24edt: Difference between revisions
Created page with "'''24EDT''' is the equal division of the third harmonic into 24 parts of 79.2481 cents each, corresponding to 15.1423 edo (similar to every seventh step o..." Tags: Mobile edit Mobile web edit |
m Removing from Category:Edonoi using Cat-a-lot |
||
(10 intermediate revisions by 7 users not shown) | |||
Line 1: | Line 1: | ||
'''24EDT''' is the [[Edt|equal division of the third harmonic]] into 24 parts of 79.2481 [[cent|cents]] each, corresponding to 15.1423 [[edo]] (similar to every seventh step of [[106edo]]). | {{Infobox ET}} | ||
'''24EDT''' is the [[Edt|equal division of the third harmonic]] into 24 parts of 79.2481 [[cent|cents]] each, corresponding to 15.1423 [[edo]] (similar to every seventh step of [[106edo]]). It is related to the rank-three temperament which tempers out 325/324, 625/624, and 468512/468195 in the 13-limit, which is supported by [[15edo|15]], [[106edo|106]], [[121edo|121]], [[212edo|212]], and [[227edo|227]] EDOs. | |||
== Theory == | |||
{{Harmonics in equal|24|3|1|prec=2|columns=15}} | |||
== Interval table == | |||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
! | degree | ! | degree | ||
! | cents value | ! | cents value | ||
!hekts | |||
! | corresponding <br>JI intervals | ! | corresponding <br>JI intervals | ||
! | comments | ! | comments | ||
|- | |- | ||
! colspan="3" | 0 | |||
| | '''exact [[1/1]]''' | | | '''exact [[1/1]]''' | ||
| | | | | | ||
Line 15: | Line 20: | ||
| | 1 | | | 1 | ||
| | 79.2481 | | | 79.2481 | ||
|54.167 | |||
| | [[22/21]] | | | [[22/21]] | ||
| | | | | | ||
Line 20: | Line 26: | ||
| | 2 | | | 2 | ||
| | 158.4963 | | | 158.4963 | ||
|108.333 | |||
| | | | | | ||
| | | | |pseudo-12/11 | ||
|- | |- | ||
| | 3 | | | 3 | ||
| | 237.7444 | | | 237.7444 | ||
| | 39/34 | |162.5 | ||
| | 39/34, 8/7 | |||
| | | | | | ||
|- | |- | ||
| | 4 | | | 4 | ||
| | 316.9925 | | | 316.9925 | ||
|216.667 | |||
| | [[6/5]] | | | [[6/5]] | ||
| | | | | | ||
Line 35: | Line 44: | ||
| | 5 | | | 5 | ||
| | 396.2406 | | | 396.2406 | ||
|270.833 | |||
| | 44/35 | | | 44/35 | ||
| | | | |pseudo-[[5/4]] | ||
|- | |- | ||
| | 6 | | | 6 | ||
| | 475.4888 | | | 475.4888 | ||
| | | |325 | ||
| | | | |21/16 | ||
| |pseudo-[[4/3]] | |||
|- | |- | ||
| | 7 | | | 7 | ||
| | 554.7369 | | | 554.7369 | ||
| | | |379.167 | ||
| |11/8 | |||
| | | | | | ||
|- | |- | ||
| | 8 | | | 8 | ||
| | 633. | | | 633.985 | ||
| | 75/52 | |433.333 | ||
| | 75/52, 13/9 | |||
| | | | | | ||
|- | |- | ||
| | 9 | | | 9 | ||
| | 713.2331 | | | 713.2331 | ||
|487.5 | |||
| | | | | | ||
| | | | |pseudo-[[3/2]] | ||
|- | |- | ||
| | 10 | | | 10 | ||
| | 792.4813 | | | 792.4813 | ||
|541.667 | |||
| | [[30/19]], [[19/12]] | | | [[30/19]], [[19/12]] | ||
| | | | | | ||
Line 65: | Line 80: | ||
| | 11 | | | 11 | ||
| | 871.7294 | | | 871.7294 | ||
|595.833 | |||
| | | | | | ||
| | | | |pseudo-[[5/3]] | ||
|- | |- | ||
| | 12 | | | 12 | ||
| | 950.9775 | | | 950.9775 | ||
|650 | |||
| | 45/26, [[26/15]] | | | 45/26, [[26/15]] | ||
| | | | | | ||
Line 75: | Line 92: | ||
| | 13 | | | 13 | ||
| | 1030.2256 | | | 1030.2256 | ||
|704.167 | |||
| | | | | | ||
| | | | |pseudo-[[9/5]] | ||
|- | |- | ||
| | 14 | | | 14 | ||
| | 1109.4738 | | | 1109.4738 | ||
|758.333 | |||
| | 36/19, [[19/10]] | | | 36/19, [[19/10]] | ||
| | | | | | ||
Line 85: | Line 104: | ||
| | 15 | | | 15 | ||
| | 1188.7219 | | | 1188.7219 | ||
|812.5 | |||
| | | | | | ||
| | | | |pseudooctave | ||
|- | |- | ||
| | 16 | | | 16 | ||
| | 1267. | | | 1267.97 | ||
| | [[26/25|52/25]] | |866.667 | ||
| | [[26/25|52/25]], 27/13 | |||
| | | | | | ||
|- | |- | ||
| | 17 | | | 17 | ||
| | 1347.2181 | | | 1347.2181 | ||
| | | |920.833 | ||
| |24/11 | |||
| | | | | | ||
|- | |- | ||
| | 18 | | | 18 | ||
| | 1426.4663 | | | 1426.4663 | ||
| | | |975 | ||
| | | | |16/7 | ||
| |pseudo-9/4 | |||
|- | |- | ||
| | 19 | | | 19 | ||
| | 1505.7144 | | | 1505.7144 | ||
|1029.167 | |||
| | 105/44 | | | 105/44 | ||
| | | | |pseudo-12/5 (6/5 plus pseudooctave) | ||
|- | |- | ||
| | 20 | | | 20 | ||
| | 1584.9625 | | | 1584.9625 | ||
|1083.333 | |||
| | [[5/2]] | | | [[5/2]] | ||
| | | | | | ||
Line 115: | Line 140: | ||
| | 21 | | | 21 | ||
| | 1664.2106 | | | 1664.2106 | ||
| | [[17/13|34/13]] | |1137.5 | ||
| | | | | [[17/13|34/13]], 21/8 | ||
| | φ<sup>2</sup> | |||
|- | |- | ||
| | 22 | | | 22 | ||
| | 1743.4588 | | | 1743.4588 | ||
|1191.667 | |||
| | | | | | ||
| | | | |pseudo-11/4 (11/8 plus pseudooctave) | ||
|- | |- | ||
| | 23 | | | 23 | ||
| | 1822.7069 | | | 1822.7069 | ||
|1245.833. | |||
| | 63/22 | | | 63/22 | ||
| | | | | | ||
|- | |- | ||
| | 24 | | | 24 | ||
| | 1901. | | | 1901.955 | ||
|1300 | |||
| | '''exact [[3/1]]''' | | | '''exact [[3/1]]''' | ||
| | [[3/2|just perfect fifth]] plus an octave | | | [[3/2|just perfect fifth]] plus an octave | ||
|} | |} | ||
[[ | ==Related regular temperaments== | ||
===11-limit 15&106&212=== | |||
Commas: 15625/15552, 585640/583443 | |||
POTE generators: ~7/4 = 968.8778, ~22/21 = 79.2597 | |||
Mapping: [<1 0 1 0 -1|, <0 24 20 0 25|, <0 0 0 1 1|] | |||
EDOs: 15, 106, 121, 212, 227 | |||
===13-limit 15&106&212=== | |||
Commas: 325/324, 625/624, 468512/468195 | |||
POTE generators: ~7/4 = 968.8187, ~22/21 = 79.2727 | |||
Mapping: [<1 0 1 0 -1 0|, <0 24 20 0 25 56|, <0 0 0 1 1 0|] | |||
EDOs: 15, 106, 121, 212, 227 | |||
{{todo|expand}} |