 || (septimal) subminor third, septimal minor third, augmented second ||
! width="45%" | Name(s)
|| [[8_7|8/7]] || 231.174 || 2&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;/7 || 7 || (septimal) supermajor second, septimal whole tone, diminished third, 7th subharmonic ||
! width="5%" | Meta<ref name="ssp"/>
|| [[9_8|9/8]] || 203.910 || 3&lt;span style="vertical-align: super;"&gt;2&lt;/span&gt;/2&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt; || 3 || (Pythagorean) (whole) tone, Pythagorean major second, major whole tone, 9th harmonic or harmonic ninth (octave reduced) ||
|-
|| [[10_9|10/9]] || 182.404 || (2*5)/3&lt;span style="vertical-align: super;"&gt;2&lt;/span&gt; || 5 || classic (whole) tone, classic major second, minor whole tone ||
| [[3/2]]
|| [[11_10|11/10]] || 165.004 || 11/(2*5) || 11 || (large) (undecimal) neutral second, 4/5-tone, Ptolemy's second ||
| 701.955
|| [[12_11|12/11]] || 150.637 || (2&lt;span style="vertical-align: super;"&gt;2&lt;/span&gt;*3)/11 || 11 || (small) (undecimal) neutral second, 3/4-tone ||
| 3/2
|| [[13_12|13/12]] || 138.573 || 13/(2&lt;span style="vertical-align: super;"&gt;2&lt;/span&gt;*3) || 13 || tridecimal 2/3-tone ||
| {{Monzo| -1 1 }}
|| [[14_13|14/13]] || 128.298 || (2*7)/13 || 13 || 2/3-tone, trienthird ||
| Perfect fifth, octave-reduced 3rd harmonic, diapente
|| [[15_14|15/14]] || 119.443 || (3*5)/(2*7) || 7 || septimal diatonic semitone ||
|
|| [[16_15|16/15]] || 111.713 || 2&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt;/(3*5) || 5 || minor diatonic semitone ||
|-
||  ||  ||  ||  ||  ||
| [[4/3]]
||  ||  ||  ||  ||  ||
| 498.045
||  ||  ||  ||  ||  ||
| 2<sup>2</sup>/3
||  ||  ||  ||  ||  ||
| {{Monzo| 2 -1 }}
||  ||  ||  ||  ||  ||
| Perfect fourth, octave-reduced 3rd subharmonic, diatessaron
||  ||  ||  ||  ||  ||
| S2
||  ||  ||  ||  ||  ||
|-
||  ||  ||  ||  ||  ||
| [[9/8]]
||  ||  ||  ||  ||  ||
| 203.910
||  ||  ||  ||  ||  ||
| 3<sup>2</sup>/2<sup>3</sup>
||  ||  ||  ||  ||  ||
| {{monzo| -3 2 }}
||  ||  ||  ||  ||  ||
| Pythagorean whole tone, Pythagorean major second, <br>major whole tone, octave-reduced 9th harmonic, harmonic ninth
||  ||  ||  ||  ||  ||
| S3
||  ||  ||  ||  ||  ||
|}
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||
||  ||  ||  ||  ||  ||</pre></div>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;List of Superparticular Intervals&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="List of Superparticular Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&lt;span style="color: #800080;"&gt;List of Superparticular Intervals&lt;/span&gt;&lt;/h1&gt;
&lt;br /&gt;
&lt;a class="wiki_link" href="/Superparticular"&gt;Superparticular&lt;/a&gt; numbers are ratios of the form (n+1)/n, or 1+1/n, where n is a whole number other than 1. They appear frequently in &lt;a class="wiki_link" href="/Just%20Intonation"&gt;Just Intonation&lt;/a&gt; and &lt;a class="wiki_link" href="/OverToneSeries"&gt;Harmonic Series&lt;/a&gt; music. Adjacent tones in the harmonic series are separated by superparticular intervals: for instance, the 20th and 21st by the superparticular ratio &lt;a class="wiki_link" href="/20_21"&gt;20/21&lt;/a&gt;. As the overtones get closer together, the superparticular intervals get smaller and smaller. Thus, an examination of the superparticular intervals is an examination of some of the simplest small intervals in rational tuning systems. Indeed, many but not all common &lt;a class="wiki_link" href="/comma"&gt;comma&lt;/a&gt;s are superparticular ratios.&lt;br /&gt;
&lt;br /&gt;
In addition to names and cents values, the list below includes the factorization of each superparticular ratio as well as the largest prime involved. This is relevant when considering which intervals are characteristic of which &lt;a class="wiki_link" href="/harmonic%20limit"&gt;harmonic limit&lt;/a&gt;s. &lt;a class="wiki_link" href="/36_35"&gt;36/35&lt;/a&gt;, for instance, is an interval of the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt;, as it factors to (2&lt;span style="vertical-align: super;"&gt;2&lt;/span&gt;*3&lt;span style="vertical-align: super;"&gt;2&lt;/span&gt;)/(5*7), while 37/36 would belong to the 37-limit.&lt;br /&gt;
&lt;br /&gt;


=== 5-limit ===
{| class="wikitable center-6" style="width:100%"
! width="10%" | [[Ratio]]
! width="10%" | [[Cent]]s
! width="15%" | Factorization
! width="15%" | [[Monzo]]
! width="45%" | Name(s)
! width="5%" | Meta<ref name="ssp"/>
|-
| [[5/4]]
| 386.314
| 5/2<sup>2</sup>
| {{Monzo| -2 0 1 }}
| Classic(al)/just major third, octave-reduced 5th harmonic
|
|-
| [[6/5]]
| 315.641
| (2×3)/5
| {{Monzo| 1 1 -1 }}
| Classic(al)/just minor third
|
|-
| [[10/9]]
| 182.404
| (2×5)/3<sup>2</sup>
| {{Monzo| 1 -2 1 }}
| Classic(al) (whole) tone, classic major second, minor whole tone
|
|-
| [[16/15]]
| 111.731
| 2<sup>4</sup>/(3×5)
| {{Monzo| 4 -1 -1 }}
| Classic(al)/just diatonic semitone, 15th subharmonic
| S4
|-
| [[25/24]]
| 70.672
| 5<sup>2</sup>/(2<sup>3</sup>×3)
| {{Monzo| -3 -1 2 }}
| Classic(al)/just chromatic semitone, chroma, Zarlinian semitone
| S5
|-
| [[81/80]]
| 21.506
| (3/2)<sup>4</sup>/5
| {{Monzo| -4 4 -1 }}
| Syntonic comma, Didymus comma
| S9
|}


&lt;table class="wiki_table"&gt;
=== 7-limit ===
    &lt;tr&gt;
{| class="wikitable center-6" style="width:100%"
        &lt;th&gt;Ratio&lt;br /&gt;
! width="10%" | [[Ratio]]
&lt;/th&gt;
! width="10%" | [[Cent]]s
        &lt;th&gt;Cents Value&lt;br /&gt;
! width="15%" | Factorization
&lt;/th&gt;
! width="15%" | [[Monzo]]
        &lt;th&gt;Factorization&lt;br /&gt;
! width="45%" | Name(s)
&lt;/th&gt;
! width="5%" | Meta<ref name="ssp"/>
        &lt;th&gt;Prime Limit&lt;br /&gt;
|-
&lt;/th&gt;
| [[7/6]]
        &lt;th&gt;Name(s)&lt;br /&gt;
| 266.871
&lt;/th&gt;
| 7/(2×3)
    &lt;/tr&gt;
| {{Monzo| -1 -1 0 1 }}
    &lt;tr&gt;
| (Septimal) subminor third, septimal minor third
        &lt;td&gt;&lt;a class="wiki_link" href="/2_1"&gt;2/1&lt;/a&gt;&lt;br /&gt;
|
&lt;/td&gt;
|-
        &lt;td&gt;1200.000&lt;br /&gt;
| [[8/7]]
&lt;/td&gt;
| 231.174
        &lt;td&gt;2/1&lt;br /&gt;
| 2<sup>3</sup>/7
&lt;/td&gt;
| {{Monzo| 3 0 0 -1 }}
        &lt;td&gt;2&lt;br /&gt;
| (Septimal) supermajor second, septimal whole tone, <br>octave-reduced 7th subharmonic
&lt;/td&gt;
|
        &lt;td&gt;(perfect) unison, unity, perfect prime, tonic, duple&lt;br /&gt;
|-
&lt;/td&gt;
| [[15/14]]
    &lt;/tr&gt;
| 119.443
    &lt;tr&gt;
| (3×5)/(2×7)
        &lt;td&gt;&lt;a class="wiki_link" href="/3_2"&gt;3/2&lt;/a&gt;&lt;br /&gt;
| {{Monzo| -1 1 1 -1 }}
&lt;/td&gt;
| Septimal major semitone, septimal diatonic semitone
        &lt;td&gt;701.995&lt;br /&gt;
|
&lt;/td&gt;
|-
        &lt;td&gt;3/2&lt;br /&gt;
| [[21/20]]
&lt;/td&gt;
| 84.467
        &lt;td&gt;3&lt;br /&gt;
| (3×7)/(2<sup>2</sup>×5)
&lt;/td&gt;
| {{Monzo| -2 1 -1 1 }}
        &lt;td&gt;&lt;a class="wiki_link" href="/perfect%20fifth"&gt;perfect fifth&lt;/a&gt;, 3rd harmonic (octave reduced), diapente&lt;br /&gt;
| Septimal minor semitone, large septimal chroma
&lt;/td&gt;
|
    &lt;/tr&gt;
|-
    &lt;tr&gt;
| [[28/27]]
        &lt;td&gt;&lt;a class="wiki_link" href="/4_3"&gt;4/3&lt;/a&gt;&lt;br /&gt;
| 62.961
&lt;/td&gt;
| (2<sup>2</sup>×7)/3<sup>3</sup>
        &lt;td&gt;498.045&lt;br /&gt;
| {{Monzo| 2 -3 0 1 }}
&lt;/td&gt;
| Septimal 1/3-tone, small septimal chroma, <br>(septimal) subminor second, septimal minor second, <br>trienstonic comma
        &lt;td&gt;2&lt;span style="vertical-align: super;"&gt;2&lt;/span&gt;/3&lt;br /&gt;
|
&lt;/td&gt;
|-
        &lt;td&gt;3&lt;br /&gt;
| [[36/35]]
&lt;/td&gt;
| 48.770
        &lt;td&gt;perfect fourth, 3rd subharmonic (octave reduced), diatessaron&lt;br /&gt;
| (2×3)<sup>2</sup>/(5×7)
&lt;/td&gt;
| {{Monzo| 2 2 -1 -1 }}
    &lt;/tr&gt;
| Septimal 1/4-tone, mint comma
    &lt;tr&gt;
| S6
        &lt;td&gt;&lt;a class="wiki_link" href="/5_4"&gt;5/4&lt;/a&gt;&lt;br /&gt;
|-
&lt;/td&gt;
| [[49/48]]
        &lt;td&gt;386.314&lt;br /&gt;
| 35.697
&lt;/td&gt;
| 7<sup>2</sup>/(2<sup>4</sup>×3)
        &lt;td&gt;5/2&lt;span style="vertical-align: super;"&gt;2&lt;/span&gt;&lt;br /&gt;
| {{Monzo| -4 -1 0 2 }}
&lt;/td&gt;
| Large septimal diesis, large septimal 1/6-tone, slendro diesis, semaphoresma
        &lt;td&gt;5&lt;br /&gt;
| S7
&lt;/td&gt;
|-
        &lt;td&gt;(classic) (5-limit) major third, 5th harmonic (octave reduced)&lt;br /&gt;
| [[50/49]]
&lt;/td&gt;
| 34.976
    &lt;/tr&gt;
| 2×(5/7)<sup>2</sup>
    &lt;tr&gt;
| {{Monzo| 1 0 2 -2 }}
        &lt;td&gt;&lt;a class="wiki_link" href="/6_5"&gt;6/5&lt;/a&gt;&lt;br /&gt;
| Small septimal diesis, small septimal 1/6-tone, septimal tritonic diesis, jubilisma
&lt;/td&gt;
|
        &lt;td&gt;315.641&lt;br /&gt;
|-
&lt;/td&gt;
| [[64/63]]
        &lt;td&gt;(2*3)/5&lt;br /&gt;
| 27.264
&lt;/td&gt;
| 2<sup>6</sup>/(3<sup>2</sup>×7)
        &lt;td&gt;5&lt;br /&gt;
| {{Monzo| 6 -2 0 -1 }}
&lt;/td&gt;
| Septimal comma, Archytas' comma
        &lt;td&gt;(classic) (5-limit) minor third&lt;br /&gt;
| S8
&lt;/td&gt;
|-
    &lt;/tr&gt;
| [[126/125]]
    &lt;tr&gt;
| 13.795
        &lt;td&gt;&lt;a class="wiki_link" href="/7_6"&gt;7/6&lt;/a&gt;&lt;br /&gt;
| (2×3<sup>2</sup>×7)/5<sup>3</sup>
&lt;/td&gt;
| {{Monzo| 1 2 -3 1 }}
        &lt;td&gt;266.871&lt;br /&gt;
| Starling comma, septimal semicomma
&lt;/td&gt;
|
        &lt;td&gt;7/(2*3)&lt;br /&gt;
|-
&lt;/td&gt;
| [[225/224]]
        &lt;td&gt;7&lt;br /&gt;
| 7.7115
&lt;/td&gt;
| (3×5)<sup>2</sup>/(2<sup>5</sup>×7)
        &lt;td&gt;(septimal) subminor third, septimal minor third, augmented second&lt;br /&gt;
| {{Monzo| -5 2 2 -1 }}
&lt;/td&gt;
| Marvel comma, septimal kleisma
    &lt;/tr&gt;
| S15
    &lt;tr&gt;
|-
        &lt;td&gt;&lt;a class="wiki_link" href="/8_7"&gt;8/7&lt;/a&gt;&lt;br /&gt;
| [[2401/2400]]
&lt;/td&gt;
| 0.72120
        &lt;td&gt;231.174&lt;br /&gt;
| 7<sup>4</sup>/(2<sup>5</sup>×3×5<sup>2</sup>)
&lt;/td&gt;
| {{Monzo| -5 -1 -2 4 }}
        &lt;td&gt;2&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;/7&lt;br /&gt;
| Breedsma
&lt;/td&gt;
| S49
        &lt;td&gt;7&lt;br /&gt;
|-
&lt;/td&gt;
| [[4375/4374]]
        &lt;td&gt;(septimal) supermajor second, septimal whole tone, diminished third, 7th subharmonic&lt;br /&gt;
| 0.39576
&lt;/td&gt;
| (5<sup>4</sup>×7)/(2×3<sup>7</sup>)
    &lt;/tr&gt;
| {{Monzo| -1 -7 4 1 }}
    &lt;tr&gt;
| Ragisma
        &lt;td&gt;&lt;a class="wiki_link" href="/9_8"&gt;9/8&lt;/a&gt;&lt;br /&gt;
|
&lt;/td&gt;
|}
        &lt;td&gt;203.910&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3&lt;span style="vertical-align: super;"&gt;2&lt;/span&gt;/2&lt;span style="vertical-align: super;"&gt;3&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;(Pythagorean) (whole) tone, Pythagorean major second, major whole tone, 9th harmonic or harmonic ninth (octave reduced)&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/10_9"&gt;10/9&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;182.404&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;(2*5)/3&lt;span style="vertical-align: super;"&gt;2&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;classic (whole) tone, classic major second, minor whole tone&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/11_10"&gt;11/10&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;165.004&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/(2*5)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;(large) (undecimal) neutral second, 4/5-tone, Ptolemy's second&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/12_11"&gt;12/11&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;150.637&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;(2&lt;span style="vertical-align: super;"&gt;2&lt;/span&gt;*3)/11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;(small) (undecimal) neutral second, 3/4-tone&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/13_12"&gt;13/12&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;138.573&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/(2&lt;span style="vertical-align: super;"&gt;2&lt;/span&gt;*3)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;tridecimal 2/3-tone&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/14_13"&gt;14/13&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;128.298&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;(2*7)/13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2/3-tone, trienthird&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/15_14"&gt;15/14&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;119.443&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;(3*5)/(2*7)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;septimal diatonic semitone&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/16_15"&gt;16/15&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;111.713&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;2&lt;span style="vertical-align: super;"&gt;4&lt;/span&gt;/(3*5)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;minor diatonic semitone&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;/body&gt;&lt;/html&gt;</pre></div>
=== 11-limit ===
{| class="wikitable center-6" style="width:100%"
! width="10%" | [[Ratio]]
! width="10%" | [[Cent]]s
! width="15%" | Factorization
! width="15%" | [[Monzo]]
! width="45%" | Name(s)
! width="5%" | Meta<ref name="ssp"/>
|-
| [[11/10]]
| 165.004
| 11/(2×5)
| {{Monzo| -1 0 -1 0 1 }}
| Large undecimal neutral second, <br>undecimal submajor second, Ptolemy's second
|
|-
| [[12/11]]
| 150.637
| (2<sup>2</sup>×3)/11
| {{Monzo| 2 1 0 0 -1 }}
| Small undecimal neutral second
|
|-
| [[22/21]]
| 80.537
| (2×11)/(3×7)
| {{Monzo| 1 -1 0 -1 1 }}
| Undecimal minor semitone
|
|-
| [[33/32]]
| 53.273
| (3×11)/2<sup>5</sup>
| {{Monzo| -5 1 0 0 1 }}
| Undecimal 1/4-tone, undecimal diesis, <br>al-Farabi's 1/4-tone, octave-reduced 33rd harmonic
|
|-
| [[45/44]]
| 38.906
| (3/2)<sup>2</sup>×(5/11)
| {{monzo| -2 2 1 0 -1 }}
| Undecimal 1/5-tone, cake comma
|
|-
| [[55/54]]
| 31.767
| (5×11)/(2×3<sup>3</sup>)
| {{Monzo| -1 -3 1 0 1 }}
| Telepathma, eleventyfive comma, <br>undecimal diasecundal comma
|
|-
| [[56/55]]
| 31.194
| (2<sup>3</sup>×7)/(5×11)
| {{Monzo| 3 0 -1 1 -1 }}
| Undecimal tritonic comma, konbini comma
|
|-
| [[99/98]]
| 17.576
| (3/7)<sup>2</sup>×(11/2)
| {{Monzo| -1 2 0 -2 1 }}
| Mothwellsma, small undecimal comma
|
|-
| [[100/99]]
| 17.399
| ((2×5)/3)<sup>2</sup>/11
| {{monzo| 2 -2 2 0 -1 }}
| Ptolemisma, Ptolemy's comma
| S10
|-
| [[121/120]]
| 14.376
| 11<sup>2</sup>/(2<sup>3</sup>×3×5)
| {{Monzo| -3 -1 -1 0 2 }}
| Biyatisma, undecimal seconds comma
| S11
|-
| [[176/175]]
| 9.8646
| (2<sup>4</sup>×11)/(5<sup>2</sup>×7)
| {{Monzo| 4 0 -2 -1 1 }}
| Valinorsma
|
|-
| [[243/242]]
| 7.1391
| 3<sup>5</sup>/(2×11<sup>2</sup>)
| {{Monzo| -1 5 0 0 -2 }}
| Rastma, neutral thirds comma
|
|-
| [[385/384]]
| 4.5026
| (5×7×11)/(2<sup>7</sup>×3)
| {{Monzo| -7 -1 1 1 1 }}
| Keenanisma
|
|-
| [[441/440]]
| 3.9302
| (3×7)<sup>2</sup>/(2<sup>3</sup>×5×11)
| {{Monzo| -3 2 -1 2 -1 }}
| Werckisma, Werckmeister's undecimal septenarian schisma
| S21
|-
| [[540/539]]
| 3.2090
| (2/7)<sup>2</sup>×((3<sup>3</sup>×5)/11)
| {{Monzo| 2 3 1 -2 -1 }}
| Swetisma, Swets' comma
|
|-
| [[3025/3024]]
| 0.57240
| (5×11)<sup>2</sup>/(2<sup>4</sup>×3<sup>3</sup>×7)
| {{Monzo| -4 -3 2 -1 2 }}
| Lehmerisma
| S55
|-
| [[9801/9800]]
| 0.17665
| ((3<sup>2</sup>×11)/(5×7))<sup>2</sup>/2<sup>3</sup>
| {{Monzo| -3 4 -2 -2 2 }}
| Kalisma, Gauss comma
| S99
|}
 
=== 13-limit ===
{| class="wikitable center-6" style="width:100%"
! width="10%" | [[Ratio]]
! width="10%" | [[Cent]]s
! width="15%" | Factorization
! width="15%" | [[Monzo]]
! width="45%" | Name(s)
! width="5%" | Meta<ref name="ssp"/>
|-
| [[13/12]]
| 138.573
| 13/(2<sup>2</sup>×3)
| {{Monzo| -2 -1 0 0 0 1 }}
| Large tridecimal 2/3-tone, <br>tridecimal neutral second
|
|-
| [[14/13]]
| 128.298
| (2×7)/13
| {{Monzo| 1 0 0 1 0 -1 }}
| Small tridecimal 2/3-tone, trienthird
|
|-
| [[26/25]]
| 67.900
| (2×13)/5<sup>2</sup>
| {{Monzo| 1 0 -2 0 0 1 }}
| Large tridecimal 1/3-tone
|
|-
| [[27/26]]
| 65.337
| 3<sup>3</sup>/(2×13)
| {{Monzo| -1 3 0 0 0 -1 }}
| Small tridecimal 1/3-tone
|
|-
| [[40/39]]
| 43.831
| (2<sup>3</sup>×5)/(3×13)
| {{Monzo| 3 -1 1 0 0 -1 }}
| Tridecimal minor diesis
|
|-
| [[65/64]]
| 26.841
| (5×13)/2<sup>6</sup>
| {{Monzo| -6 0 1 0 0 1 }}
| Wilsorma, 13th-partial chroma
|
|-
| [[66/65]]
| 26.432
| (2×3×11)/(5×13)
| {{Monzo| 1 1 -1 0 1 -1 }}
| Winmeanma
|
|-
| [[78/77]]
| 22.339
| (2×3×13)/(7×11)
| {{Monzo| 1 1 0 -1 -1 1 }}
| Negustma
|
|-
| [[91/90]]
| 19.130
| (7×13)/(2×3<sup>2</sup>×5)
| {{Monzo| -1 -2 -1 1 0 1 }}
| Biome comma, superleap comma
|
|-
| [[105/104]]
| 16.567
| (3×5×7)/(2<sup>3</sup>×13)
| {{Monzo| -3 1 1 1 0 -1 }}
| Animist comma, small tridecimal comma
|
|-
| [[144/143]]
| 12.064
| (2<sup>2</sup>×3)<sup>2</sup>/(11×13)
| {{Monzo| 4 2 0 0 -1 -1 }}
| Grossma
| S12
|-
| [[169/168]]
| 10.274
| 13<sup>2</sup>/(2<sup>3</sup>×3×7)
| {{Monzo| -3 -1 0 -1 0 2 }}
| Buzurgisma, dhanvantarisma
| S13
|-
| [[196/195]]
| 8.8554
| (2×7)<sup>2</sup>/(3×5×13)
| {{Monzo| 2 -1 -1 2 0 -1 }}
| Mynucuma
| S14
|-
| [[325/324]]
| 5.3351
| (5/(2×3<sup>2</sup>))<sup>2</sup>×13
| {{Monzo| -2 -4 2 0 0 1 }}
| Marveltwin comma
|
|-
| [[351/350]]
| 4.9393
| (3<sup>3</sup>×13)/(2×5<sup>2</sup>×7)
| {{Monzo| -1 3 -2 -1 0 1 }}
| Ratwolfsma
|
|-
| [[352/351]]
| 4.9253
| (2<sup>5</sup>×11)/(3<sup>3</sup>×13)
| {{Monzo| 5 -3 0 0 1 -1 }}
| Major minthma, major gentle comma
|
|-
| [[364/363]]
| 4.7627
| (2/11)<sup>2</sup>×((7×13)/3)
| {{Monzo| 2 -1 0 1 -2 1 }}
| Minor minthma, minor gentle comma
|
|-
| [[625/624]]
| 2.7722
| (5/2)<sup>4</sup>/(3×13)
| {{Monzo| -4 -1 4 0 0 -1 }}
| Tunbarsma
| S25
|-
| [[676/675]]
| 2.5629
| ((2×13)/5)<sup>2</sup>/3<sup>3</sup>
| {{Monzo| 2 -3 -2 0 0 2 }}
| Island comma
| S26
|-
| [[729/728]]
| 2.3764
| (3<sup>2</sup>/2)<sup>3</sup>/(7×13)
| {{Monzo| -3 6 0 -1 0 -1 }}
| Squbema
| S27
|-
| [[1001/1000]]
| 1.7304
| (7×11×13)/(2×5)<sup>3</sup>
| {{Monzo| -3 0 -3 1 1 1 }}
| Sinbadma
|
|-
| [[1716/1715]]
| 1.0092
| (2<sup>2</sup>×3×11×13)/(5×7<sup>3</sup>)
| {{Monzo| 2 1 -1 -3 1 1 }}
| Lummic comma
|
|-
| [[2080/2079]]
| 0.83252
| (2<sup>5</sup>×5×13)/(3<sup>3</sup>×7×11)
| {{Monzo| 5 -3 1 -1 -1 1 }}
| Ibnsinma
|
|-
| [[4096/4095]]
| 0.42272
| (2<sup>6</sup>/3)<sup>2</sup>/(5×7×13)
| {{Monzo| 12 -2 -1 -1 0 -1 }}
| Schismina, tridecimal schisma
| S64
|-
| [[4225/4224]]
| 0.40981
| (5×13)<sup>2</sup>/(2<sup>7</sup>×3×11)
| {{Monzo| -7 -1 2 0 -1 2 }}
| Leprechaun comma
| S65
|-
| [[6656/6655]]
| 0.26012
| (2<sup>3</sup>/11)<sup>3</sup>×(13/5)
| {{Monzo| 9 0 -1 0 -3 1 }}
| Jacobin comma
|
|-
| [[Harmonisma|10648/10647]]
| 0.16260
| (2×11)<sup>3</sup>/((3×13)<sup>2</sup>×7)
| {{Monzo| 3 -2 0 -1 3 -2 }}
| Harmonisma
|
|-
| [[Chalmersia|123201/123200]]
| 0.014052
| (3/2)<sup>6</sup>×(13/5)<sup>2</sup>/(7×11)
| {{Monzo| -6 6 -2 -1 -1 2 }}
| Chalmersia
| S351
|}
 
=== 17-limit ===
{| class="wikitable center-6" style="width:100%"
! width="10%" | [[Ratio]]
! width="10%" | [[Cent]]s
! width="15%" | Factorization
! width="15%" | [[Monzo]]
! width="45%" | Name(s)
! width="5%" | Meta<ref name="ssp"/>
|-
| [[17/16]]
| 104.955
| 17/2<sup>4</sup>
| {{Monzo| -4 0 0 0 0 0 1 }}
| Large septendecimal semitone, <br>octave-reduced 17th harmonic
|
|-
| [[18/17]]
| 98.955
| (2×3<sup>2</sup>)/17
| {{Monzo| 1 2 0 0 0 0 -1 }}
| Small septendecimal semitone, <br>Arabic lute index finger
|
|-
| [[34/33]]
| 51.682
| (2×17)/(3×11)
| {{Monzo| 1 -1 0 0 -1 0 1 }}
| Large septendecimal 1/4-tone
|
|-
| [[35/34]]
| 50.184
| (5×7)/(2×17)
| {{Monzo| -1 0 1 1 0 0 -1 }}
| Small septendecimal 1/4-tone
|
|-
| [[51/50]]
| 34.283
| (3×17)/(2×5<sup>2</sup>)
| {{Monzo| -1 1 -2 0 0 0 1 }}
| Large septendecimal 1/6-tone
|
|-
| [[52/51]]
| 33.617
| (2<sup>2</sup>×13)/(3×17)
| {{Monzo| 2 -1 0 0 0 1 -1 }}
| Small septendecimal 1/6-tone
|
|-
| [[85/84]]
| 20.488
| (5×17)/(2<sup>2</sup>×3×7)
| {{Monzo| -2 -1 1 -1 0 0 1 }}
| Monk comma
|
|-
| [[120/119]]
| 14.487
| (2<sup>3</sup>×3×5)/(7×17)
| {{Monzo| 3 1 1 -1 0 0 -1 }}
| Lynchisma
|
|-
| [[136/135]]
| 12.777
| (2/3)<sup>3</sup>×(17/5)
| {{Monzo| 3 -3 -1 0 0 0 1 }}
| Diatisma, septendecimal major second comma
|
|-
| [[154/153]]
| 11.278
| (2×7×11)/(3<sup>2</sup>×17)
| {{Monzo| 1 -2 0 1 1 0 -1 }}
| Augustma
|
|-
| [[170/169]]
| 10.214
| (2×5×17)/13<sup>2</sup>
| {{Monzo| 1 0 1 0 0 -2 1 }}
| Major naiadma
|
|-
| [[221/220]]
| 7.8514
| (13×17)/(2<sup>2</sup>×5×11)
| {{Monzo| -2 0 -1 0 -1 1 1 }}
| Minor naiadma
|
|-
| [[256/255]]
| 6.7759
| 2<sup>8</sup>/(3×5×17)
| {{Monzo| 8 -1 -1 0 0 0 -1 }}
| Charisma, charic comma, <br>septendecimal kleisma
| S16
|-
| [[273/272]]
| 6.3532
| (3×7×13)/(2<sup>4</sup>×17)
| {{Monzo| -4 1 0 1 0 1 -1 }}
| Tannisma, prototannisma
|
|-
| [[289/288]]
| 6.0008
| (17/3)<sup>2</sup>/2<sup>5</sup>
| {{Monzo| -5 -2 0 0 0 0 2 }}
| Semitonisma
| S17
|-
| [[375/374]]
| 4.6228
| (3×5<sup>3</sup>)/(2×11×17)
| {{Monzo| -1 1 3 0 -1 0 -1 }}
| Ursulisma
|
|-
| [[442/441]]
| 3.9213
| (2×13×17)/(3×7)<sup>2</sup>
| {{Monzo| 1 -2 0 -2 0 1 1 }}
| Seminaiadma
|
|-
| [[561/560]]
| 3.0887
| (3×11×17)/(2<sup>4</sup>×5×7)
| {{Monzo| -4 1 -1 -1 1 0 1 }}
| Monardisma, tsaharuk comma
|
|-
| [[595/594]]
| 2.9121
| (5×7×17)/(2×3<sup>3</sup>×11)
| {{Monzo| -1 -3 1 1 -1 0 1 }}
| Dakotisma
|
|-
| [[715/714]]
| 2.4230
| (5×11×13)/(2×3×7×17)
| {{Monzo| -1 -1 1 -1 1 1 -1 }}
| September comma, septembrisma
|
|-
| [[833/832]]
| 2.0796
| (7<sup>2</sup>×17)/(2<sup>6</sup>×13)
| {{Monzo| -6 0 0 2 0 -1 1 }}
| Horizma, horizon comma
|
|-
| [[936/935]]
| 1.8506
| (2<sup>3</sup>×3<sup>2</sup>×13)/(5×11×17)
| {{Monzo| 3 2 -1 0 -1 1 -1 }}
| Ainisma, ainic comma
|
|-
| [[1089/1088]]
| 1.5905
| (3×11)<sup>2</sup>/(2<sup>6</sup>×17)
| {{Monzo| -6 2 0 0 2 0 -1 }}
| Twosquare comma
| S33
|-
| [[1156/1155]]
| 1.4983
| (2×17)<sup>2</sup>/(3×5×7×11)
| {{Monzo| 2 -1 -1 -1 -1 0 2 }}
| Quadrantonisma
| S34
|-
| [[1225/1224]]
| 1.4138
| (5×7)<sup>2</sup>/(2<sup>3</sup>×3<sup>2</sup>×17)
| {{Monzo| -3 -2 2 2 0 0 -1 }}
| Noellisma
| S35
|-
| [[1275/1274]]
| 1.3584
| (3×5<sup>2</sup>×17)/(2×7<sup>2</sup>×13)
| {{Monzo| -1 1 2 -2 0 -1 1 }}
| Cimbrisma
|
|-
| [[1701/1700]]
| 1.0181
| (3<sup>5</sup>×7)/((2×5)<sup>2</sup>×17)
| {{Monzo| -2 5 -2 1 0 0 -1 }}
| Palingenetic comma, palingenesis
|
|-
| [[2058/2057]]
| 0.84143
| (2×3×7<sup>3</sup>)/(11<sup>2</sup>×17)
| {{Monzo| 1 1 0 3 -2 0 -1 }}
| Xenisma
|
|-
| [[2431/2430]]
| 0.71230
| (11×13×17)/(2×3<sup>5</sup>×5)
| {{Monzo| -1 -5 -1 0 1 1 1 }}
| Heptacircle comma
|
|-
| [[2500/2499]]
| 0.69263
| (2×5<sup>2</sup>)<sup>2</sup>/(3×7<sup>2</sup>×17)
| {{Monzo| 2 -1 4 -2 0 0 -1 }}
| Sperasma
| S50
|-
| [[2601/2600]]
| 0.66573
| (3×17)<sup>2</sup>/(2<sup>3</sup>×5<sup>2</sup>×13)
| {{Monzo| -3 2 -2 0 0 -1 2 }}
| Sextantonisma
| S51
|-
| [[4914/4913]]
| 0.35234
| (2×3<sup>3</sup>×7×13)/17<sup>3</sup>
| {{Monzo| 1 3 0 1 0 1 -3 }}
| Baladisma
|
|-
| [[5832/5831]]
| 0.29688
| (2×3<sup>2</sup>)<sup>3</sup>/(7<sup>3</sup>×17)
| {{Monzo| 3 6 0 -3 0 0 -1 }}
| Chlorisma
|
|-
| [[Flashma|12376/12375]]
| 0.13989
| (2<sup>3</sup>×7×13×17)/(3<sup>2</sup>×5<sup>3</sup>×11)
| {{Monzo| 3 -2 -3 1 -1 1 1 }}
| Flashma
|
|-
| [[Sparkisma|14400/14399]]
| 0.12023
| (2<sup>3</sup>×3×5)<sup>2</sup>/(7×11<sup>2</sup>×17)
| {{monzo| 6 2 2 -1 -2 0 -1 }}
| Sparkisma
| S120
|-
| [[28561/28560]]
| 0.060616
| (13/2)<sup>4</sup>/(3×5×7×17)
| {{Monzo| -4 -1 -1 -1 0 4 -1 }}
| Pisanoisma
| S169
|-
| [[E-shaped comma|31213/31212]]
| 0.055466
| (7<sup>4</sup>×13)/(2<sup>2</sup>×3<sup>3</sup>×17<sup>2</sup>)
| {{Monzo| -2 -3 0 4 0 1 -2 }}
| E-shaped comma
|
|-
| [[Lateral comma|37180/37179]]
| 0.046564
| (2<sup>2</sup>×5×11×13<sup>2</sup>)/(3<sup>7</sup>×17)
| {{Monzo| 2 -7 1 0 1 2 -1 }}
| Lateral comma
|
|-
| [[Scintillisma|194481/194480]]
| 0.0089018
| (3×7)<sup>4</sup>/(2<sup>4</sup>×5×11×13×17)
| {{Monzo| -4 4 -1 4 -1 -1 -1 }}
| Scintillisma
| S441
|-
| [[Aksial comma|336141/336140]]
| 0.0051503
| (3<sup>2</sup>×13<sup>3</sup>×17)/(2<sup>2</sup>×5×7<sup>5</sup>)
| {{Monzo| -2 2 -1 -5 0 3 1 }}
| Aksial comma
|
|}
 
=== 19-limit ===
{| class="wikitable center-6" style="width:100%"
! width="10%" | [[Ratio]]
! width="10%" | [[Cent]]s
! width="15%" | Factorization
! width="15%" | [[Monzo]]
! width="45%" | Name(s)
! width="5%" | Meta<ref name="ssp"/>
|-
| [[19/18]]
| 93.603
| 19/(2×3<sup>2</sup>)
| {{Monzo| -1 -2 0 0 0 0 0 1 }}
| Large undevicesimal semitone
|
|-
| [[20/19]]
| 88.801
| (2<sup>2</sup>×5)/19
| {{Monzo| 2 0 1 0 0 0 0 -1 }}
| Small undevicesimal semitone
|
|-
| [[39/38]]
| 44.970
| (3×13)/(2×19)
| {{Monzo| -1 1 0 0 0 1 0 -1 }}
| Undevicesimal diesis, <br>undevicesimal 2/9-tone
|
|-
| [[57/56]]
| 30.642
| (3×19)/(2<sup>3</sup>×7)
| {{Monzo| -3 1 0 -1 0 0 0 1 }}
| Hendrix comma
|
|-
| [[76/75]]
| 22.931
| (2<sup>2</sup>×19)/(3×5<sup>2</sup>)
| {{Monzo| 2 -1 -2 0 0 0 0 1 }}
| Large undevicesimal 1/9-tone
|
|-
| [[77/76]]
| 22.631
| (7×11)/(2<sup>2</sup>×19)
| {{Monzo| -2 0 0 1 1 0 0 -1 }}
| Small undevicesimal 1/9-tone
|
|-
| [[96/95]]
| 18.128
| (2<sup>5</sup>×3)/(5×19)
| {{Monzo| 5 1 -1 0 0 0 0 -1 }}
| 19th-partial chroma
|
|-
| [[133/132]]
| 13.066
| (7×19)/(2<sup>2</sup>×3×11)
| {{Monzo| -2 -1 0 1 -1 0 0 1 }}
| Minithirdma
|
|-
| [[153/152]]
| 11.352
| (3<sup>2</sup>×17)/(2<sup>3</sup>×19)
| {{Monzo| -3 2 0 0 0 0 1 -1 }}
| Ganassisma, Ganassi's comma
|
|-
| [[171/170]]
| 10.154
| (3<sup>2</sup>×19)/(2×5×17)
| {{Monzo| -1 2 -1 0 0 0 -1 1 }}
| Malcolmisma
|
|-
| [[190/189]]
| 9.1358
| (2×5×19)/(3<sup>3</sup>×7)
| {{Monzo| 1 -3 1 -1 0 0 0 1 }}
| Cotylisma
|
|-
| [[209/208]]
| 8.3033
| (11×19)/(2<sup>4</sup>×13)
| {{Monzo| -4 0 0 0 1 -1 0 1 }}
| Yama comma
|
|-
| [[210/209]]
| 8.2637
| (2×3×5×7)/(11×19)
| {{Monzo| 1 1 1 1 -1 0 0 -1 }}
| Spleen comma
|
|-
| [[286/285]]
| 6.0639
| (2×11×13)/(3×5×19)
| {{Monzo| 1 -1 -1 0 1 1 0 -1 }}
| Chthonisma
|
|-
| [[324/323]]
| 5.3516
| (2×3<sup>2</sup>)<sup>2</sup>/(17×19)
| {{Monzo| 2 4 0 0 0 0 -1 -1 }}
| Photisma
| S18
|-
| [[343/342]]
| 5.0547
| 7<sup>3</sup>/(2×3<sup>2</sup>×19)
| {{Monzo| -1 -2 0 3 0 0 0 -1 }}
| Nutrisma
|
|-
| [[361/360]]
| 4.8023
| 19<sup>2</sup>/(2<sup>3</sup>×3<sup>2</sup>×5)
| {{Monzo| -3 -2 -1 0 0 0 0 2 }}
| Go comma, Dudon comma
| S19
|-
| [[400/399]]
| 4.3335
| (2<sup>2</sup>×5)<sup>2</sup>/(3×7×19)
| {{Monzo| 4 -1 2 -1 0 0 0 -1 }}
| Devichroma
| S20
|-
| [[456/455]]
| 3.8007
| (2<sup>3</sup>×3×19)/(5×7×13)
| {{Monzo| 3 1 -1 -1 0 -1 0 1 }}
| Abnobisma
|
|-
| [[476/475]]
| 3.6409
| (2<sup>2</sup>×7×17)/(5<sup>2</sup>×19)
| {{Monzo| 2 0 -2 1 0 0 1 -1 }}
| Hedwigma
|
|-
| [[495/494]]
| 3.5010
| (3<sup>2</sup>×5×11)/(2×13×19)
| {{Monzo| -1 2 1 0 1 -1 0 -1 }}
| Eulalisma
|
|-
| [[513/512]]
| 3.3780
| (3<sup>3</sup>×19)/2<sup>9</sup>
| {{Monzo| -9 3 0 0 0 0 0 1 }}
| Undevicesimal comma, undevicesimal schisma, <br>Boethius' comma, 513th harmonic
|
|-
| [[969/968]]
| 1.7875
| (3×17×19)/(2<sup>3</sup>×11<sup>2</sup>)
| {{Monzo| -3 1 0 0 -2 0 1 1 }}
| Kingfisher comma
|
|-
| [[1216/1215]]
| 1.4243
| (2<sup>6</sup>×19)/(3<sup>5</sup>×5)
| {{Monzo| 6 -5 -1 0 0 0 0 1 }}
| Password comma, Eratosthenes' comma
|
|-
| [[1331/1330]]
| 1.3012
| 11<sup>3</sup>/(2×5×7×19)
| {{Monzo| -1 0 -1 -1 3 0 0 -1 }}
| Solvejgsma
|
|-
| [[1445/1444]]
| 1.1985
| 5×(17/(2×19))<sup>2</sup>
| {{Monzo| -2 0 1 0 0 0 2 -2 }}
| Aureusma
|
|-
| [[1521/1520]]
| 1.1386
| (3×13)<sup>2</sup>/(2<sup>4</sup>×5×19)
| {{Monzo| -4 2 -1 0 0 2 0 -1 }}
| Pinkanberry
| S39
|-
| [[1540/1539]]
| 1.1245
| (2<sup>2</sup>×5×7×11)/(3<sup>4</sup>×19)
| {{Monzo| 2 -4 1 1 1 0 0 -1 }}
| Kevolisma
|
|-
| [[1729/1728]]
| 1.0016
| (7×13×19)/(2<sup>2</sup>×3)<sup>3</sup>
| {{Monzo| -6 -3 0 1 0 1 0 1 }}
| Ramanujanisma
|
|-
| [[2376/2375]]
| 0.72879
| ((2×3)/5)<sup>3</sup>×(11/19)
| {{Monzo| 3 3 -3 0 1 0 0 -1 }}
| Trichthonisma
|
|-
| [[2432/2431]]
| 0.71200
| (2<sup>7</sup>×19)/(11×13×17)
| {{Monzo| 7 0 0 0 -1 -1 -1 1 }}
| Blumeyer comma
|
|-
| [[2926/2925]]
| 0.59177
| (2×7×11×19)/((3×5)<sup>2</sup>×13)
| {{Monzo| 1 -2 -2 1 1 -1 0 1 }}
| Neovulture comma, neovulturisma
|
|-
| [[3136/3135]]
| 0.55214
| (2<sup>3</sup>×7)<sup>2</sup>/(3×5×11×19)
| {{Monzo| 6 -1 -1 2 -1 0 0 -1 }}
| Neomirkwai comma, neomirkwaisma
| S56
|-
| [[3250/3249]]
| 0.53277
| (2×5<sup>3</sup>×13)/(3×19)<sup>2</sup>
| {{Monzo| 1 -2 3 0 0 1 0 -2 }}
| Martebisma
|
|-
| [[4200/4199]]
| 0.41225
| (2<sup>3</sup>×3×5<sup>2</sup>×7)/(13×17×19)
| {{Monzo| 3 1 2 1 0 -1 -1 -1 }}
| Neosatanisma
|
|-
| [[5776/5775]]
| 0.29975
| (2<sup>2</sup>×19)<sup>2</sup>/(3×5<sup>2</sup>×7×11)
| {{Monzo| 4 -1 -2 -1 -1 0 0 2 }}
| Neovish comma, neovishma
| S76
|-
| [[5929/5928]]
| 0.29202
| (7×11)<sup>2</sup>/(2<sup>3</sup>×3×13×19)
| {{Monzo| -3 -1 0 2 2 -1 0 -1 }}
| Manzanisma
| S77
|-
| [[5985/5984]]
| 0.28929
| (3<sup>2</sup>×5×7×19)/(2<sup>5</sup>×11×17)
| {{Monzo| -5 2 1 1 -1 0 -1 1 }}
| Neogrendel comma, neogrendelisma
|
|-
| [[6175/6174]]
| 0.28038
| (5<sup>2</sup>×13×19)/(2×3<sup>2</sup>×7<sup>3</sup>)
| {{Monzo| -1 -2 2 -3 0 1 0 1 }}
| Neonewtisma
|
|-
| [[6860/6859]]
| 0.25238
| (2<sup>2</sup>×5×7<sup>3</sup>)/19<sup>3</sup>
| {{Monzo| 2 0 1 3 0 0 0 -3 }}
| Devicubisma
|
|-
| 10241/10240
| 0.16906
| (7<sup>2</sup>×11×19)/(2<sup>11</sup>×5)
| {{Monzo| -11 0 -1 2 1 0 0 1 }}
|
|
|-
| 10830/10829
| 0.15986
| (2×3×5×19<sup>2</sup>)/(7<sup>2</sup>×13×17)
| {{Monzo| 1 1 1 -2 0 -1 -1 2 }}
|
|
|-
| [[12636/12635]]
| 0.13701
| (2<sup>2</sup>×3<sup>5</sup>×13)/(5×7×19<sup>2</sup>)
| {{Monzo| 2 5 -1 -1 0 1 0 -2 }}
| Padriellisma
|
|-
| 13377/13376
| 0.12942
| (3×7<sup>3</sup>×13)/(2<sup>6</sup>×11×19)
| {{Monzo| -6 1 0 3 -1 1 0 -1 }}
|
|
|-
| 14080/14079
| 0.12296
| (2<sup>8</sup>×5×11)/(3×13×19<sup>2</sup>)
| {{Monzo| 8 -1 1 0 1 -1 0 -2 }}
|
|
|-
| 14365/14364
| 0.12052
| (5×13<sup>2</sup>×17)/(2<sup>2</sup>×3<sup>3</sup>×7×19)
| {{Monzo| -2 -3 1 -1 0 2 1 -1 }}
|
|
|-
| 23409/23408
| 0.073957
| ((3/2)<sup>2</sup>×17)<sup>2</sup>/(7×11×19)
| {{Monzo| -4 4 0 -1 -1 0 2 -1 }}
|
| S153
|-
| 27456/27455
| 0.063056
| (2<sup>6</sup>×3×11×13)/(5×17<sup>2</sup>×19)
| {{Monzo| 6 1 -1 0 1 1 -2 -1 }}
|
|
|-
| 28900/28899
| 0.059905
| ((2×5×17)/(3×13))<sup>2</sup>/19
| {{Monzo| 2 -2 2 0 0 -2 2 -1 }}
|
| S170
|-
| 43681/43680
| 0.039634
| (11×19)<sup>2</sup>/(2<sup>5</sup>×3×5×7×13)
| {{Monzo| -5 -1 -1 -1 2 -1 0 2 }}
|
| S209
|-
| 89376/89375
| 0.019370
| (2<sup>5</sup>×3×7<sup>2</sup>×19)/(5<sup>4</sup>×11×13)
| {{Monzo| 5 1 -4 2 -1 -1 0 1 }}
|
|
|-
| 104976/104975
| 0.016492
| (2×3<sup>2</sup>)<sup>4</sup>/(5<sup>2</sup>×13×17×19)
| {{Monzo| 4 8 -2 0 0 -1 -1 -1 }}
|
| S324
|-
| [[Decimillisma|165376/165375]]
| 0.010469
| (2<sup>9</sup>×17×19)/((3×5)<sup>3</sup>×7<sup>2</sup>)
| {{Monzo| 9 -3 -3 -2 0 0 1 1 }}
| Decimillisma
|
|-
| 228096/228095
| 0.0075900
| ((2<sup>2</sup>×3)/7)<sup>4</sup>×(11/(5×19))
| {{Monzo| 8 4 -1 -4 1 0 0 -1 }}
|
|
|-
| 601426/601425
| 0.0028786
| (2×7<sup>2</sup>×17×19<sup>2</sup>)/(3<sup>7</sup>×5<sup>2</sup>×11)
| {{Monzo| 1 -7 -2 2 -1 0 1 2 }}
|
|
|-
| [[Devicisma|633556/633555]]
| 0.0027326
| (2<sup>2</sup>×7×11<sup>3</sup>×17)/(3<sup>3</sup>×5×13×19<sup>2</sup>)
| {{Monzo| 2 -3 -1 1 3 -1 1 -2 }}
| Devicisma
|
|-
| 709632/709631
| 0.0024396
| (2<sup>10</sup>×3<sup>2</sup>×7×11)/(13<sup>3</sup>×17×19)
| {{Monzo| 10 2 0 1 1 -3 -1 -1 }}
|
|
|-
| 5909761/5909760
| 0.00029294
| (11×13×17)<sup>2</sup>/(2<sup>8</sup>×3<sup>5</sup>×5×19)
| {{Monzo| -8 -5 -1 0 2 2 2 -1 }}
|
| S2431
|-
| <font style="font-size:0.88em">11859211/11859210</font>
| 0.00014598
| (19/(3×11))<sup>4</sup>×((7×13)/(2×5))
| {{Monzo| -1 -4 -1 1 -4 1 0 4 }}
|
|
|}
 
=== 23-limit ===
{| class="wikitable center-6" style="width:100%"
! width="10%" | [[Ratio]]
! width="10%" | [[Cent]]s
! width="15%" | Factorization
! width="15%" | [[Monzo]]
! width="45%" | Name(s)
! width="5%" | Meta<ref name="ssp"/>
|-
| [[23/22]]
| 76.956
| 23/(2×11)
| {{Monzo| -1 0 0 0 -1 0 0 0 1 }}
| Large vicesimotertial semitone
|
|-
| [[24/23]]
| 73.681
| (2<sup>3</sup>×3)/23
| {{Monzo| 3 1 0 0 0 0 0 0 -1 }}
| Small vicesimotertial semitone
|
|-
| [[46/45]]
| 38.051
| (2×23)/(3<sup>2</sup>×5)
| {{Monzo| 1 -2 -1 0 0 0 0 0 1 }}
| Vicesimotertial 1/5-tone
|
|-
| [[69/68]]
| 25.274
| (3×23)/(2<sup>2</sup>×17)
| {{Monzo| -2 1 0 0 0 0 -1 0 1 }}
| Large vicesimotertial 1/8-tone
|
|-
| [[70/69]]
| 24.910
| (2×5×7)/(3×23)
| {{Monzo| 1 -1 1 1 0 0 0 0 -1 }}
| Small vicesimotertial 1/8-tone
|
|-
| [[92/91]]
| 18.921
| (2<sup>2</sup>×23)/(7×13)
| {{Monzo| 2 0 0 -1 0 -1 0 0 1 }}
| Undinisma
|
|-
| [[115/114]]
| 15.120
| (5×23)/(2×3×19)
| {{Monzo| -1 -1 1 0 0 0 0 -1 1 }}
| Yarmanisma
|
|-
| [[161/160]]
| 10.787
| (7×23)/(2<sup>5</sup>×5)
| {{Monzo| -5 0 -1 1 0 0 0 0 1 }}
| Major kirnbergerisma
|
|-
| [[162/161]]
| 10.720
| (2×3<sup>4</sup>)/(7×23)
| {{Monzo| 1 4 0 -1 0 0 0 0 -1 }}
| Minor kirnbergerisma
|
|-
| [[208/207]]
| 8.3433
| (2<sup>4</sup>×13)/(3<sup>2</sup>×23)
| {{Monzo| 4 -2 0 0 0 1 0 0 -1 }}
| Vicetone comma
|
|-
| [[231/230]]
| 7.5108
| (3×7×11)/(2×5×23)
| {{Monzo| -1 1 -1 1 1 0 0 0 -1 }}
| Major neutravicema
|
|-
| [[253/252]]
| 6.8564
| (11×23)/((2×3)<sup>2</sup>×7)
| {{Monzo| -2 -2 0 -1 1 0 0 0 1 }}
| Middle neutravicema
|
|-
| [[276/275]]
| 6.2840
| (2<sup>2</sup>×3×23)/(5<sup>2</sup>×11)
| {{Monzo| 2 1 -2 0 -1 0 0 0 1 }}
| Minor neutravicema
|
|-
| [[300/299]]
| 5.7804
| ((2×5)<sup>2</sup>×3)/(13×23)
| {{Monzo| 2 1 2 0 0 -1 0 0 -1 }}
| Major naiadvicema
|
|-
| [[323/322]]
| 5.3682
| (17×19)/(2×7×23)
| {{Monzo| -1 0 0 -1 0 0 1 1 -1 }}
| Major semivicema
|
|-
| [[391/390]]
| 4.4334
| (17×23)/(2×3×5×13)
| {{Monzo| -1 -1 -1 0 0 -1 1 0 1 }}
| Minor naiadvicema
|
|-
| [[392/391]]
| 4.4221
| (2<sup>3</sup>×7<sup>2</sup>)/(17×23)
| {{Monzo| 3 0 0 2 0 0 -1 0 -1 }}
| Minor semivicema
|
|-
| [[460/459]]
| 3.7676
| (2<sup>2</sup>×5×23)/(3<sup>3</sup>×17)
| {{Monzo| 2 -3 1 0 0 0 -1 0 1 }}
| Scanisma, vicewolf comma
|
|-
| [[484/483]]
| 3.5806
| (2×11)<sup>2</sup>/(3×7×23)
| {{Monzo| 2 -1 0 -1 2 0 0 0 -1 }}
| Pittsburghisma
| S22
|-
| [[507/506]]
| 3.4180
| (3×13<sup>2</sup>)/(2×11×23)
| {{Monzo| -1 1 0 0 -1 2 0 0 -1 }}
| Laodicisma
|
|-
| [[529/528]]
| 3.2758
| 23<sup>2</sup>/(2<sup>4</sup>×3×11)
| {{Monzo| -4 -1 0 0 -1 0 0 0 2 }}
| Preziosisma
| S23
|-
| [[576/575]]
| 3.0082
| ((2<sup>3</sup>×3)/5)<sup>2</sup>/23
| {{Monzo| 6 2 -2 0 0 0 0 0 -1 }}
| Worcester comma
| S24
|-
| [[736/735]]
| 2.3538
| (2<sup>5</sup>×23)/(3×5×7<sup>2</sup>)
| {{Monzo| 5 -1 -1 -2 0 0 0 0 1 }}
| Harvardisma
|
|-
| [[760/759]]
| 2.2794
| (2<sup>3</sup>×5×19)/(3×11×23)
| {{Monzo| 3 -1 1 0 -1 0 0 1 -1 }}
| Squadronisma
|
|-
| [[875/874]]
| 1.9797
| (5<sup>3</sup>×7)/(2×19×23)
| {{Monzo| -1 0 3 1 0 0 0 -1 -1 }}
| Nymphisma
|
|-
| [[897/896]]
| 1.9311
| (3×13×23)/(2<sup>7</sup>×7)
| {{Monzo| -7 1 0 -1 0 1 0 0 1 }}
| Lysistratisma
|
|-
| [[1105/1104]]
| 1.5674
| (5×13×17)/(2<sup>4</sup>×3×23)
| {{Monzo| -4 -1 1 0 0 1 1 0 -1 }}
| Fragarisma
|
|-
| [[1197/1196]]
| 1.4469
| (3<sup>2</sup>×7×19)/(2<sup>2</sup>×13×23)
| {{Monzo| -2 2 0 1 0 -1 0 1 -1 }}
| Rodessisma
|
|-
| [[1288/1287]]
| 1.3446
| (2<sup>3</sup>×7×23)/(3<sup>2</sup>×11×13)
| {{Monzo| 3 -2 0 1 -1 -1 0 0 1 }}
| Santisma, triaphonisma
|
|-
| [[1496/1495]]
| 1.1576
| (2<sup>3</sup>×11×17)/(5×13×23)
| {{Monzo| 3 0 -1 0 1 -1 1 0 -1 }}
| Turkisma
|
|-
| [[1863/1862]]
| 0.92952
| (3<sup>4</sup>×23)/(2×7<sup>2</sup>×19)
| {{Monzo| -1 4 0 -2 0 0 0 -1 1 }}
| Antinousisma
|
|-
| [[2024/2023]]
| 0.85556
| (2<sup>3</sup>×11×23)/(7×17<sup>2</sup>)
| {{Monzo| 3 0 0 -1 1 0 -2 0 1 }}
| Artifisma, insincere comma
|
|-
| [[2025/2024]]
| 0.85514
| (3<sup>2</sup>×5)<sup>2</sup>/(2<sup>3</sup>×11×23)
| {{Monzo| -3 4 2 0 -1 0 0 0 -1 }}
| Cupcake comma, cupcakesma
| S45
|-
| [[2185/2184]]
| 0.79251
| (5×19×23)/(2<sup>3</sup>×3×7×13)
| {{Monzo| -3 -1 1 -1 0 -1 0 1 1 }}
| Guangdongisma
|
|-
| [[2300/2299]]
| 0.75287
| ((2×5)/11)<sup>2</sup>×(23/19)
| {{Monzo| 2 0 2 0 -2 0 0 -1 1 }}
| Travellisma
|
|-
| [[2646/2645]]
| 0.65441
| (2×3<sup>3</sup>×7<sup>2</sup>)/(5×23<sup>2</sup>)
| {{Monzo| 1 3 -1 2 0 0 0 0 -2 }}
| Biyativice comma, biyativicema
|
|-
| [[2737/2736]]
| 0.63265
| (7×17×23)/(2<sup>4</sup>×3<sup>2</sup>×19)
| {{Monzo| -4 -2 0 1 0 0 1 -1 1 }}
| Kotkisma
|
|-
| [[3060/3059]]
| 0.56586
| ((2×3)<sup>2</sup>×5×17)/(7×19×23)
| {{Monzo| 2 2 1 -1 0 0 1 -1 -1 }}
| Vicious comma, viciousma
|
|-
| [[3381/3380]]
| 0.51212
| (3×7<sup>2</sup>×23)/(2<sup>2</sup>×5×13<sup>2</sup>)
| {{Monzo| -2 1 -1 2 0 -2 0 0 1 }}
| Mikkolisma
|
|-
| [[3520/3519]]
| 0.49190
| (2<sup>6</sup>×5×11)/(3<sup>2</sup>×17×23)
| {{Monzo| 6 -2 1 0 1 0 -1 0 -1 }}
| Vicedim comma, vicedimma
|
|-
| [[3888/3887]]
| 0.44533
| (2<sup>4</sup>×3<sup>5</sup>)/(13<sup>2</sup>×23)
| {{Monzo| 4 5 0 0 0 -2 0 0 -1 }}
| Shoalma, vicetride comma
|
|-
| [[4693/4692]]
| 0.36893
| (13×19<sup>2</sup>)/(2<sup>2</sup>×3×17×23)
| {{Monzo| -2 -1 0 0 0 1 -1 2 -1 }}
| Viceaug comma, viceaugma
|
|-
| [[4761/4760]]
| 0.36367
| (3×23)<sup>2</sup>/(2<sup>3</sup>×5×7×17)
| {{Monzo| -3 2 -1 -1 0 0 -1 0 2 }}
| Demiquartervice comma
| S69
|-
| [[5083/5082]]
| 0.34063
| (13×17×23)/(2×3×7×11<sup>2</sup>)
| {{Monzo| -1 -1 0 -1 -2 1 1 0 1 }}
| Broadviewsma
|
|-
| [[7866/7865]]
| 0.22010
| (2×3<sup>2</sup>×19×23)/(5×11<sup>2</sup>×13)
| {{Monzo| 1 2 -1 0 -2 -1 0 1 1 }}
|
|
|-
| [[8281/8280]]
| 0.20907
| (7×13)<sup>2</sup>/(2<sup>3</sup>×3<sup>2</sup>×5×23)
| {{Monzo| -3 -2 -1 2 0 2 0 0 -1 }}
|
| S91
|-
| [[8625/8624]]
| 0.20073
| (3×5<sup>3</sup>×23)/(2<sup>4</sup>×7<sup>2</sup>×11)
| {{Monzo| -4 1 3 -2 -1 0 0 0 1 }}
| Beerglass comma
|
|-
| [[10626/10625]]
| 0.16293
| (2×3×7×11×23)/(5<sup>4</sup>×17)
| {{Monzo| 1 1 -4 1 1 0 -1 0 1 }}
| Demiglace comma
|
|-
| 11271/11270
| 0.15361
| (3×13×17<sup>2</sup>)/(2×5×7<sup>2</sup>×23)
| {{Monzo| -1 1 -1 -2 0 1 2 0 -1 }}
|
|
|-
| 11662/11661
| 0.14846
| (2×7<sup>3</sup>×17)/(3×13<sup>2</sup>×23)
| {{Monzo| 1 -1 0 3 0 -2 1 0 -1 }}
|
|
|-
| [[Vicetertisma|12168/12167]]
| 0.14228
| (2/23)<sup>3</sup>×(3×13)<sup>2</sup>
| {{Monzo| 3 2 0 0 0 2 0 0 -3 }}
| Vicetertisma
|
|-
| 16929/16928
| 0.10227
| (3<sup>4</sup>×11×19)/(2<sup>5</sup>×23<sup>2</sup>)
| {{Monzo| -5 4 0 0 1 0 0 1 -2 }}
|
|
|-
| 19551/19550
| 0.088552
| (3×7<sup>3</sup>×19)/(2×5<sup>2</sup>×17×23)
| {{Monzo| -1 1 -2 3 0 0 -1 1 -1 }}
|
|
|-
| 21505/21504
| 0.080506
| (5×11×17×23)/(2<sup>10</sup>×3×7)
| {{Monzo| -10 -1 1 -1 1 0 1 0 1 }}
|
|
|-
| 21736/21735
| 0.079650
| (2<sup>3</sup>×11×13×19)/(3<sup>3</sup>×5×7×23)
| {{Monzo| 3 -3 -1 -1 1 1 0 1 -1 }}
|
|
|-
| 23276/23275
| 0.074380
| ((2×23)/(5×7))<sup>2</sup>×(11/19)
| {{Monzo| 2 0 -2 -2 1 0 0 -1 2 }}
|
|
|-
| [[Joshuavoisma|25025/25024]]
| 0.069182
| (5<sup>2</sup>×7×11×13)/(2<sup>6</sup>×17×23)
| {{Monzo| -6 0 2 1 1 1 -1 0 -1 }}
| Joshuavoisma
|
|-
| [[Diarithmedia|25921/25920]]
| 0.066790
| (7×23)<sup>2</sup>/(2<sup>6</sup>×3<sup>4</sup>×5)
| {{Monzo| -6 -4 -1 2 0 0 0 0 2 }}
| Diarithmedia
| S161
|-
| 43264/43263
| 0.040016
| (2<sup>4</sup>×13)<sup>2</sup>/(3<sup>2</sup>×11×19×23)
| {{Monzo| 8 -2 0 0 -1 2 0 -1 -1 }}
|
| S208
|-
| 52326/52325
| 0.033086
| (2×3<sup>4</sup>×17×19)/(5<sup>2</sup>×7×13×23)
| {{Monzo| 1 4 -2 -1 0 -1 1 1 -1 }}
|
|
|-
| 71875/71874
| 0.024087
| (5<sup>5</sup>×23)/(2×(3×11)<sup>3</sup>)
| {{Monzo| -1 -3 5 0 -3 0 0 0 1 }}
|
|
|-
| 75141/75140
| 0.023040
| (3<sup>3</sup>×11<sup>2</sup>×23)/(2<sup>2</sup>×5×13×17<sup>2</sup>)
| {{Monzo| -2 3 -1 0 2 -1 -2 0 1 }}
|
|
|-
| 76545/76544
| 0.022617
| (3<sup>7</sup>×5×7)/(2<sup>8</sup>×13×23)
| {{Monzo| -8 7 1 1 0 -1 0 0 -1 }}
|
|
|-
| 104329/104328
| 0.016594
| (17×19)<sup>2</sup>/(2<sup>3</sup>×3<sup>4</sup>×7×23)
| {{Monzo| -3 -4 0 -1 0 0 2 2 -1 }}
|
| S323
|-
| 122452/122451
| 0.014138
| (2<sup>2</sup>×11<sup>3</sup>×23)/(3×7<sup>4</sup>×17)
| {{Monzo| 2 -1 0 -4 3 0 -1 0 1 }}
|
|
|-
| 126225/126224
| 0.013716
| (3<sup>3</sup>×5<sup>2</sup>×11×17)/(2<sup>4</sup>×7<sup>3</sup>×23)
| {{Monzo| -4 3 2 -3 1 0 1 0 -1 }}
|
|
|-
| 152881/152880
| 0.011324
| (17×23)<sup>2</sup>/(2<sup>4</sup>×3×5×7<sup>2</sup>×13)
| {{Monzo| -4 -1 -1 -2 0 -1 2 0 2 }}
|
| S391
|-
| 202125/202124
| 0.0085652
| (3×5<sup>3</sup>×7<sup>2</sup>×11)/(2<sup>2</sup>×13<sup>3</sup>×23)
| {{Monzo| -2 1 3 2 1 -3 0 0 -1 }}
|
|
|-
| 264385/264384
| 0.0065482
| (5×11<sup>2</sup>×19×23)/(2<sup>6</sup>×3<sup>5</sup>×17)
| {{Monzo| -6 -5 1 0 2 0 -1 1 1 }}
|
|
|-
| 282625/282624
| 0.0061256
| (5<sup>3</sup>×7×17×19)/(2<sup>12</sup>×3×23)
| {{Monzo| -12 -1 3 1 0 0 1 1 -1 }}
|
|
|-
| 328510/328509
| 0.0052700
| (2×5×7×13×19<sup>2</sup>)/(3×23)<sup>3</sup>
| {{Monzo| 1 -3 1 1 0 1 0 2 -3 }}
|
|
|-
| 2023425/2023424
| 0.00085560
| ((3×5×23)<sup>2</sup>×17)/(2<sup>13</sup>×13×19)
| {{Monzo| -13 2 2 0 0 -1 1 -1 2 }}
|
|
|-
| 4096576/4096575
| 0.00042261
| ((2<sup>3</sup>×11×23)/(3<sup>2</sup>×5×17))<sup>2</sup>/7
| {{Monzo| 6 -4 -2 -1 2 0 -2 0 2 }}
|
| S2024
|-
| 5142501/5142500
| 0.00033665
| 3<sup>3</sup>×((7×13)/(2×5<sup>2</sup>×11))<sup>2</sup>×(23/17)
| {{Monzo| -2 3 -4 2 -2 2 -1 0 1 }}
|
|
|}
 
=== 29-limit ===
{{Main|List of superparticular intervals/29-limit}}
 
=== 31-limit ===
{{Main|List of superparticular intervals/31-limit}}
 
=== 37-limit ===
{{Main|List of superparticular intervals/37-limit}}
 
=== 41-limit (incomplete) ===
{| class="wikitable center-6" style="width:100%"
! width="10%" | [[Ratio]]
! width="10%" | [[Cent]]s
! width="15%" | Factorization
! width="15%" | [[Monzo]]
! width="45%" | Name(s)
! width="5%" | Meta<ref name="ssp"/>
|-
| [[41/40]]
| 42.749
| 41/(2<sup>3</sup>×5)
| 2.5.41 {{monzo| -3 -1 1 }}
| Large quadracesimoprimal 1/5-tone
|
|-
| [[42/41]]
| 41.719
| (2×3×7)/41
| 2.3.7.41 {{monzo| 1 1 1 -1 }}
| Small quadracesimoprimal 1/5-tone
|
|-
| [[82/81]]
| 21.242
| (2×41)/3<sup>4</sup>
| 2.3.41 {{monzo| 1 -4 1 }}
| 41st-partial chroma
|
|-
| [[124/123]]
| 14.018
| (2<sup>2</sup>×31)/(3×41)
| 2.3.31.41 {{monzo| 2 -1 1 -1 }}
|
|
|-
| [[165/164]]
| 10.524
| (3×5×11)/(2<sup>2</sup>×41)
| 2.3.5.11.41 {{monzo| -2 1 1 1 -1 }}
|
|
|-
| [[205/204]]
| 8.4657
| (5×41)/(2<sup>2</sup>×3×17)
| 2.3.5.17.41 {{monzo| -2 -1 1 -1 1 }}
|
|
|-
| [[246/245]]
| 7.0519
| (2×3×41)/(5×7<sup>2</sup>)
| 2.3.5.7.41 {{monzo| 1 1 -1 -2 1 }}
|
|
|-
| [[247/246]]
| 7.0233
| (13×19)/(2×3×41)
| 2.3.13.19.41 {{monzo| -1 -1 1 1 -1 }}
|
|
|-
| [[287/286]]
| 6.0427
| (7×41)/(2×11×13)
| 2.7.11.13.41 {{monzo| -1 1 -1 -1 1 }}
|
|
|-
| [[288/287]]
| 6.0217
| (2<sup>5</sup>×3<sup>2</sup>)/(7×41)
| 2.3.7.41 {{monzo| 5 2 -1 -1 }}
|
|
|-
| [[369/368]]
| 4.6981
| (3<sup>2</sup>×41)/(2<sup>4</sup>×23)
| 2.3.23.41 {{monzo| -4 2 -1 1 }}
|
|
|-
| [[370/369]]
| 4.6853
| (2×5×37)/(3<sup>2</sup>×41)
| 2.3.5.37.41 {{monzo| 1 -2 1 1 -1 }}
|
|
|-
| [[451/450]]
| 3.8429
| (11×41)/(2×(3×5)<sup>2</sup>)
| 2.3.5.11.41 {{monzo| -1 -2 -2 1 1 }}
|
|
|-
| [[493/492]]
| 3.5152
| (17×29)/(2<sup>2</sup>×3×41)
| 2.3.17.29.41 {{monzo| -2 -1 1 1 -1 }}
|
|
|-
| [[533/532]]
| 3.2511
| (13×41)/(2<sup>2</sup>×7×19)
| 2.7.13.19.41 {{monzo| -2 -1 1 -1 1 }}
|
|
|-
| [[575/574]]
| 3.0135
| (5<sup>2</sup>×23)/(2×7×41)
| 2.5.7.23.41 {{monzo| -1 2 -1 1 -1 }}
| Renatisma
|
|-
| [[616/615]]
| 2.8127
| (2<sup>3</sup>×7×11)/(3×5×41)
| 2.3.5.7.11.41 {{monzo| 3 -1 -1 1 1 -1 }}
| Ellisma
|
|-
| [[697/696]]
| 2.4856
| (17×41)/(2<sup>3</sup>×3×29)
| 2.3.17.29.41 {{monzo| -3 -1 1 -1 1 }}
|
|
|-
| [[780/779]]
| 2.2210
| (2<sup>2</sup>×3×5×13)/(19×41)
| 2.3.5.13.19.41 {{monzo| 2 1 1 1 -1 -1 }}
| Wiesentisma
|
|-
| [[820/819]]
| 2.1125
| (2<sup>2</sup>×5×41)/(3<sup>2</sup>×7×13)
| 2.3.5.7.13.41 {{monzo| 2 -2 1 -1 -1 1 }}
|
|
|-
| [[1025/1024]]
| 1.6898
| (5<sup>2</sup>×41)/2<sup>10</sup>
| 2.5.41 {{monzo| -10 2 1 }}
| Kilobytisma
|
|-
| [[1026/1025]]
| 1.6882
| (2×3<sup>3</sup>×19)/(5<sup>2</sup>×41)
| 2.3.5.19.41 {{monzo| 1 3 -2 1 -1 }}
| Ingridisma
|
|-
| [[1148/1147]]
| 1.5087
| (2<sup>2</sup>×7×41)/(31×37)
| 2.7.31.37.41 {{monzo| 2 1 -1 -1 1 }}
|
|
|-
| [[1189/1188]]
| 1.4567
| (29×41)/(2<sup>2</sup>×3<sup>3</sup>×11)
| 2.3.11.29.41 {{monzo| -2 -3 -1 1 1 }}
|
|
|-
| [[1190/1189]]
| 1.4554
| (2×5×7×17)/(29×41)
| 2.5.7.17.29.41 {{monzo| 1 1 1 1 -1 -1 }}
| Pelagisma
|
|-
| [[1312/1311]]
| 1.3200
| (2<sup>5</sup>×41)/(3×19×23)
| 2.3.19.23.41 {{monzo| 5 -1 -1 -1 1 }}
|
|
|-
| [[1353/1352]]
| 1.2800
| (3×11×41)/(2<sup>3</sup>×13<sup>2</sup>)
| 2.3.11.13.41 {{monzo| -3 1 1 -2 1 }}
|
|
|-
| [[1395/1394]]
| 1.2415
| (3<sup>2</sup>×5×31)/(2×17×41)
| 2.3.5.17.31.41 {{monzo| -1 2 1 -1 1 -1 }}
|
|
|-
| [[1518/1517]]
| 1.1408
| (2×3×11×23)/(37×41)
| 2.3.11.23.37.41 {{monzo| 1 1 1 1 -1 -1 }}
| Rovaniemisma
|
|-
| [[1600/1599]]
| 1.0824
| (2<sup>3</sup>×5)<sup>2</sup>/(3×13×41)
| 2.3.5.13.41 {{monzo| 6 -1 2 -1 -1 }}
|
| S40
|-
| [[1681/1680]]
| 1.0302
| 41<sup>2</sup>/(2<sup>4</sup>×3×5×7)
| 2.3.5.7.41 {{monzo| -4 -1 -1 -1 2 }}
|
| S41
|-
| [[1682/1681]]
| 1.0296
| (2×29<sup>2</sup>)/41<sup>2</sup>
| 2.29.41 {{monzo| 1 2 -2 }}
| Shaftesburisma
|
|-
| [[1805/1804]]
| 0.95940
| (5×19<sup>2</sup>)/(2<sup>2</sup>×11×41)
| 2.5.11.19.41 {{monzo| -2 1 -1 2 -1 }}
|
|
|-
| [[1886/1885]]
| 0.91818
| (2×23×41)/(5×13×29)
| 2.5.13.23.29.41 {{monzo| 1 -1 -1 1 -1 1 }}
|
|
|-
| [[1887/1886]]
| 0.91770
| (3×17×37)/(2×23×41)
| 2.3.17.23.37.41 {{monzo| -1 1 1 -1 1 -1 }}
|
|
|-
| [[2091/2090]]
| 0.82814
| (3×17×41)/(2×5×11×19)
| 2.3.5.11.17.19.41 {{monzo| -1 1 -1 -1 1 -1 1 }}
|
|
|-
| [[2255/2254]]
| 0.76790
| (5×11×41)/(2×7<sup>2</sup>×23)
| 2.5.7.11.23.41 {{monzo| -1 1 -2 1 -1 1 }}
| Qinghaisma
|
|-
| [[2296/2295]]
| 0.75419
| (2<sup>3</sup>×7×41)/(3<sup>3</sup>×5×17)
| 2.3.5.7.17.41 {{monzo| 3 -3 -1 1 -1 1 }}
|
|
|-
| [[2542/2541]]
| 0.68119
| (2×31×41)/(3×7×11<sup>2</sup>)
| 2.3.7.11.31.41 {{monzo| 1 -1 -1 -2 1 1 }}
|
|
|-
| [[2584/2583]]
| 0.67011
| (2<sup>3</sup>×17×19)/(3<sup>2</sup>×7×41)
| 2.3.7.17.19.41 {{monzo| 3 -2 -1 1 1 -1 }}
|
|
|-
| [[2625/2624]]
| 0.65964
| (3×5<sup>3</sup>×7)/(2<sup>6</sup>×41)
| 2.3.5.7.41 {{monzo| -6 1 3 1 -1 }}
|
|
|-
| [[2665/2664]]
| 0.64974
| (5×13×41)/(2<sup>3</sup>×3<sup>2</sup>×37)
| 2.3.5.13.37.41 {{monzo| -3 -2 1 1 -1 1 }}
|
|
|-
| [[2871/2870]]
| 0.60311
| (3<sup>2</sup>×11×29)/(2×5×7×41)
| 2.3.5.7.11.29.41 {{monzo| -1 2 -1 -1 1 1 -1 }}
| Schoberisma
|
|-
| [[3690/3689]]
| 0.46923
| (2×3<sup>2</sup>×5×41)/(7×17×31)
| 2.3.5.7.17.31.41 {{monzo| 1 2 1 -1 -1 -1 1 }}
|
|
|-
| [[3773/3772]]
| 0.45891
| (7<sup>3</sup>×11)/(2<sup>2</sup>×23×41)
| 2.7.11.23.41 {{monzo| -2 3 1 -1 -1 }}
| Smithsonianisma
|
|-
| [[4060/4059]]
| 0.42646
| (2<sup>2</sup>×5×7×29)/(3<sup>2</sup>×11×41)
| 2.3.5.7.11.29.41 {{monzo| 2 -2 1 1 -1 1 -1 }}
| Deipylosisma
|
|-
| [[4264/4263]]
| 0.40606
| (2<sup>3</sup>×13×41)/(3×7<sup>2</sup>×29)
| 2.3.7.13.29.41 {{monzo| 3 -1 -2 1 -1 1 }}
|
|
|-
| [[4551/4550]]
| 0.38045
| (3×37×41)/(2×5<sup>2</sup>×7×13)
| 2.3.5.7.13.37.41 {{monzo| -1 1 -2 -1 -1 1 1 }}
|
|
|-
| [[4675/4674]]
| 0.37036
| (5<sup>2</sup>×11×17)/(2×3×19×41)
| 2.3.5.11.17.19.41 {{monzo| -1 -1 2 1 1 -1 -1 }}
| Ohbokisma
|
|-
| [[4921/4920]]
| 0.35184
| (7×19×37)/(2<sup>3</sup>×3×5×41)
| 2.3.5.7.19.37.41 {{monzo| -3 -1 -1 1 1 1 -1 }}
| Volontisma
|
|-
| [[4961/4960]]
| 0.34900
| (11<sup>2</sup>×41)/(2<sup>5</sup>×5×31)
| 2.5.11.31.41 {{monzo| -5 -1 2 -1 1 }}
|
|
|-
| [[5084/5083]]
| 0.34056
| (2<sup>2</sup>×31×41)/(13×17×23)
| 2.13.17.23.31.41 {{monzo| 2 -1 -1 -1 1 1 }}
|
|
|-
| [[5577/5576]]
| 0.31045
| (3×11×13<sup>2</sup>)/(2<sup>3</sup>×17×41)
| 2.3.11.13.17.41 {{monzo| -3 1 1 2 -1 -1 }}
| Priestlisma
|
|-
| [[6069/6068]]
| 0.28528
| (3×7×17<sup>2</sup>)/(2<sup>2</sup>×37×41)
| 2.3.7.17.37.41 {{monzo| -2 1 1 2 -1 -1 }}
| Cevolanisma
|
|-
| [[6273/6272]]
| 0.27600
| (3<sup>2</sup>×17×41)/(2<sup>7</sup>×7<sup>2</sup>)
| 2.3.7.17.41 {{monzo| -7 2 -2 1 1 }}
|
|
|-
| [[6561/6560]]
| 0.26389
| 3<sup>8</sup>/(2<sup>5</sup>×5×41)
| 2.3.5.41 {{monzo| -5 8 -1 -1 }}
|
| S81
|-
| [[6601/6600]]
| 0.26229
| (7×23×41)/(2<sup>3</sup>×3×5<sup>2</sup>×11)
| 2.3.5.7.11.23.41 {{monzo| -3 -1 -2 1 -1 1 1 }}
|
|
|-
| [[6930/6929]]
| 0.24984
| (2×3<sup>2</sup>×5×7×11)/(13<sup>2</sup>×41)
| 2.3.5.7.11.13.41 {{monzo| 1 2 1 1 1 -2 -1 }}
| Bedanisma
|
|-
| [[7176/7175]]
| 0.24127
| (2<sup>3</sup>×3×13×23)/(5<sup>2</sup>×7×41)
| 2.3.5.7.13.23.41 {{monzo| 3 1 -2 -1 1 1 -1 }}
| Kunijisma
|
|-
| [[7216/7215]]
| 0.23993
| (2<sup>4</sup>×11×41)/(3×5×13×37)
| 2.3.5.11.13.37.41 {{monzo| 4 -1 -1 1 -1 -1 1 }}
|
|
|-
| [[7750/7749]]
| 0.22340
| (2×5<sup>3</sup>×31)/(3<sup>3</sup>×7×41)
| 2.3.5.7.31.41 {{monzo| 1 -3 3 -1 1 -1 }}
|
|
|-
| [[8569/8568]]
| 0.20205
| (11×19×41)/(2<sup>3</sup>×3<sup>2</sup>×7×17)
| 2.3.7.11.17.19.41 {{monzo| -3 -2 -1 1 -1 1 1 }}
| Mamelisma
|
|-
| [[8856/8855]]
| 0.19550
| ((2×3)<sup>3</sup>×41)/(5×7×11×23)
| 2.3.5.7.11.23.41 {{monzo| 3 3 -1 -1 -1 -1 1 }}
|
|
|-
| [[9472/9471]]
| 0.18278
| (2<sup>8</sup>×37)/(3×7×11×41)
| 2.3.7.11.37.41 {{monzo| 8 -1 -1 -1 1 -1 }}
| Brugesisma
|
|-
| 10045/10044
| 0.17236
| (5×7<sup>2</sup>×41)/(2<sup>2</sup>×3<sup>4</sup>×31)
| 2.3.5.7.31.41 {{monzo| -2 -4 1 2 -1 1 }}
|
|
|-
| [[10374/10373]]
| 0.16689
| (2×3×7×13×19)/(11×23×41)
| 2.3.7.11.13.19.23.41 {{monzo| 1 1 1 -1 1 1 -1 -1}}
| Etampesisma
|
|-
| 10660/10659
| 0.16241
| (2<sup>2</sup>×5×13×41)/(3×11×17×19)
| 2.3.5.11.13.17.19.41 {{monzo| 2 -1 1 -1 1 -1 -1 1 }}
|
|
|-
| [[11440/11439]]
| 0.15134
| (2<sup>4</sup>×5×11×13)/(3<sup>2</sup>×31×41)
| 2.3.5.11.13.31.41 {{monzo| 4 -2 1 1 1 -1 -1 }}
| Massironisma
|
|-
| 13776/13775
| 0.12567
| (2<sup>4</sup>×3×7×41)/(5<sup>2</sup>×19×29)
| 2.3.5.7.19.29.41 {{monzo| 4 1 -2 1 -1 -1 1 }}
|
|
|-
| 14145/14144
| 0.12240
| (3×5×23×41)/(2<sup>6</sup>×13×17)
| 2.3.5.13.17.23.41 {{monzo| -6 1 1 -1 -1 1 1 }}
|
|
|-
| 14801/14800
| 0.11697
| (19<sup>2</sup>×41)/(2<sup>4</sup>×5<sup>2</sup>×37)
| 2.5.19.37.41 {{monzo| -4 -2 2 -1 1 }}
|
|
|-
| [[15376/15375]]
| 0.11260
| (2<sup>2</sup>×31)<sup>2</sup>/(3×5<sup>3</sup>×41)
| 2.3.5.31.41 {{monzo| 4 -1 -3 2 -1 }}
| Martakisma
| S124
|-
| 15457/15456
| 0.11201
| (13×29×41)/(2<sup>5</sup>×3×7×23)
| 2.3.7.13.23.29.41 {{monzo| -5 -1 -1 1 -1 1 1 }}
|
|
|-
| 16400/16399
| 0.10557
| (2<sup>4</sup>×5<sup>2</sup>×41)/(23<sup>2</sup>×31)
| 2.5.23.31.41 {{monzo| 4 2 -2 -1 1 }}
|
|
|-
| 16524/16523
| 0.10477
| (2<sup>2</sup>×3<sup>5</sup>×17)/(13×31×41)
| 2.3.13.17.31.41 {{monzo| 2 5 -1 1 -1 -1 }}
|
|
|-
| 16606/16605
| 0.10426
| (2×19<sup>2</sup>×23)/(3<sup>4</sup>×5×41)
| 2.3.5.19.23.41 {{monzo| 1 -4 -1 2 1 -1 }}
|
|
|-
| 17425/17424
| 0.099356
| (5<sup>2</sup>×17×41)/(2<sup>2</sup>×3×11)<sup>2</sup>
| 2.3.5.11.17.41 {{monzo| -4 -2 2 -2 1 1 }}
|
|
|-
| [[17836/17835]]
| 0.097067
| (2<sup>2</sup>×7<sup>3</sup>×13)/(3×5×29×41)
| 2.3.5.7.13.29.41 {{monzo| 2 -1 -1 3 1 -1 -1 }}
| Canupisma
|
|-
| 17918/17917
| 0.096623
| (2×17<sup>2</sup>×31)/(19×23×41)
| 2.17.19.23.31.41 {{monzo| 1 2 -1 -1 1 -1 }}
|
|
|-
| 19721/19720
| 0.087789
| (13×37×41)/(2<sup>3</sup>×5×17×29)
| 2.5.13.17.29.37.41 {{monzo| -3 -1 1 -1 -1 1 1 }}
|
|
|-
| 19845/19844
| 0.087240
| (3<sup>4</sup>×5×7<sup>2</sup>)/((2×11)<sup>2</sup>×41)
| 2.3.5.7.11.41 {{monzo| -2 4 1 2 -2 -1 }}
|
|
|-
| [[76384/76383]]
| 0.022665
| (2<sup>5</sup>×7×11×31)/(3<sup>4</sup>×23×41)
| 2.3.7.11.23.31.41 {{monzo| 5 -4 1 1 -1 1 -1 }}
| Vernonisma
|
|-
| [[Mebisma|1048576/1048575]]
| 0.0016510
| 2<sup>20</sup>/(3×5<sup>2</sup>×11×31×41)
| 2.3.5.11.31.41 {{monzo| 20 -1 -2 -1 -1 -1 }}
| Mebisma
| S1024
|}
 
=== 43-limit (incomplete) ===
{| class="wikitable center-6" style="width:100%"
! width="10%" | [[Ratio]]
! width="10%" | [[Cent]]s
! width="15%" | Factorization
! width="15%" | [[Monzo]]
! width="45%" | Name(s)
! width="5%" | Meta<ref name="ssp"/>
|-
| [[43/42]]
| 40.737
| 43/(2×3×7)
| 2.3.7.43 {{monzo| -1 -1 -1 1 }}
| Large quadracesimotertial 1/5-tone
|
|-
| [[44/43]]
| 39.800
| (2<sup>2</sup>×11)/43
| 2.11.43 {{monzo| 2 1 -1 }}
| Small quadracesimotertial 1/5-tone
|
|-
| [[86/85]]
| 20.249
| (2×43)/(5×17)
| 2.5.17.43 {{monzo| 1 -1 -1 1 }}
| Large quadracesimotertial 1/10-tone
|
|-
| [[87/86]]
| 20.014
| (3×29)/(2×43)
| 2.3.29.43 {{monzo| -1 1 1 -1 }}
| Small quadracesimotertial 1/10-tone
|
|-
| [[129/128]]
| 13.473
| (3×43)/2<sup>7</sup>
| 2.3.43 {{monzo| -7 1 1 }}
| 43rd-partial chroma
|
|-
| [[130/129]]
| 13.369
| (2×5×13)/(3×43)
| 2.3.5.13.43 {{monzo| 1 -1 1 1 -1 }}
|
|
|-
| [[172/171]]
| 10.095
| (2<sup>2</sup>×43)/(3<sup>2</sup>×19)
| 2.3.19.43 {{monzo| 2 -2 -1 1 }}
|
|
|-
| [[216/215]]
| 8.0336
| (2×3)<sup>3</sup>/(5×43)
| 2.3.5.43 {{monzo| 3 3 -1 -1 }}
|
|
|-
| [[259/258]]
| 6.6972
| (7×37)/(2×3×43)
| 2.3.7.37.43 {{monzo| -1 -1 1 1 -1 }}
|
|
|-
| [[301/300]]
| 5.7612
| (7×43)/((2×5)<sup>2</sup>×3)
| 2.3.5.7.43 {{monzo| -2 -1 -2 1 1 }}
|
|
|-
| [[344/343]]
| 5.0400
| (2<sup>3</sup>×43)/7<sup>3</sup>
| 2.7.43 {{monzo| 3 -3 1 }}
|
|
|-
| [[345/344]]
| 5.0254
| (3×5×23)/(2<sup>3</sup>×43)
| 2.3.5.23.43 {{monzo| -3 1 1 1 -1 }}
|
|
|-
| [[430/429]]
| 4.0308
| (2×5×43)/(3×11×13)
| 2.3.5.11.13.43 {{monzo| 1 -1 1 -1 -1 1 }}
|
|
|-
| [[559/558]]
| 3.0998
| (13×43)/(2×3<sup>2</sup>×31)
| 2.3.13.31.43 {{monzo| -1 -2 1 -1 1 }}
|
|
|-
| [[560/559]]
| 3.0943
| (2<sup>4</sup>×5×7)/(13×43)
| 2.5.7.13.43 {{monzo| 4 1 1 -1 -1 }}
|
|
|-
| [[645/644]]
| 2.6862
| (3×5×43)/(2<sup>2</sup>×7×23)
| 2.3.5.7.23.43 {{monzo| -2 1 1 -1 -1 1 }}
|
|
|-
| [[646/645]]
| 2.6820
| (2×17×19)/(3×5×43)
| 2.3.5.17.19.43 {{monzo| 1 -1 -1 1 1 -1 }}
| Kastalisma
|
|-
| [[775/774]]
| 2.2353
| (5<sup>2</sup>×31)/(2×3<sup>2</sup>×43)
| 2.3.5.31.43 {{monzo| -1 -2 2 1 -1 }}
|
|
|-
| [[817/816]]
| 2.1203
| (19×43)/(2<sup>4</sup>×3×17)
| 2.3.17.19.43 {{monzo| -4 -1 -1 1 1 }}
|
|
|-
| [[861/860]]
| 2.0119
| (3×7×41)/(2<sup>2</sup>×5×43)
| 2.3.5.7.41.43 {{monzo| -2 1 -1 1 1 -1 }}
|
|
|-
| [[903/902]]
| 1.9183
| (3×7×43)/(2×11×41)
| 2.3.7.11.41.43 {{monzo| -1 1 1 -1 -1 1 }}
|
|
|-
| [[946/945]]
| 1.8310
| (2×11×43)/(3<sup>3</sup>×5×7)
| 2.3.5.7.11.43 {{monzo| 1 -3 -1 -1 1 1 }}
|
|
|-
| [[989/988]]
| 1.7514
| (23×43)/(2<sup>2</sup>×13×19)
| 2.13.19.23.43 {{monzo| -2 -1 -1 1 1 }}
|
|
|-
| [[990/989]]
| 1.7496
| (2×3<sup>2</sup>×5×11)/(23×43)
| 2.3.5.11.23.43 {{monzo| 1 2 1 1 -1 -1 }}
| Yerkesisma
|
|-
| [[1161/1160]]
| 1.4918
| (3<sup>3</sup>×43)/(2<sup>3</sup>×5×29)
| 2.3.5.29.43 {{monzo| -3 3 -1 -1 1 }}
|
|
|-
| [[1248/1247]]
| 1.3878
| (2<sup>5</sup>×3×13)/(29×43)
| 2.3.13.29.43 {{monzo| 5 1 1 -1 -1 }}
|
|
|-
| [[1333/1332]]
| 1.2992
| (31×43)/((2×3)<sup>2</sup>×37)
| 2.3.31.37.43 {{monzo| -2 -2 1 -1 1 }}
| Cevenolisma
|
|-
| [[1334/1333]]
| 1.2983
| (2×23×29)/(31×43)
| 2.23.29.31.43 {{monzo| 1 1 1 -1 -1 }}
|
|
|-
| [[1376/1375]]
| 1.2586
| (2<sup>5</sup>×43)/(5<sup>3</sup>×11)
| 2.5.11.43 {{monzo| 5 -3 -1 1 }}
|
|
|-
| [[1377/1376]]
| 1.2577
| (3<sup>4</sup>×17)/(2<sup>5</sup>×43)
| 2.3.17.43 {{monzo| -5 4 1 -1 }}
| Roberbauxisma
|
|-
| [[1463/1462]]
| 1.1838
| (7×11×19)/(2×17×43)
| 2.7.11.17.19.43 {{monzo| -1 1 1 -1 1 -1 }}
| Nordenmarkisma
|
|-
| [[1548/1547]]
| 1.1187
| (2<sup>2</sup>×3<sup>2</sup>×43)/(7×13×17)
| 2.3.7.13.17.43 {{monzo| 2 2 -1 -1 -1 1 }}
|
|
|-
| [[1764/1763]]
| 0.98170
| (2×3×7)<sup>2</sup>/(41×43)
| 2.3.7.41.43 {{monzo| 2 2 2 -1 -1 }}
|
| S42
|-
| [[1806/1805]]
| 0.95887
| (2×3×7×43)/(5×19<sup>2</sup>)
| 2.3.5.7.19.43 {{monzo| 1 1 -1 1 -2 1 }}
|
|
|-
| [[1849/1848]]
| 0.93656
| 43<sup>2</sup>/(2<sup>3</sup>×3×7×11)
| 2.3.7.11.43 {{monzo| -3 -1 -1 -1 2 }}
|
| S43
|-
| [[1850/1849]]
| 0.93606
| (2×5<sup>2</sup>×37)/43<sup>2</sup>
| 2.5.37.43 {{monzo| 1 2 1 -2 }}
|
|
|-
| [[1936/1935]]
| 0.89446
| (2<sup>2</sup>×11)<sup>2</sup>/(3<sup>2</sup>×5×43)
| 2.3.5.11.43 {{monzo| 4 -2 -1 2 -1 }}
|
| S44
|-
| [[2925/2924]]
| 0.59198
| (3<sup>2</sup>×5<sup>2</sup>×13)/(2<sup>2</sup>×17×43)
| 2.3.5.13.17.43 {{monzo| -2 2 2 1 -1 -1 }}
| Beattisma
|
|-
| [[3312/3311]]
| 0.52279
| (2<sup>4</sup>×3<sup>2</sup>×23)/(7×11×43)
| 2.3.7.11.23.43 {{monzo| 4 2 -1 -1 1 -1 }}
| Pedersenisma
|
|-
| [[4000/3999]]
| 0.43286
| (2<sup>5</sup>×5<sup>3</sup>)/(3×31×43)
| 2.3.5.31.43 {{monzo| 5 -1 3 -1 -1 }}
| Hipparchusisma
|
|-
| [[4301/4300]]
| 0.40257
| (11×17×23)/(2<sup>2</sup>×5<sup>2</sup>×43)
| 2.5.11.17.23.43 {{monzo| -2 -2 1 1 1 -1 }}
| Boydenisma
|
|-
| [[4774/4773]]
| 0.36268
| (2×7×11×31)/(3×37×43)
| 2.3.7.11.31.37.43 {{monzo| 1 -1 1 1 1 -1 -1 }}
| Hobetsisma
|
|-
| [[5720/5719]]
| 0.30269
| (2<sup>3</sup>×5×11×13)/(7×19×43)
| 2.5.7.11.13.19.43 {{monzo| 3 1 -1 1 1 -1 -1 }}
| Halweaverisma
|
|-
| [[7225/7224]]
| 0.23963
| (5×17)<sup>2</sup>/(2<sup>3</sup>×3×7×43)
| 2.3.5.7.17.43 {{monzo| -3 -1 2 -1 2 -1 }}
| Huntressisma
| S85
|-
| [[7956/7955]]
| 0.21761
| (2<sup>2</sup>×3<sup>2</sup>×13×17)/(5×37×43)
| 2.3.5.13.17.37.43 {{monzo| 2 2 -1 1 1 -1 -1 }}
| Yajinisma
|
|-
| [[9504/9503]]
| 0.18217
| (2<sup>5</sup>×3<sup>3</sup>×11)/(13×17×43)
| 2.3.11.13.17.43 {{monzo| 5 3 1 -1 -1 -1 }}
| Lionelisma
|
|-
| [[9633/9632]]
| 0.17973
| (3×13<sup>2</sup>×19)/(2<sup>5</sup>×7×43)
| 2.3.7.13.19.43 {{monzo| -5 1 -1 2 1 -1 }}
| Coturisma
|
|-
| [[10450/10449]]
| 0.16568
| (2×5<sup>2</sup>×11×19)/(3<sup>5</sup>×43)
| 2.3.5.11.19.43 {{monzo| 1 -5 2 1 1 -1}}
| Girardisma
|
|-
| [[10880/10879]]
| 0.15912
| (2<sup>7</sup>×5×17)/(11×23×43)
| 2.5.11.17.23.43 {{monzo| 7 1 -1 1 -1 -1 }}
| Kaguyisma
|
|-
| [[17545/17544]]
| 0.098677
| (5×11<sup>2</sup>×29)/(2<sup>3</sup>×3×17×43)
| 2.3.5.11.17.29.43 {{monzo| -3 -1 1 2 -1 1 -1 }}
| Manheimisma
|
|-
| [[27048/27047]]
| 0.064007
| (2<sup>3</sup>×3×7<sup>2</sup>×23)/(17×37×43)
| 2.3.7.17.23.37.43 {{monzo| 3 1 2 -1 1 -1 -1 }}
| Jangongisma
|
|-
| [[29241/29240]]
| 0.059207
| (3<sup>2</sup>×19)<sup>2</sup>/(2<sup>3</sup>×5×17×43)
| 2.3.5.17.19.43 {{monzo| -3 4 -1 -1 2 -1 }}
| Locquirecisma
| S171
|}
 
=== 47-limit (incomplete) ===
{| class="wikitable center-6" style="width:100%"
! width="10%" | [[Ratio]]
! width="10%" | [[Cent]]s
! width="15%" | Factorization
! width="15%" | [[Monzo]]
! width="45%" | Name(s)
! width="5%" | Meta<ref name="ssp"/>
|-
| [[47/46]]
| 37.232
| 47/(2×23)
| 2.23.47 {{monzo| -1 -1 1 }}
|
|
|-
| [[48/47]]
| 36.448
| (2<sup>4</sup>×3)/47
| 2.3.47 {{monzo| 4 1 -1 }}
| 47th-partial chroma
|
|-
| [[94/93]]
| 18.516
| (2×47)/(3×31)
| 2.3.31.47 {{monzo| 1 -1 -1 1 }}
|
|
|-
| [[95/94]]
| 18.320
| (5×19)/(2×47)
| 2.5.19.47 {{monzo| -1 1 1 -1 }}
|
|
|-
| [[141/140]]
| 12.322
| (3×47)/(2<sup>2</sup>×5×7)
| 2.3.5.7.47 {{monzo| -2 1 -1 -1 1 }}
|
|
|-
| [[188/187]]
| 9.2333
| (2<sup>2</sup>×47)/(11×17)
| 2.11.37.47 {{monzo| 2 -1 -1 1 }}
|
|
|-
| [[189/188]]
| 9.1843
| (3<sup>3</sup>×7)/(2<sup>2</sup>×47)
| 2.3.7.47 {{monzo| -2 3 1 -1 }}
|
|
|-
| [[235/234]]
| 7.3827
| (5×47)/(2×3<sup>2</sup>×13)
| 2.3.5.13.47 {{monzo| -1 -2 1 -1 1 }}
|
|
|-
| [[329/328]]
| 5.2701
| (7×47)/(2<sup>3</sup>×41)
| 2.7.41.47 {{monzo| -3 1 -1 1 }}
|
|
|-
| [[330/329]]
| 5.2541
| (2×3×5×11)/(7×47)
| 2.3.5.7.11.47 {{monzo| 1 1 1 -1 1 -1 }}
|
|
|-
| [[376/375]]
| 4.6105
| (2<sup>3</sup>×47)/(3×5<sup>3</sup>)
| 2.3.5.47 {{monzo| 3 -1 -3 1 }}
|
|
|-
| [[377/376]]
| 4.5982
| (13×29)/(2<sup>3</sup>×47)
| 2.13.29.47 {{monzo| -3 1 1 -1 }}
|
|
|-
| [[1176/1175]]
| 1.4728
| (2<sup>3</sup>×3×7<sup>2</sup>)/(5<sup>2</sup>×47)
| 2.3.5.7.47 {{monzo| 3 1 -2 2 -1 }}
| Lucidorisma
|
|-
| [[2116/2115]]
| 0.81836
| (2×23)<sup>2</sup>/(3<sup>2</sup>×5×47)
| 2.3.5.23.47 {{monzo| 2 -2 -1 2 -1 }}
|
| S46
|-
| [[2209/2208]]
| 0.78390
| 47<sup>2</sup>/(2<sup>5</sup>×3×5)
| 2.3.23.47 {{monzo| -5 -1 -1 2 }}
|
| S47
|-
| [[2304/2303]]
| 0.75157
| (2<sup>4</sup>×3)<sup>2</sup>/(7<sup>2</sup>×47)
| 2.3.7.47 {{monzo| 8 2 -2 -1 }}
|
| S48
|}
 
=== 53-limit (incomplete) ===
{| class="wikitable center-6" style="width:100%"
! width="10%" | [[Ratio]]
! width="10%" | [[Cent]]s
! width="15%" | Factorization
! width="15%" | [[Monzo]]
! width="45%" | Name(s)
! width="5%" | Meta<ref name="ssp"/>
|-
| [[53/52]]
| 32.977
| 53/(2<sup>2</sup>×13)
| 2.13.53 {{monzo| -2 -1 1 }}
|
|
|-
| [[54/53]]
| 32.360
| (2×3<sup>3</sup>)/53
| 2.3.53 {{monzo| 1 3 -1 }}
|
|
|-
| [[106/105]]
| 16.410
| (2×53)/(3×5×7)
| 2.3.5.7.53 {{monzo| 1 -1 -1 -1 1 }}
|
|
|-
| [[160/159]]
| 10.854
| (2<sup>5</sup>×5)/(3×53)
| 2.3.5.53 {{monzo| 5 -1 1 -1 }}
|
|
|-
| [[265/264]]
| 6.5453
| (5×53)/(2<sup>3</sup>×3×11)
| 2.3.5.11.53 {{monzo| -3 -1 1 -1 1 }}
|
|
|-
| [[266/265]]
| 6.5207
| (2×7×19)/(5×53)
| 2.5.7.19.53 {{monzo| 1 -1 1 1 -1 }}
|
|
|-
| [[319/318]]
| 5.4356
| (11×29)/(2×3×53)
| 2.3.11.29.53 {{monzo| -1 -1 1 1 -1 }}
|
|
|-
| [[371/370]]
| 4.6727
| (7×53)/(2×5×37)
| 2.5.7.37.53 {{monzo| -1 -1 1 -1 1 }}
|
|
|-
| [[372/371]]
| 4.6601
| (2<sup>2</sup>×3×31)/(7×53)
| 2.3.7.31.53 {{monzo| 2 1 -1 1 -1 }}
|
|
|-
| [[424/423]]
| 4.0879
| (2<sup>3</sup>×53)/(3<sup>2</sup>×47)
| 2.3.47.53 {{monzo| 3 -2 -1 1 }}
|
|
|-
| [[425/424]]
| 4.0783
| (5<sup>2</sup>×17)/(2<sup>3</sup>×53)
| 2.5.17.53 {{monzo| -3 2 1 -1 }}
|
|
|-
| [[477/476]]
| 3.6332
| (3<sup>2</sup>×53)/(2<sup>2</sup>×7×17)
| 2.3.7.17.53 {{monzo| -2 2 -1 -1 1 }}
|
|
|-
| [[2809/2808]]
| 0.61643
| 53<sup>2</sup>/(2<sup>3</sup>×3<sup>3</sup>×13)
| 2.3.13.53 {{monzo| -3 -3 -1 2 }}
|
| S53
|-
| [[4081/4080]]
| 0.42427
| (7×11×53)/(2<sup>4</sup>×3×5×17)
| 2.3.5.7.11.17.53 {{monzo| -4 -1 -1 1 1 -1 1 }}
|
|
|}
 
=== 59-limit (incomplete) ===
{| class="wikitable center-6" style="width:100%"
! width="10%" | [[Ratio]]
! width="10%" | [[Cent]]s
! width="15%" | Factorization
! width="15%" | [[Monzo]]
! width="45%" | Name(s)
! width="5%" | Meta<ref name="ssp"/>
|-
| [[59/58]]
| 29.594
| 59/(2×29)
| 2.29.59 {{monzo| -1 -1 1 }}
|
|
|-
| [[60/59]]
| 29.097
| (2<sup>2</sup>×3×5)/59
| 2.3.5.59 {{monzo| 2 1 1 -1 }}
|
|
|-
| [[118/117]]
| 14.734
| (2×59)/(3<sup>2</sup>×13)
| 2.3.13.59 {{monzo| 1 -2 -1 1 }}
|
|
|-
| [[119/118]]
| 14.610
| (7×17)/(2×59)
| 2.7.17.59 {{monzo| -1 1 1 -1 }}
|
|
|-
| [[177/176]]
| 9.8087
| (3×59)/(2<sup>4</sup>×11)
| 2.3.11.59 {{monzo| -4 1 -1 1 }}
|
|
|-
| [[236/235]]
| 7.3513
| (2<sup>2</sup>×59)/(5×47)
| 2.5.47.59 {{monzo| 2 -1 -1 1 }}
|
|
|-
| [[295/294]]
| 5.8786
| (5×59)/(2×3×7<sup>2</sup>)
| 2.3.5.7.59 {{monzo| -1 -1 1 -2 1 }}
|
|
|-
| [[296/295]]
| 5.8587
| (2<sup>3</sup>×37)/(5×59)
| 2.5.37.59 {{monzo| 3 -1 1 -1 }}
|
|
|-
| [[414/413]]
| 4.1868
| (2×3<sup>2</sup>×23)/(7×59)
| 2.3.7.23.59 {{monzo| 1 2 -1 1 -1 }}
|
|
|-
| [[473/472]]
| 3.6640
| (11×43)/(2<sup>3</sup>×59)
| 2.11.43.59 {{monzo| -3 1 1 -1 }}
|
|
|-
| [[1121/1120]]
| 1.5451
| (19×59)/(2<sup>5</sup>×5×7)
| 2.5.7.19.59 {{monzo| -5 -1 -1 1 1 }}
|
|
|-
| [[1122/1121]]
| 1.5437
| (2×3×11×17)/(19×59)
| 2.3.11.17.19.59 {{monzo| 1 1 1 1 -1 -1 }}
|
|
|-
| [[3481/3480]]
| 0.49741
| 59<sup>2</sup>/(2<sup>3</sup>×3×5×29)
| 2.3.5.29.59 {{monzo| -3 -1 -1 -1 2}}
|
| S59
|}
 
=== 61-limit (incomplete) ===
{| class="wikitable center-6" style="width:100%"
! width="10%" | [[Ratio]]
! width="10%" | [[Cent]]s
! width="15%" | Factorization
! width="15%" | [[Monzo]]
! width="45%" | Name(s)
! width="5%" | Meta<ref name="ssp"/>
|-
| [[61/60]]
| 28.616
| 61/(2<sup>2</sup>×3×5)
| 2.3.5.61 {{monzo| -2 -1 -1 1 }}
|
|
|-
| [[62/61]]
| 28.151
| (2×31)/61
| 2.31.61 {{monzo| 1 1 -1 }}
|
|
|-
| [[122/121]]
| 14.249
| (2×61)/(11<sup>2</sup>)
| 2.11.61 {{monzo| 1 -2 1 }}
|
|
|-
| [[123/122]]
| 14.133
| (3×41)/(2×61)
| 2.3.41.61 {{monzo| -1 1 1 -1 }}
|
|
|-
| [[183/182]]
| 9.4862
| (3×61)/(2×7×13)
| 2.3.7.13.61 {{monzo| -1 1 -1 -1 1 }}
|
|
|-
| [[184/183]]
| 9.4345
| (2<sup>3</sup>×23)/(3×61)
| 2.3.23.61 {{monzo| 3 -1 1 -1 }}
|
|
|-
| [[244/243]]
| 7.1098
| (2<sup>2</sup>×61)/3<sup>5</sup>
| 2.3.61 {{monzo| 2 -5 1 }}
|
|
|-
| [[245/244]]
| 7.0807
| (5×7<sup>2</sup>)/(2<sup>2</sup>×61)
| 2.5.7.61 {{monzo| -2 1 2 -1 }}
|
|
|-
| [[305/304]]
| 5.6855
| (5×61)/(2<sup>4</sup>×19)
| 2.5.19.61 {{monzo| -4 1 -1 1 }}
|
|
|-
| [[306/305]]
| 5.6669
| (2×3<sup>2</sup>×17)/(5×61)
| 2.3.5.17.61 {{monzo| 1 2 -1 1 -1 }}
|
|
|-
| [[672/671]]
| 2.5782
| (2<sup>5</sup>×3×7)/(11×61)
| 2.3.7.11.61 {{monzo| 5 1 1 -1 -1 }}
|
|
|-
| [[1404/1403]]
| 1.2335
| (2<sup>2</sup>×3<sup>3</sup>×13)/(23×61)
| 2.3.13.23.61 {{monzo| 2 3 1 -1 -1 }}
|
|
|-
| [[3721/3720]]
| 0.46532
| 61<sup>2</sup>/(2<sup>3</sup>×3×5×31)
| 2.3.5.31.61 {{monzo| -3 -1 -1 -1 2 }}
|
| S61
|}
 
=== 67-limit (incomplete) ===
{| class="wikitable center-6" style="width:100%"
! width="10%" | [[Ratio]]
! width="10%" | [[Cent]]s
! width="15%" | Factorization
! width="15%" | [[Monzo]]
! width="45%" | Name(s)
! width="5%" | Meta<ref name="ssp"/>
|-
| [[67/66]]
| 26.034
| 67/(2×3×11)
| 2.3.11.67 {{monzo| -1 -1 -1 1 }}
|
|
|-
| [[68/67]]
| 25.648
| (2<sup>2</sup>×17)/67
| 2.17.67 {{monzo| 2 1 -1 }}
|
|
|-
| [[134/133]]
| 12.968
| (2×67)/(7×19)
| 2.7.19.67 {{monzo| 1 -1 -1 1 }}
|
|
|-
| [[135/134]]
| 12.872
| (3<sup>3</sup>×5)/(2×67)
| 2.3.5.67 {{monzo| -1 3 1 -1 }}
|
|
|-
| [[201/200]]
| 8.6346
| (3×67)/(2<sup>3</sup>×5<sup>2</sup>)
| 2.3.5.67 {{monzo| -3 1 -2 1 }}
|
|
|-
| [[336/335]]
| 5.1602
| (2<sup>4</sup>×3×7)/(5×67)
| 2.3.5.7.67 {{monzo| 4 1 -1 1 -1 }}
|
|
|-
| [[671/670]]
| 2.5820
| (11×61)/(2×5×67)
| 2.5.11.61.67 {{monzo| -1 -1 1 1 -1 }}
|
|
|-
| [[4489/4488]]
| 0.38570
| 67<sup>2</sup>/(2<sup>3</sup>×3×11×17)
| 2.3.11.17.67 {{monzo| -3 -1 -1 -1 2 }}
|
| S67
|}
 
=== 71-limit (incomplete) ===
{| class="wikitable center-6" style="width:100%"
! width="10%" | [[Ratio]]
! width="10%" | [[Cent]]s
! width="15%" | Factorization
! width="15%" | [[Monzo]]
! width="45%" | Name(s)
! width="5%" | Meta<ref name="ssp"/>
|-
| [[71/70]]
| 24.557
| 71/(2×5×7)
| 2.5.7.71 {{monzo| -1 -1 -1 1 }}
|
|
|-
| [[72/71]]
| 24.213
| (2<sup>3</sup>×3<sup>2</sup>)/71
| 2.3.71 {{monzo| 3 2 -1 }}
|
|
|-
| [[5041/5040]]
| 0.34346
| 71<sup>2</sup>/(2<sup>4</sup>×3<sup>2</sup>×5×7)
| 2.3.5.7.71 {{monzo| -4 -2 -1 -1 2 }}
| Third brown pair comma
| S71
|-
| <font style="font-size:0.85em">[[Borcherdsma|160561400000 / 160561399999]]</font>
| 1.0783×10<sup>-8</sup>
| (2<sup>6</sup>×5<sup>5</sup>×19×29×31×47) / (7×11<sup>2</sup>×13×59<sup>3</sup>×71)
| 2.5.7.11.13.19.29.31.47.59.71 {{monzo| 6 5 -1 -2 -1 1 1 1 1 -3 -1 }}
| Borcherdsma
|
|}
 
=== 73-limit (incomplete) ===
{| class="wikitable center-6" style="width:100%"
! width="10%" | [[Ratio]]
! width="10%" | [[Cent]]s
! width="15%" | Factorization
! width="15%" | [[Monzo]]
! width="45%" | Name(s)
! width="5%" | Meta<ref name="ssp"/>
|-
| [[73/72]]
| 23.879
| 73/(2<sup>3</sup>×3<sup>2</sup>)
| 2.3.73 {{monzo| -3 -2 1 }}
|
|
|-
| [[74/73]]
| 23.555
| (2×37)/73
| 2.37.73 {{monzo| 1 1 -1 }}
|
|
|-
| [[366/365]]
| 4.737
| (2×3×61)/(5×73)
| 2.3.5.61.73 [1 1 -1 1 -1⟩
| Sidereal comma
|
|}
 
=== 79-limit (incomplete) ===
{| class="wikitable center-6" style="width:100%"
! width="10%" | [[Ratio]]
! width="10%" | [[Cent]]s
! width="15%" | Factorization
! width="15%" | [[Monzo]]
! width="45%" | Name(s)
! width="5%" | Meta<ref name="ssp"/>
|-
| [[79/78]]
| 22.054
| 79/(2×3×13)
| 2.3.13.79 {{monzo| -1 -1 -1 1 }}
|
|
|-
| [[80/79]]
| 21.777
| (2<sup>4</sup>×5)/79
| 2.5.79 {{monzo| 4 1 -1 }}
|
|
|}
 
=== 83-limit (incomplete) ===
{| class="wikitable center-6" style="width:100%"
! width="10%" | [[Ratio]]
! width="10%" | [[Cent]]s
! width="15%" | Factorization
! width="15%" | [[Monzo]]
! width="45%" | Name(s)
! width="5%" | Meta<ref name="ssp"/>
|-
| [[83/82]]
| 20.985
| 83/(2×41)
| 2.41.83 {{monzo| -1 -1 1 }}
|
|
|-
| [[84/83]]
| 20.734
| (2<sup>2</sup>×3×7)/83
| 2.3.7.83 {{monzo| 2 1 1 -1 }}
|
|
|}
 
=== 89-limit (incomplete) ===
{| class="wikitable center-6" style="width:100%"
! width="10%" | [[Ratio]]
! width="10%" | [[Cent]]s
! width="15%" | Factorization
! width="15%" | [[Monzo]]
! width="45%" | Name(s)
! width="5%" | Meta<ref name="ssp"/>
|-
| [[89/88]]
| 19.562
| 89/(2<sup>3</sup>×11)
| 2.11.89 {{monzo| -3 -1 1 }}
| Tailwind comma{{idiosyncratic}}
|
|-
| [[90/89]]
| 19.344
| (2×3<sup>2</sup>×5)/89
| 2.3.5.89 {{monzo| 1 2 1 -1 }}
|
|
|}
 
=== 97-limit (incomplete) ===
{| class="wikitable center-6" style="width:100%"
! width="10%" | [[Ratio]]
! width="10%" | [[Cent]]s
! width="15%" | Factorization
! width="15%" | [[Monzo]]
! width="45%" | Name(s)
! width="5%" | Meta<ref name="ssp"/>
|-
| [[97/96]]
| 17.940
| 97/(2<sup>5</sup>×3)
| 2.3.97 {{monzo| -5 -1 1 }}
|
|
|-
| [[98/97]]
| 17.756
| (2×7<sup>2</sup>)/97
| 2.7.97 {{monzo| 1 2 -1 }}
|
|
|}
 
=== 101-limit (incomplete) ===
{| class="wikitable center-6" style="width:100%"
! width="10%" | [[Ratio]]
! width="10%" | [[Cent]]s
! width="15%" | Factorization
! width="15%" | [[Monzo]]
! width="45%" | Name(s)
! width="5%" | Meta<ref name="ssp"/>
|-
| [[101/100]]
| 17.226
| 101/(2×5)<sup>2</sup>
| 2.5.101 {{monzo| -2 -2 1 }}
|
|
|-
| [[102/101]]
| 17.057
| (2×3×17)/101
| 2.3.17.101 {{monzo| 1 1 1 -1 }}
|
|
|-
| [[7777/7776]]
| 0.223
| 7×11×101/(2×3)<sup>5</sup>
| 2.3.7.11.101 {{monzo| -5 -5 1 1 1 }}
| Pulsar comma
|
|}
 
=== 103-limit (incomplete) ===
{| class="wikitable center-6" style="width:100%"
! width="10%" | [[Ratio]]
! width="10%" | [[Cent]]s
! width="15%" | Factorization
! width="15%" | [[Monzo]]
! width="45%" | Name(s)
! width="5%" | Meta<ref name="ssp"/>
|-
| [[103/102]]
| 16.890
| 103/(2×3×17)
| 2.3.17.103 {{monzo| -1 -1 -1 1 }}
|
|
|-
| [[104/103]]
| 16.727
| (2<sup>3</sup>×13)/103
| 2.13.103 {{monzo| 3 1 -1 }}
|
|
|}
 
=== 107-limit (incomplete) ===
{| class="wikitable center-6" style="width:100%"
! width="10%" | [[Ratio]]
! width="10%" | [[Cent]]s
! width="15%" | Factorization
! width="15%" | [[Monzo]]
! width="45%" | Name(s)
! width="5%" | Meta<ref name="ssp"/>
|-
| [[107/106]]
| 16.256
| 107/(2×53)
| 2.53.107 {{monzo| -1 -1 1 }}
|
|
|-
| [[108/107]]
| 16.105
| (2<sup>2</sup>×3<sup>3</sup>)/107
| 2.3.107 {{monzo| 2 3 -1 }}
|
|
|-
| [[750/749]]
| 2.3099
| (2×3×5<sup>3</sup>)/(7×107)
| 2.3.5.7.107 {{monzo| 1 1 3 -1 -1 }}
| Ancient Chinese tempering comma
|
|}
 
=== 109-limit (incomplete) ===
{| class="wikitable center-6" style="width:100%"
! width="10%" | [[Ratio]]
! width="10%" | [[Cent]]s
! width="15%" | Factorization
! width="15%" | [[Monzo]]
! width="45%" | Name(s)
! width="5%" | Meta<ref name="ssp"/>
|-
| [[109/108]]
| 15.956
| 109/(2<sup>2</sup>×3<sup>3</sup>)
| 2.3.109 {{monzo| -2 -3 1 }}
|
|
|-
| [[110/109]]
| 15.810
| (2×5×11)/109
| 2.5.11.109 {{monzo| 1 1 1 -1 }}
|
|
|}
 
=== 113-limit (incomplete) ===
{| class="wikitable center-6" style="width:100%"
! width="10%" | [[Ratio]]
! width="10%" | [[Cent]]s
! width="15%" | Factorization
! width="15%" | [[Monzo]]
! width="45%" | Name(s)
! width="5%" | Meta<ref name="ssp"/>
|-
| [[113/112]]
| 15.389
| 113/(2<sup>4</sup>×7)
| 2.7.113 {{monzo| -4 -1 1 }}
|
|
|-
| [[114/113]]
| 15.253
| (2×3×19)/113
| 2.3.19.113 {{monzo| 1 1 1 -1 }}
|
|
|-
| [[226/225]]
| 7.6773
| (2×113)/(3×5)<sup>2</sup>
| 2.3.5.113 {{monzo| 1 -2 -2 1 }}
| Reversed marvel comma
|
|}
 
=== 127-limit (incomplete) ===
{| class="wikitable center-6" style="width:100%"
! width="10%" | [[Ratio]]
! width="10%" | [[Cent]]s
! width="15%" | Factorization
! width="15%" | [[Monzo]]
! width="45%" | Name(s)
! width="5%" | Meta<ref name="ssp"/>
|-
| [[127/126]]
| 13.686
| 127/(2×3<sup>2</sup>×7)
| 2.3.7.127 {{monzo| -1 -2 -1 1 }}
|
|
|-
| [[128/127]]
| 13.578
| 2<sup>7</sup>/127
| 2.127 {{monzo| 7 -1 }}
|
|
|-
| [[381/380]]
| 4.5499
| (3×127)/(2<sup>2</sup>×5×19)
| 2.3.5.19.127 {{monzo| -2 1 -1 -1 1 }}
| Five feet comma
|
|-
| 500000/499999
| 0.0034625
| (2<sup>5</sup>×5<sup>6</sup>)/(31×127<sup>2</sup>)
| 2.5.31.127 {{monzo| 5 6 -1 -2 }}
|
|
|}
 
== See also ==
* [[Gallery of just intervals]]
 
== Notes ==
<references/>
 
== External links ==
* [http://www.huygens-fokker.org/docs/intervals.html ''List of intervals''] on the Huygens-Fokker Foundation website
 
[[Category:Lists of intervals]]
[[Category:Superparticular ratios|*]]