16ed5/3: Difference between revisions
Created page with "'''16ED5/3''' is the equal division of the just major sixth into sixteen parts of 55.2724 cents each, corresponding to 21.7106 edo. It is very closely re..." Tags: Mobile edit Mobile web edit |
m Removing from Category:Edonoi using Cat-a-lot |
||
(57 intermediate revisions by 10 users not shown) | |||
Line 1: | Line 1: | ||
''' | {{Infobox ET}} | ||
'''16ed5/3''' is the [[Ed5/3|equal division of the just major sixth]] into sixteen parts of 55.2724 [[cent]]s each, corresponding to 21.7106[[edo]]. It is very closely related to the [[Escapade family|escapade temperament]]. It is vaguely equivalent to [[22edo]]. | |||
It very accurately approximates a number of low complexity just intervals, such as: [[4/3]] (<1¢), [[5/4]] (<1¢), [[11/8]] (<2¢), [[11/10]] (<1¢), [[16/15]] (<2¢), and [[25/16]] (<2¢). It also approximates the [[3/2|just fifth]] and [[2/1|octave]] to within 17¢, making it a flexible non-octave scale. Notably, having a period of [[5/3]], the diatonic minor third ([[6/5]]) is the period-reduced diatonic octave. This means both are approximated identically (16¢ sharp). | |||
== Harmonics == | |||
{{Harmonics in equal|16|5|3}} | |||
== Intervals == | |||
16ed5/3 can be notated using steps 7 (~5/4) and 9 (~4/3) as generators, as these are accurate to within 0.6¢. The resulting scale is a heptatonic 2L 5s (similar to the octave repeating antidiatonic). It can also be notated using the fifth-generated [[Blackcomb]] temperament as discussed in [[#Temperaments]], which lines up quite nicely with diatonic notation, aside from the "minor second" being in neutral second range and "perfect fourth" being in superfourth range. | |||
{| class="wikitable center-all right-2" | |||
! Degree | |||
! Cents | |||
! 5/3.4/3.11/6.31/18 subgroup interval | |||
! Other interpretations | |||
! 2L 5s<5/3> mos-interval | |||
! 2L 5s<5/3> notation | |||
! 1L 4s<5/3> ([[Blackcomb]][5]) interval | |||
! 1L 4s<5/3> ([[Blackcomb]][5]) notation | |||
! Diatonic interval | |||
|- | |||
| '''0''' | |||
| '''0.0000''' | |||
| '''1/1''' | |||
| | |||
| '''unison''' | |||
| '''E''' | |||
| '''unison''' | |||
| '''C''' | |||
| '''unison''' | |||
|- | |||
| 1 | |||
| 55.2724 | |||
| 31/30, 32/31, 33/32 | |||
| 36/35 | |||
| aug unison | |||
| E# | |||
| aug unison | |||
| C# | |||
| quartertone | |||
|- | |||
| 2 | |||
| 110.5448 | |||
| 16/15, 33/31 | |||
| 21/20 | |||
| min mos2nd | |||
| Fb | |||
| double-aug unison, dim second | |||
| Cx, Dbb | |||
| minor second | |||
|- | |||
| 3 | |||
| 165.8173 | |||
| 11/10 | |||
| | |||
| maj mos2nd | |||
| F | |||
| minor second | |||
| Db | |||
| neutral second | |||
|- | |||
| 4 | |||
| 221.0897 | |||
| 25/22 | |||
| 8/7, 17/15 | |||
| min mos3rd | |||
| F#/Gb | |||
| major second | |||
| D | |||
| major second | |||
|- | |||
| 5 | |||
| 276.3621 | |||
| 75/64, 88/75 | |||
| 7/6, 20/17 | |||
| maj mos3rd | |||
| G | |||
| aug second | |||
| D# | |||
| subminor third | |||
|- | |||
| 6 | |||
| 331.6345 | |||
| 40/33, 75/62 | |||
| 6/5, 17/14 | |||
| dim mos4th | |||
| G#/Ab | |||
| minor third | |||
| Eb | |||
| minor third | |||
|- | |||
| 7 | |||
| ''386.9069'' | |||
| ''5/4'' | |||
| | |||
| ''perf mos4th'' | |||
| A | |||
| major third | |||
| E | |||
| major third | |||
|- | |||
| 8 | |||
| 442.1794 | |||
| 31/24, 40/31 | |||
| 9/7, 35/27, 22/17 | |||
| aug mos4th | |||
| A#/Bb | |||
| aug third | |||
| E# | |||
| supermajor third | |||
|- | |||
| 9 | |||
| ''497.4517'' | |||
| ''4/3'' | |||
| | |||
| ''perf mos5th'' | |||
| B | |||
| dim fourth | |||
| Fb | |||
| just fourth | |||
|- | |||
| 10 | |||
| 552.7242 | |||
| 11/8, 62/45 | |||
| 25/18, 18/13 | |||
| aug mos5th | |||
| B# | |||
| perfect fourth | |||
| F | |||
| wide fourth | |||
|- | |||
| 11 | |||
| 607.9966 | |||
| 44/31, 64/45 | |||
| 10/7, 17/12 | |||
| min mos6th | |||
| Cb | |||
| aug fourth | |||
| F# | |||
| large tritone | |||
|- | |||
| 12 | |||
| 663.2690 | |||
| 22/15 | |||
| 72/49 | |||
| maj mos6th | |||
| C | |||
| dim fifth | |||
| Gb | |||
| narrow fifth | |||
|- | |||
| 13 | |||
| 718.5415 | |||
| 50/33 | |||
| 3/2 | |||
| min mos7th | |||
| C#/Db | |||
| perfect fifth | |||
| G | |||
| acute fifth | |||
|- | |||
| 14 | |||
| 773.8129 | |||
| 25/16 | |||
| | |||
| maj mos7th | |||
| D | |||
| aug fifth | |||
| G# | |||
| subminor sixth | |||
|- | |||
| 15 | |||
| 829.0863 | |||
| 50/31 | |||
| 8/5, 13/8 | |||
| dim mos8ave | |||
| D#/Eb | |||
| dim sixth | |||
| Cb | |||
| minor sixth | |||
|- | |||
| '''16''' | |||
| '''884.3587''' | |||
| '''5/3''' | |||
| | |||
| '''mosoctave''' | |||
| '''E''' | |||
| '''perfect sixth''' | |||
| '''C''' | |||
| '''major sixth''' | |||
|- | |||
| 17 | |||
| 939.6311 | |||
| 31/18, 55/32 | |||
| 12/7, 19/11 | |||
| aug mos8ave | |||
| E# | |||
| aug sixth | |||
| C# | |||
| supermajor sixth | |||
|- | |||
| 18 | |||
| 994.9035 | |||
| 16/9, 55/31 | |||
| 7/4 | |||
| min mos9th | |||
| Fb | |||
| double-aug sixth, dim seventh | |||
| Cx, Dbb | |||
| minor seventh | |||
|- | |||
| 19 | |||
| 1050.1760 | |||
| 11/6 | |||
| | |||
| maj mos9th | |||
| F | |||
| minor seventh | |||
| Db | |||
| neutral seventh | |||
|- | |||
| 20 | |||
| 1105.4484 | |||
| 176/93, 125/66, 256/135 | |||
| 40/21, (27/14), 17/9 | |||
| min mos10th | |||
| F#/Gb | |||
| major seventh | |||
| D | |||
| major seventh | |||
|- | |||
| 21 | |||
| 1160.7208 | |||
| 88/45, 125/64 | |||
| 35/18, 43/22 | |||
| maj mos10th | |||
| G | |||
| aug seventh | |||
| D# | |||
| narrow octave | |||
|- | |||
| 22 | |||
| 1215.9932 | |||
| 200/99, 121/60, 125/62 | |||
| 2/1 | |||
| dim mos11th | |||
| G#/Ab | |||
| minor octave | |||
| Eb | |||
| octave | |||
|} | |||
These intervals are close to a few other related scales: | |||
{| class="wikitable left-all" | |||
! | |||
! [[22edo]] | |||
! [[7ed5/4]] | |||
!23ed18\17 | |||
! 16ed5/3 | |||
! [[9ed4/3]] (Noleta) | |||
! [[43ed4]] | |||
! [[34edt]] | |||
! [[21edo]] | |||
|- | |||
| 1 | |||
| 54.54545 | |||
| 55.188 | |||
|55.2429 | |||
| ''55.2724'' | |||
| 55.338 | |||
| 55.8140 | |||
| 55.9399 | |||
| 57.1429 | |||
|- | |||
| 2 | |||
| 109.0909 | |||
| 110.375 | |||
|110.4859 | |||
| ''110.5448'' | |||
| 110.677 | |||
| 111.6729 | |||
| 111.8797 | |||
| 114.2857 | |||
|- | |||
| 3 | |||
| 163.6364 | |||
| 165.563 | |||
|165.7288 | |||
| ''165.8173'' | |||
| 166.015 | |||
| 167.4419 | |||
| 167.8196 | |||
| 171.4286 | |||
|- | |||
| 4 | |||
| 218.1818 | |||
| 220.751 | |||
|220.9718 | |||
| ''221.0897'' | |||
| 221.353 | |||
| 223.2558 | |||
| 223.7594 | |||
| 228.5714 | |||
|- | |||
| 5 | |||
| 272.7273 | |||
| 275.938 | |||
|276.2147 | |||
| ''276.3621'' | |||
| 276.692 | |||
| 279.0698 | |||
| 279.6993 | |||
| 285.7143 | |||
|- | |||
| 6 | |||
| 327.2727 | |||
| 331.126 | |||
|331.4576 | |||
| ''331.6345'' | |||
| 332.030 | |||
| 334.8837 | |||
| 335.6391 | |||
| 342.8571 | |||
|- | |||
| 7 | |||
| 381.8182 | |||
| 386.314 | |||
|386.7006 | |||
| ''386.9069'' | |||
| 387.368 | |||
| 390.6977 | |||
| 391.5790 | |||
| 400 | |||
|- | |||
| 8 | |||
| 436.3636 | |||
| 441.501 | |||
|441.9435 | |||
| ''442.1794'' | |||
| 442.707 | |||
| 446.5116 | |||
| 447.5188 | |||
| 457.1429 | |||
|- | |||
| 9 | |||
| 490.9091 | |||
| 496.689 | |||
|497.1865 | |||
| ''497.4517'' | |||
| 498.045 | |||
| 502.3256 | |||
| 503.4587 | |||
| 514.2857 | |||
|- | |||
| 10 | |||
| 545.5455 | |||
| 551.877 | |||
|552.4294 | |||
| ''552.7242'' | |||
| 553.383 | |||
| 558.1395 | |||
| 559.3985 | |||
| 571.4286 | |||
|- | |||
| 11 | |||
| 600 | |||
| 607.064 | |||
|607.6723 | |||
| ''607.9966'' | |||
| 608.722 | |||
| 613.9535 | |||
| 615.3384 | |||
| 628.5714 | |||
|- | |||
| 12 | |||
| 654.5455 | |||
| 662.252 | |||
|662.9153 | |||
| ''663.269'' | |||
| 664.060 | |||
| 669.7674 | |||
| 671.2782 | |||
| 685.7143 | |||
|- | |||
| 13 | |||
| 709.0909 | |||
| 717.440 | |||
|718.1582 | |||
| ''718.5415'' | |||
| 719.398 | |||
| 725.5814 | |||
| 727.2181 | |||
| 742.8571 | |||
|- | |||
| 14 | |||
| 763.6364 | |||
| 772.627 | |||
|773.4011 | |||
| ''773.8129'' | |||
| 774.737 | |||
| 781.3954 | |||
| 783.1579 | |||
| 800 | |||
|- | |||
| 15 | |||
| 818.1818 | |||
| 827.815 | |||
|828.6441 | |||
| ''829.0863'' | |||
| 830.075 | |||
| 837.7209 | |||
| 839.0978 | |||
| 857.1429 | |||
|- | |||
| 16 | |||
| 872.7273 | |||
| 883.003 | |||
|883.8870 | |||
| ''884.3587'' | |||
| 885.413 | |||
| 893.0233 | |||
| 895.0376 | |||
| 914.2857 | |||
|} | |||
== MOS Scales == | |||
16edVI supports the same [[MOS scale]]s as [[16edo]], as such it contains the following scales: | |||
{| class="wikitable center-all left-3" | |||
! Periods <br> per octave | |||
! Generator | |||
! Pattern | |||
|- | |||
| 1 | |||
| 1\16 | |||
| 1L Ns | |||
|- | |||
| 1 | |||
| 3\16 | |||
| 1L 4s, 5L 1s | |||
|- | |||
| 1 | |||
| 5\16 | |||
| 3L 4s, 3L 7s | |||
|- | |||
| 1 | |||
| 7\16 | |||
| 2L 5s, 7L 2s | |||
|- | |||
| 2 | |||
| 1\16 | |||
| 2L 8s, 2L 10s, 2L 12s | |||
|- | |||
| 2 | |||
| 3\16 | |||
| 4L 2s, 6L 4s | |||
|- | |||
| 4 | |||
| 1\16 | |||
| 4L 4s, 4L 8s | |||
|} | |||
For the 2L 5s scale, the genchain is this: | |||
{| class="wikitable center-all" | |||
| F# | |||
| C# | |||
| G# | |||
| D# | |||
| A# | |||
| E# | |||
| B# | |||
| F | |||
| C | |||
| G | |||
| D | |||
| A | |||
| '''E''' | |||
| B | |||
| Fb | |||
| Cb | |||
| Gb | |||
| Db | |||
| Ab | |||
| Eb | |||
| Db | |||
| Fbb | |||
| Cbb | |||
| Gbb | |||
| Dbb | |||
|- | |||
| A2 | |||
| A6 | |||
| A3 | |||
| A7 | |||
| A4 | |||
| A1 | |||
| A5 | |||
| M2 | |||
| M6 | |||
| M3 | |||
| M7 | |||
| P4 | |||
| '''P1''' | |||
| P5 | |||
| m2 | |||
| m6 | |||
| m3 | |||
| m7 | |||
| d4 | |||
| d1 | |||
| d5 | |||
| d2 | |||
| d6 | |||
| d3 | |||
| d7 | |||
|} | |||
== Commas == | |||
Depending on your mapping, 16ed5/3 can be said to temper a number of commas, including the [[diaschisma]], the [[marvel comma]], [[64/63|Archytas' comma]], and the [[jubilisma]], all discussed in the temperaments section. In addition, being an even division of the 5/3, it tempers the [[sensamagic comma]], as the half mosoctave is midway between [[9/7]] and [[35/27]]. This is analogous to the tritone in 2n edo systems. The [[keema]] is tempered due to the septimal interpretation of the diatonic sevenths, and the [[mothwellsma]] is tempered by two major mos3rds ([[7/6]]) resulting in an augmented mos5th ([[11/8]]). | |||
== Temperaments == | |||
The 2L 5s scale is generated by a very accurate [[4/3]], such that two of them wind up on a near exact [[16/9]], which period-reduces to [[16/15]] (the minor mossecond). This interval taken 2 times is approximated by an [[8/7]], and taken 3 times is approximated by a [[6/5]] (or [[2/1]] in the next mosoctave). These 2 equivalencies result in two tempered commas: the marvel comma - [[225/224]] ((<sup>16</sup>/<sub>15</sub>)<sup>2</sup>=(<sup>8</sup>/<sub>7</sub>)), and the diaschisma - [[2048/2025]] ((<sup>16</sup>/<sub>15</sub>)<sup>3</sup>=(<sup>6</sup>/<sub>5</sub>)). | |||
The diaschisma can also be tempered by taking 5 generators to mean a [[3/2]] ((<sup>4</sup>/<sub>3</sub>)<sup>5</sup>=(<sup>3</sup>/<sub>2</sub>)·(<sup>5</sup>/<sub>3</sub>)<sup>2</sup>), while the marvel comma can also be tempered with a stack of 3 generators, making a [[10/7]] ((<sup>4</sup>/<sub>3</sub>)<sup>3</sup>=(<sup>10</sup>/<sub>7</sub>)·(<sup>5</sup>/<sub>3</sub>)). | |||
The tempered marvel comma also means that the two large [[tritone]]s ([[64/45|pental]] and [[10/7|septimal]]) are addressed by the same scale step. The tempered diaschisma, on the other hand, means that both pental tritones are also addressed by the same scale step. | |||
Both of the 7-limit approaches also temper Archytas' comma as a result of equating the [[16/9]] with [[7/4]], and the jubilisma ([[50/49]]) due to tritone equivalence. These are relatively large commas, given the step size (about half, and 7/11ths respectively). | |||
This shows the close relationships with [[srutal]] and [[pajara]] octave temperaments. In 16ed5/3's case, there is a close equivalence to [[22edo]]'s pajara tuning. | |||
As 3 semitones make a period-reduced octave, and it alludes to tritone tempering, [[User:Ayceman|I]] propose the name '''tristone''' for the basic [[Diaschismic family|diaschismic temperament]], based on the 16/15 to 6/5 relationship, as well as the following variants and extensions: | |||
=== Tristone === | |||
[[Subgroup]]: 5/3.20/9.10/3 | |||
[[Comma]] list: 2048/2025 | |||
[[POL2]] generator: ~5/4 = 389.8224 | |||
[[Mapping]]: [⟨1 2 5], ⟨0 -1 -6]] | |||
TE [[complexity]]: 1.988720 | |||
[[RMS temperament measures|RMS]] error: 2.228679 cents | |||
[[Optimal ET sequence]]: 9ed5/3, 16ed5/3, 25ed5/3 | |||
==== Tridistone ==== | |||
[[Subgroup]]: 5/3.20/9.10/3.1000/189 | |||
[[Comma]] list: 2048/2025, 225/224, 64/63, 50/49 | |||
[[POL2]] generator: ~5/4 = 389.6140 | |||
[[Mapping]]: [⟨1 2 5 5], ⟨0 -1 -6 -4]] | |||
TE [[complexity]]: 1.724923 | |||
[[RMS temperament measures|RMS]] error: 8.489179 cents | |||
[[Optimal ET sequence]]: 9ed5/3, 16ed5/3 | |||
=== Metatristone === | |||
[[Subgroup]]: 5/3.20/9.5/2 | |||
[[Comma]] list: 2048/2025 | |||
[[POL2]] generator: ~5/4 = 390.5180 | |||
[[Mapping]]: [⟨1 2 4], ⟨0 -1 -5]] | |||
TE [[complexity]]: 2.192193 | |||
[[RMS temperament measures|RMS]] error: 2.021819 cents | |||
[[Optimal ET sequence]]: 9ed5/3, 16ed5/3, 25ed5/3 | |||
==== Metatridistone ==== | |||
[[Subgroup]]: 5/3.20/9.5/2.250/63 | |||
[[Comma]] list: 2048/2025, 225/224, 64/63, 50/49 | |||
[[POL2]] generator: ~5/4 = 390.5430 | |||
[[Mapping]]: [⟨1 2 4 4], ⟨0 -1 -5 -3]] | |||
TE [[complexity]]: 1.895168 | |||
[[RMS temperament measures|RMS]] error: 7.910273 cents | |||
[[Optimal ET sequence]]: 9ed5/3, 16ed5/3 | |||
'''16ed5/3''' also supports [[Blackcomb]] temperament which is built on [[5/4]] and [[3/2]] in a very similar way to octave-repeating [[meantone]] but is less accurate. Blackcomb tempers out the comma [[250/243]], the amount by which 3 [[3/2]]'s exceed [[5/4]] sixth-reduced, in the 5/3.2.3 subgroup (equal to the [[5-limit]]). | |||
[[Category:Nonoctave]] | [[Category:Nonoctave]] |