27ed4: Difference between revisions
mNo edit summary |
m Removing from Category:Edonoi using Cat-a-lot |
||
(10 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
27ed4 is an equal tuning that divides the 4/1 ratio (double-octave, tetratave, fifteenth) into steps of 88<sup>8</sup>/<sub>9</sub> cents. | {{Infobox ET}} | ||
27ed4 is an equal tuning that divides the [[4/1]] ratio (double-octave, tetratave, fifteenth) into steps of 88<sup>8</sup>/<sub>9</sub> cents. | |||
It serves as a good first approximation to [[Nelinda#Xenharmonic Systems for Nelinda| | It serves as a good first approximation to [[Nelinda#Xenharmonic Systems for Nelinda|Nelindic temperament]], and is in many respects a "3n+1 cousin" of 5-limit [[12edo|12et]] (even though it takes every other step of the dissimilar [[27edo|27et]]), with relatively high error but low complexity, similar step size, and even sharing a common comma ([[128/125]]). Note the latter means that 27ed4 divides 4/1 into three approximate [[8/5]]'s, just as 12ed2 divides [[2/1]] into three [[5/4]]'s, and thus it has a 5/2 equally sharp of rational as the 5/4 in 12ed2. Its 7 and 13 approximations are a bit sharp themselves, and overall it lends itself well to IoE compression: the TE tuning gives one of 2395.819236 cents. | ||
This tuning also lends itself to Tetrarchy temperament, effectively 7-limit [[Archytas clan|Archytas temperament]] for the [[4/1|tetratave]]. In this case, the major mossecond (5 mossteps) represents [[9/7]] and the minor mossecond (3 mossteps), a very accurate [[7/6]]. The generator is a sharp diatonic fifth (711.11¢), contextually a perfect mosthird (8 mossteps). The TE tuning gives a tetratave of 2393.9334 cents. | |||
== Harmonics == | |||
{{Harmonics in equal | |||
| steps = 27 | |||
| num = 4 | |||
| denom = 1 | |||
}} | |||
{{Harmonics in equal | |||
| steps = 27 | |||
| num = 4 | |||
| denom = 1 | |||
| start = 12 | |||
| collapsed = 1 | |||
}} | |||
== Intervals == | == Intervals == | ||
The following table of intervals uses the 7-note | The following table of intervals uses both the 7-note 6L 1s [[MOS scale]] of Nelindic for the naturals (simple A-G notation and standard sharps/flats for the [[chroma]]) and the 7-note 3L 4s scale (standard A-G notation using the typical [[Genchain mode numbering|genchain]] from [[mosh]]) for Tetrarchy. The 6L 1s scale can be extended to the 13-note (7L 6s) scale, these would include all of the sharps except for F#. Due to the L/s ratio of 3:1, in the 13-note case, most former diminished intervals become minor, most former minor intervals become augmented, and most former augmented intervals become major. Similarly, the 3L 4s scale can be extended to a [[7L 3s (4/1-equivalent)|7L 3s]] scale, by dividing the long intervals into sets of 3 and 2 mossteps. These extended scales will usually be melodically preferable over the 6-note and 7-note scales, which have extremely wide melodic spacing comparable to 3edo. | ||
{| class="wikitable center-all left-2 | {| class="wikitable center-all left-2 left-4" | ||
! Steps | ! rowspan="2" | Steps | ||
! Note | ! colspan="2" | Nelindic 6L 1s | ||
! Interval name | ! colspan="2" |Tetrarchy 3L 4s | ||
! | ! rowspan="2" |Cents | ||
! | ! rowspan="2" |~ Ratios | ||
|- | |||
!Note | |||
!Interval name | |||
!Note | |||
!Interval name | |||
|- | |- | ||
| 0 | | 0 | ||
| A | | A | ||
| unison | | unison | ||
| 0.00 | |G | ||
|unison | |||
|0.00 | |||
| 1/1 | | 1/1 | ||
|- | |- | ||
Line 22: | Line 46: | ||
| A# | | A# | ||
| aug unison | | aug unison | ||
| 88.89 | |Abb | ||
|dim 1-mosstep | |||
|88.89 | |||
| 21/20 | | 21/20 | ||
|- | |- | ||
| 2 | | 2 | ||
| Bbb | | Bbb | ||
| ddim | | ddim 1-mosstep | ||
| 177.78 | |G# | ||
|aug unison | |||
|177.78 | |||
| 10/9 | | 10/9 | ||
|- | |- | ||
| 3 | | 3 | ||
| Bb | | Bb | ||
| dim | | dim 1-mosstep | ||
| 266.67 | |Ab | ||
|min 1-mosstep | |||
|266.67 | |||
| 7/6 | | 7/6 | ||
|- | |- | ||
| 4 | | '''4''' | ||
| B | | '''B''' | ||
| perf | | '''perf 1-mosstep''' | ||
| 355.56 | |Bbb | ||
| 16/13 | |ddim 2-mosstep | ||
|'''355.56''' | |||
| '''16/13''' | |||
|- | |- | ||
| 5 | | 5 | ||
| B# | | B# | ||
| aug | | aug 1-mosstep | ||
| 444.44 | |A | ||
| 13/10 | |maj 1-mosstep | ||
|444.44 | |||
| 9/7, 13/10 | |||
|- | |- | ||
| 6 | | 6 | ||
| Cbb | | Cbb | ||
| dim | | dim 2-mosstep | ||
| 533.33 | |Bb | ||
|dim 2-mosstep | |||
|533.33 | |||
| 27/20, 19/14 | | 27/20, 19/14 | ||
|- | |- | ||
| 7 | | 7 | ||
| Cb | | Cb | ||
| min | | min 2-mosstep | ||
| 622.22 | |A# | ||
|aug 2-mosstep | |||
|622.22 | |||
| 10/7, 13/9 | | 10/7, 13/9 | ||
|- | |- | ||
| 8 | | '''8''' | ||
| C | | C | ||
| maj | | maj 2-mosstep | ||
| 711.11 | |'''B''' | ||
| 3/2 | |'''perf 2-mosstep''' | ||
|'''711.11''' | |||
| '''3/2''' | |||
|- | |- | ||
| 9 | | 9 | ||
| C# | | C# | ||
| aug | | aug 2-mosstep | ||
| 800.00 | |Cbb | ||
|dim 3-mosstep | |||
|800.00 | |||
| 8/5 | | 8/5 | ||
|- | |- | ||
| 10 | | 10 | ||
| Dbb | | Dbb | ||
| dim | | dim 3-mosstep | ||
| 888.89 | |B# | ||
|aug 2-mosstep | |||
|888.89 | |||
| 5/3 | | 5/3 | ||
|- | |- | ||
| 11 | | 11 | ||
| Db | | Db | ||
| min | | min 3-mosstep | ||
| 977.78 | |Cb | ||
|min 3-mosstep | |||
|977.78 | |||
| 7/4 | | 7/4 | ||
|- | |- | ||
| 12 | | 12 | ||
| D | | D | ||
| maj | | maj 3-mosstep | ||
| 1066.67 | |Dbb | ||
|ddim 4-mosstep | |||
|1066.67 | |||
| 13/7 | | 13/7 | ||
|- | |- | ||
| 13 | | 13 | ||
| D# | | D# | ||
| aug | | aug 3-mosstep | ||
| 1155.56 | |C | ||
|maj 3-mosstep | |||
|1155.56 | |||
| 39/20, 35/18 | | 39/20, 35/18 | ||
|- | |- | ||
| 14 | | 14 | ||
| Ebb | | Ebb | ||
| dim | | dim 4-mosstep | ||
| 1244.44 | |Db | ||
|min 4-mosstep | |||
|1244.44 | |||
| 80/39, 72/35 | | 80/39, 72/35 | ||
|- | |- | ||
| 15 | | 15 | ||
| Eb | | Eb | ||
| min | | min 4-mosstep | ||
| 1333.33 | |C# | ||
|aug 3-mosstep | |||
|1333.33 | |||
| 28/13 | | 28/13 | ||
|- | |- | ||
| 16 | | 16 | ||
| E | | E | ||
| maj | | maj 4-mosstep | ||
| 1422.22 | |D | ||
|maj 4-mosstep | |||
|1422.22 | |||
| 16/7 | | 16/7 | ||
|- | |- | ||
| 17 | | 17 | ||
| E# | | E# | ||
| aug | | aug 4-mosstep | ||
| 1511.11 | |Eb | ||
|dim 5-mosstep | |||
|1511.11 | |||
| 12/5 | | 12/5 | ||
|- | |- | ||
| 18 | | 18 | ||
| Fbb | | Fbb | ||
| dim | | dim 5-mosstep | ||
| 1600.00 | |D# | ||
|aug 4-mosstep | |||
|1600.00 | |||
| 5/2 | | 5/2 | ||
|- | |- | ||
| 19 | | '''19''' | ||
| Fb | | Fb | ||
| min | | min 5-mosstep | ||
| 1688.89 | |'''E''' | ||
| 8/3 | |'''perf 5-mosstep''' | ||
|'''1688.89''' | |||
| '''8/3''' | |||
|- | |- | ||
| 20 | | 20 | ||
| F | | F | ||
| maj | | maj 5-mosstep | ||
| 1777.78 | |Fbb | ||
|dim 6-mosstep | |||
|1777.78 | |||
| 14/5, 36/13 | | 14/5, 36/13 | ||
|- | |- | ||
| 21 | | 21 | ||
| F# | | F# | ||
| aug | | aug 5-mosstep | ||
| 1866.67 | |E# | ||
|aug 5-mosstep | |||
|1866.67 | |||
| 80/27, 38/13 | | 80/27, 38/13 | ||
|- | |- | ||
| 22 | | 22 | ||
| Gb | | Gb | ||
| dim | | dim 6-mosstep | ||
| 1955.56 | |Fb | ||
| 40/13 | |min 6-mosstep | ||
|- | |1955.56 | ||
| 23 | | 28/9, 40/13 | ||
| G | |- | ||
| perf | | '''23''' | ||
| 2044.44 | | '''G''' | ||
| 13/4 | | '''perf 6-mosstep''' | ||
|Gbb | |||
|ddim tetratave | |||
|'''2044.44''' | |||
| '''13/4''' | |||
|- | |- | ||
| 24 | | 24 | ||
| G# | | G# | ||
| aug | | aug 6-mosstep | ||
| 2133.33 | |F | ||
|maj 6-mosstep | |||
|2133.33 | |||
| 24/7 | | 24/7 | ||
|- | |- | ||
Line 166: | Line 238: | ||
| Abb | | Abb | ||
| ddim tetratave | | ddim tetratave | ||
| 2222.22 | |Gb | ||
|dim tetratave | |||
|2222.22 | |||
| 18/5 | | 18/5 | ||
|- | |- | ||
Line 172: | Line 246: | ||
| Ab | | Ab | ||
| dim tetratave | | dim tetratave | ||
| 2311.11 | |F# | ||
|aug 6-mosstep | |||
|2311.11 | |||
| 80/21 | | 80/21 | ||
|- | |- | ||
Line 178: | Line 254: | ||
| A | | A | ||
| tetratave | | tetratave | ||
| 2400.00 | |G | ||
|tetratave | |||
|2400.00 | |||
| 4/1 | | 4/1 | ||
|} | |} | ||
The | The genchain for the Nelindic scale is as follows: | ||
{| class="wikitable" | {| class="wikitable" | ||
Line 241: | Line 319: | ||
| A6 | | A6 | ||
|} | |} | ||
The genchain for the Tetrarchy scale is as follows: | |||
{| class="wikitable" | |||
| Gbb | |||
| Bbb | |||
| Dbb | |||
| Fbb | |||
| Abb | |||
| Cbb | |||
| Eb | |||
| Gb | |||
| Bb | |||
| Db | |||
| Fb | |||
| Ab | |||
| Cb | |||
| E | |||
| G | |||
| B | |||
| D | |||
| F | |||
| A | |||
| C | |||
| E# | |||
| G# | |||
| B# | |||
| D# | |||
| F# | |||
| A# | |||
| C# | |||
|- | |||
| dd1 | |||
| dd3 | |||
| d5 | |||
| d7 | |||
| d2 | |||
| d4 | |||
| d6 | |||
| d1 | |||
| d3 | |||
| m5 | |||
| m7 | |||
| m2 | |||
| m4 | |||
| P6 | |||
| P1 | |||
| P3 | |||
| M5 | |||
| M7 | |||
| M2 | |||
| M4 | |||
| A6 | |||
| A1 | |||
| A3 | |||
| A5 | |||
| A7 | |||
| A2 | |||
| A4 | |||
|} | |||
== Temperaments == | |||
There rank-2 temperament interpretation of the 3L 4s is called Tetrarchy ([http://x31eq.com/cgi-bin/rt.cgi?limit=4_3%2F2_9%2F7&ets=q17_q27&tuning=po&subgroup=on regular temperament finder link]). The name is derived from „tetratave Archytas”, as it's the double octave interpretation of 7-limit Archytas. This scale tempers [[64/63|Archytas' comma]] (64/63), as [[3/2]] stacked twice approximates 16/7, stacked thrice, it approximates 24/7, and stacked 4 times: 36/7, which is 9/7 above the tetratave. | |||
=== Tetrarchy === | |||
Tetrarchy is a [[Domain basis #Canonical form|noncanonical form]] of quarchy. | |||
* [[Subgroup]]: 4.3/2.9/7 | |||
* [[Comma list]]: [[64/63]] | |||
* {{Mapping|legend=1|1 0 -1|0 1 4}} | |||
* [[Support|Supporting]] ETs: [[17ed4|17]], 27 | |||
* [[POTE tuning]]: ~[[3/2]] = 709.3213 | |||
The Nelindic temperament is described in it's own article on [[Nelinda]]. | |||
[[Category:Nonoctave]] | [[Category:Nonoctave]] | ||