Rank-3 scale theorems: Difference between revisions

Wikispaces>xenwolf
**Imported revision 276419386 - Original comment: is there a page alout fokker blocks in this wiki?**
No edit summary
 
(215 intermediate revisions by 8 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
== Theorems ==
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2011-11-17 03:12:55 UTC</tt>.<br>
: The original revision id was <tt>276419386</tt>.<br>
: The revision comment was: <tt>is there a page alout fokker blocks in this wiki?</tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=Theorems=  
* Every triple [[Fokker block]] is max variety 3.
* Every triple [[Fokker block]] is max variety 3.
* Every max variety 3 block is a triple Fokker block.
* Every max variety 3 block is a triple Fokker block. (However, not every max-variety 3 scale, in general, need be a Fokker block.)
* Triple Fokker blocks form a trihexagonal tiling on the lattice.
* Triple Fokker blocks form a [http://en.wikipedia.org/wiki/Trihexagonal_tiling trihexagonal tiling] on the lattice.
* A scale imprint is that of a Fokker block if and only if it is the [[product word]] of two DE scale imprints with the same number of notes. See &lt;span style="background-color: #ffffff; color: #1155cc; font-family: arial,sans-serif;"&gt;[[@http://www.springerlink.com/content/c23748337406x463/]]&lt;/span&gt;
* A scale imprint is that of a Fokker block if and only if it is the [[product word|product]] of two DE scale imprints with the same number of notes. See [https://link.springer.com/chapter/10.1007/978-3-642-21590-2_24 Introduction to Scale Theory over Words in Two Dimensions &#124; SpringerLink]
* If the step sizes for a rank-3 Fokker block are L, m, n, and s, where L &gt; m &gt; n &gt; s, then the following identity must hold: (n-s) + (m-s) = (L-s), hence n+m=L+s
* If the step sizes for a rank-3 Fokker block are L, m, n, and s, where L &gt; m &gt; n &gt; s, then the following identity must hold: (n-s) + (m-s) = (L-s), hence n+m=L+s
* Any convex object on the lattice can be converted into a hexagon.
* Any convex object on the lattice can be converted into a hexagon.
* Any scale with 3 step sizes is a hexagon on the lattice, in which each set of parallel lines corresponds to one of the steps.
* Any convex scale with 3 step sizes is a hexagon on the lattice, in which each set of parallel lines corresponds to one of the steps.
* An MV3 scale always has two of the step sizes occurring the same number of times, except powers of abacaba. Except multi-period MV3's, such scales are always either pairwise-well-formed, a power of abcba, or a "twisted" word constructed from the mos 2qX rY. A pairwise-well-formed scale has odd size, and is either [[generator-offset]] or of the form abacaba. The PWF scales are exactly the single-period rank-3 [[billiard scales]].
== Conjectures ==
* Every rank-3 Fokker block has mean-variety &lt; 4, meaning that some interval class will come in less than 4 sizes.


=Unproven Conjectures=
[[Category:Fokker block]]
* Every rank-3 Fokker block has mean-variety &lt; 4, meaning that some interval class will come in less than 4 sizes.</pre></div>
[[Category:Math]]
<h4>Original HTML content:</h4>
[[Category:Rank 3]]
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Rank-3 scale theorems&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Theorems"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Theorems&lt;/h1&gt;
[[Category:Scale]]
&lt;ul&gt;&lt;li&gt;Every triple &lt;a class="wiki_link" href="/Fokker%20block"&gt;Fokker block&lt;/a&gt; is max variety 3.&lt;/li&gt;&lt;li&gt;Every max variety 3 block is a triple Fokker block.&lt;/li&gt;&lt;li&gt;Triple Fokker blocks form a trihexagonal tiling on the lattice.&lt;/li&gt;&lt;li&gt;A scale imprint is that of a Fokker block if and only if it is the &lt;a class="wiki_link" href="/product%20word"&gt;product word&lt;/a&gt; of two DE scale imprints with the same number of notes. See &lt;span style="background-color: #ffffff; color: #1155cc; font-family: arial,sans-serif;"&gt;&lt;a class="wiki_link_ext" href="http://www.springerlink.com/content/c23748337406x463/" rel="nofollow" target="_blank"&gt;http://www.springerlink.com/content/c23748337406x463/&lt;/a&gt;&lt;/span&gt;&lt;/li&gt;&lt;li&gt;If the step sizes for a rank-3 Fokker block are L, m, n, and s, where L &amp;gt; m &amp;gt; n &amp;gt; s, then the following identity must hold: (n-s) + (m-s) = (L-s), hence n+m=L+s&lt;/li&gt;&lt;li&gt;Any convex object on the lattice can be converted into a hexagon.&lt;/li&gt;&lt;li&gt;Any scale with 3 step sizes is a hexagon on the lattice, in which each set of parallel lines corresponds to one of the steps.&lt;/li&gt;&lt;/ul&gt;&lt;br /&gt;
[[Category:Pages with open problems]]
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Unproven Conjectures"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Unproven Conjectures&lt;/h1&gt;
&lt;ul&gt;&lt;li&gt;Every rank-3 Fokker block has mean-variety &amp;lt; 4, meaning that some interval class will come in less than 4 sizes.&lt;/li&gt;&lt;/ul&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>