19edf: Difference between revisions

No edit summary
ArrowHead294 (talk | contribs)
mNo edit summary
 
(6 intermediate revisions by 4 users not shown)
Line 1: Line 1:
'''19EDF''' is the [[EDF|equal division of the just perfect fifth]] into 19 parts of 36.945 [[cent|cents]] each, corresponding to 32.4807 [[edo]] (similar to every second step of [[65edo]]). It tempers out the same commas as 65edo with the addition of |-103/19 65/19> (1.425 cents) resulting from its inexact 4/1.
{{Infobox ET}}


==Intervals==
== Theory ==
{| class="wikitable"
19edf corresponds to 32.4807 [[edo]] (similar to every second step of [[65edo]]). It tempers out the same commas as 65edo with the addition of {{monzo| -103/19 65/19 }} (1.425{{c}}) resulting from its inexact 4/1. It is not as similar to [[32edo]] as [[13edf]] and [[16edf]] are to [[22edo]] and [[27edo]].
 
== Harmonics ==
{{Harmonics in equal|19|3|2}}
{{Harmonics in equal|19|3|2|start=12|collapsed=1}}
 
== Intervals ==
{| class="wikitable mw-collapsible"
|+ style="font-size: 105%;" | Intervals of 19edf
|-
|-
! | degree
! Degree
! | cents value
! [[Cent]]s
! | corresponding <br>JI intervals
! Corresponding<br />JI intervals
! | comments
! comments
|-
|-
| | 0
! colspan="2" | 0
| | 0
| '''exact [[1/1]]'''
| | '''exact [[1/1]]'''
|  
| |  
|-
|-
| | 1
| 1
| | 36.945
| 36.945
| |  
|  
| |  
|  
|-
|-
| | 2
| 2
| | 73.89
| 73.89
| | [[24/23]]
| [[24/23]]
| |  
|  
|-
|-
| | 3
| 3
| | 110.835
| 110.835
| | [[16/15]]
| [[16/15]]
| |  
|  
|-
|-
| | 4
| 4
| | 147.78
| 147.78
| | [[12/11]]
| [[12/11]]
| |  
|  
|-
|-
| | 5
| 5
| | 184.725
| 184.725
| | [[10/9]]
| [[10/9]]
| |  
|  
|-
|-
| | 6
| 6
| | 221.67
| 221.67
| | [[25/22]]
| [[25/22]]
| |  
|  
|-
|-
| | 7
| 7
| | 258.615
| 258.615
| | 36/31
| 36/31
| |  
|  
|-
|-
| | 8
| 8
| | 295.56
| 295.56
| | [[19/16]]
| [[19/16]]
| |  
|  
|-
|-
| | 9
| 9
| | 332.505
| 332.505
| | 63/52, 40/33
| 63/52, 40/33
| |  
|  
|-
|-
| | 10
| 10
| | 369.45
| 369.45
| | [[26/21]]
| [[26/21]]
| |  
|  
|-
|-
| | 11
| 11
| | 406.395
| 406.395
| | [[24/19]], [[19/15]]
| [[24/19]], [[19/15]]
| |  
|  
|-
|-
| | 12
| 12
| | 443.34
| 443.34
| | 31/24
| 31/24
| |  
|  
|-
|-
| | 13
| 13
| | 480.285
| 480.285
| | 33/25
| 33/25
| |  
|  
|-
|-
| | 14
| 14
| | 517.23
| 517.23
| | [[27/20]]
| [[27/20]]
| |  
|  
|-
|-
| | 15
| 15
| | 554.175
| 554.175
| | [[11/8]]
| [[11/8]]
| |  
|  
|-
|-
| | 16
| 16
| | 591.12
| 591.12
| | [[45/32]]
| [[45/32]]
| |  
|  
|-
|-
| | 17
| 17
| | 628.065
| 628.065
| | [[23/16]]
| [[23/16]]
| |  
|  
|-
|-
| | 18
| 18
| | 665.01
| 665.01
| | [[22/15]]
| [[22/15]]
| |  
|  
|-
|-
| | 19
| 19
| | 701.955
| 701.955
| | '''exact [[3/2]]'''
| '''exact [[3/2]]'''
| | just perfect fifth
| just perfect fifth
|-
|-
| | 20
| 20
| | 738.9
| 738.9
| |  
|  
| |  
|  
|-
|-
| | 21
| 21
| | 775.845
| 775.845
| |  
|  
| |  
|  
|-
|-
| | 22
| 22
| | 812.79
| 812.79
| | [[8/5]]
| [[8/5]]
| |  
|  
|-
|-
| | 23
| 23
| | 849.735
| 849.735
| | [[18/11]]
| [[18/11]]
| |  
|  
|-
|-
| | 24
| 24
| | 886.68
| 886.68
| | [[5/3]]
| [[5/3]]
| |  
|  
|-
|-
| | 25
| 25
| | 923.625
| 923.625
| |  
|  
| |  
|  
|-
|-
| | 26
| 26
| | 960.57
| 960.57
| |  
|  
| |  
|  
|-
|-
| | 27
| 27
| | 997.515
| 997.515
| | [[16/9]]
| [[16/9]]
| |  
|  
|-
|-
| | 28
| 28
| | 1034.46
| 1034.46
| | [[20/11]]
| [[20/11]]
| |  
|  
|-
|-
| | 29
| 29
| | 1071.405
| 1071.405
| | [[13/7]]
| [[13/7]]
| |  
|  
|-
|-
| | 30
| 30
| | 1108.35
| 1108.35
| | [[36/19]]
| [[36/19]]
| |  
|  
|-
|-
| | 31
| 31
| | 1145.295
| 1145.295
| | 31/16
| 31/16
| |  
|  
|-
|-
| | 32
| 32
| | 1182.24
| 1182.24
| |  
|  
| |  
|  
|-
|-
| | 33
| 33
| | 1219.185
| 1219.185
| |  
|  
| |  
|  
|-
|-
|34
| 34
|1256.13
| 1256.13
|
|  
|
|  
|-
|-
|35
| 35
|1293.075
| 1293.075
|
|  
|
|  
|-
|-
|36
| 36
|1330.02
| 1330.02
|
|  
|
|  
|-
|-
|37
| 37
|1366.965
| 1366.965
|
|  
|
|  
|-
|-
|38
| 38
|1403.91
| 1403.91
|'''exact''' 9/4
| '''exact''' 9/4
|
|  
|}
|}


[[Category:Edf]]
{{todo|expand}}
[[Category:Edonoi]]