24edt: Difference between revisions

Xenllium (talk | contribs)
Created page with "'''24EDT''' is the equal division of the third harmonic into 24 parts of 79.2481 cents each, corresponding to 15.1423 edo (similar to every seventh step o..."
Tags: Mobile edit Mobile web edit
 
Fredg999 category edits (talk | contribs)
m Removing from Category:Edonoi using Cat-a-lot
 
(10 intermediate revisions by 7 users not shown)
Line 1: Line 1:
'''24EDT''' is the [[Edt|equal division of the third harmonic]] into 24 parts of 79.2481 [[cent|cents]] each, corresponding to 15.1423 [[edo]] (similar to every seventh step of [[106edo]]).
{{Infobox ET}}
'''24EDT''' is the [[Edt|equal division of the third harmonic]] into 24 parts of 79.2481 [[cent|cents]] each, corresponding to 15.1423 [[edo]] (similar to every seventh step of [[106edo]]). It is related to the rank-three temperament which tempers out 325/324, 625/624, and 468512/468195 in the 13-limit, which is supported by [[15edo|15]], [[106edo|106]], [[121edo|121]], [[212edo|212]], and [[227edo|227]] EDOs.


== Theory ==
{{Harmonics in equal|24|3|1|prec=2|columns=15}}
== Interval table ==
{| class="wikitable"
{| class="wikitable"
|-
|-
! | degree
! | degree
! | cents value
! | cents value
!hekts
! | corresponding <br>JI intervals
! | corresponding <br>JI intervals
! | comments
! | comments
|-
|-
| | 0
! colspan="3" | 0
| | 0.0000
| | '''exact [[1/1]]'''
| | '''exact [[1/1]]'''
| |  
| |  
Line 15: Line 20:
| | 1
| | 1
| | 79.2481
| | 79.2481
|54.167
| | [[22/21]]
| | [[22/21]]
| |  
| |  
Line 20: Line 26:
| | 2
| | 2
| | 158.4963
| | 158.4963
|108.333
| |  
| |  
| |  
| |pseudo-12/11
|-
|-
| | 3
| | 3
| | 237.7444
| | 237.7444
| | 39/34
|162.5
| | 39/34, 8/7
| |  
| |  
|-
|-
| | 4
| | 4
| | 316.9925
| | 316.9925
|216.667
| | [[6/5]]
| | [[6/5]]
| |  
| |  
Line 35: Line 44:
| | 5
| | 5
| | 396.2406
| | 396.2406
|270.833
| | 44/35
| | 44/35
| |  
| |pseudo-[[5/4]]
|-
|-
| | 6
| | 6
| | 475.4888
| | 475.4888
| |  
|325
| |  
| |21/16
| |pseudo-[[4/3]]
|-
|-
| | 7
| | 7
| | 554.7369
| | 554.7369
| |  
|379.167
| |11/8
| |  
| |  
|-
|-
| | 8
| | 8
| | 633.9850
| | 633.985
| | 75/52
|433.333
| | 75/52, 13/9
| |  
| |  
|-
|-
| | 9
| | 9
| | 713.2331
| | 713.2331
|487.5
| |  
| |  
| |  
| |pseudo-[[3/2]]
|-
|-
| | 10
| | 10
| | 792.4813
| | 792.4813
|541.667
| | [[30/19]], [[19/12]]
| | [[30/19]], [[19/12]]
| |  
| |  
Line 65: Line 80:
| | 11
| | 11
| | 871.7294
| | 871.7294
|595.833
| |  
| |  
| |  
| |pseudo-[[5/3]]
|-
|-
| | 12
| | 12
| | 950.9775
| | 950.9775
|650
| | 45/26, [[26/15]]
| | 45/26, [[26/15]]
| |  
| |  
Line 75: Line 92:
| | 13
| | 13
| | 1030.2256
| | 1030.2256
|704.167
| |  
| |  
| |  
| |pseudo-[[9/5]]
|-
|-
| | 14
| | 14
| | 1109.4738
| | 1109.4738
|758.333
| | 36/19, [[19/10]]
| | 36/19, [[19/10]]
| |  
| |  
Line 85: Line 104:
| | 15
| | 15
| | 1188.7219
| | 1188.7219
|812.5
| |  
| |  
| |  
| |pseudooctave
|-
|-
| | 16
| | 16
| | 1267.9700
| | 1267.97
| | [[26/25|52/25]]
|866.667
| | [[26/25|52/25]], 27/13
| |  
| |  
|-
|-
| | 17
| | 17
| | 1347.2181
| | 1347.2181
| |  
|920.833
| |24/11
| |  
| |  
|-
|-
| | 18
| | 18
| | 1426.4663
| | 1426.4663
| |  
|975
| |  
| |16/7
| |pseudo-9/4
|-
|-
| | 19
| | 19
| | 1505.7144
| | 1505.7144
|1029.167
| | 105/44
| | 105/44
| |  
| |pseudo-12/5 (6/5 plus pseudooctave)
|-
|-
| | 20
| | 20
| | 1584.9625
| | 1584.9625
|1083.333
| | [[5/2]]
| | [[5/2]]
| |  
| |  
Line 115: Line 140:
| | 21
| | 21
| | 1664.2106
| | 1664.2106
| | [[17/13|34/13]]
|1137.5
| |  
| | [[17/13|34/13]], 21/8
| | φ<sup>2</sup>
|-
|-
| | 22
| | 22
| | 1743.4588
| | 1743.4588
|1191.667
| |  
| |  
| |  
| |pseudo-11/4 (11/8 plus pseudooctave)
|-
|-
| | 23
| | 23
| | 1822.7069
| | 1822.7069
|1245.833.
| | 63/22
| | 63/22
| |  
| |  
|-
|-
| | 24
| | 24
| | 1901.9550
| | 1901.955
|1300
| | '''exact [[3/1]]'''
| | '''exact [[3/1]]'''
| | [[3/2|just perfect fifth]] plus an octave
| | [[3/2|just perfect fifth]] plus an octave
|}
|}


[[Category:Edt]]
==Related regular temperaments==
[[Category:Edonoi]]
===11-limit 15&amp;106&amp;212===
Commas: 15625/15552, 585640/583443
 
POTE generators: ~7/4 = 968.8778, ~22/21 = 79.2597
 
Mapping: [&lt;1 0 1 0 -1|, &lt;0 24 20 0 25|, &lt;0 0 0 1 1|]
 
EDOs: 15, 106, 121, 212, 227
 
===13-limit 15&amp;106&amp;212===
Commas: 325/324, 625/624, 468512/468195
 
POTE generators: ~7/4 = 968.8187, ~22/21 = 79.2727
 
Mapping: [&lt;1 0 1 0 -1 0|, &lt;0 24 20 0 25 56|, &lt;0 0 0 1 1 0|]
 
EDOs: 15, 106, 121, 212, 227
 
{{todo|expand}}