14edf: Difference between revisions

Moremajorthanmajor (talk | contribs)
No edit summary
ArrowHead294 (talk | contribs)
 
(15 intermediate revisions by 5 users not shown)
Line 1: Line 1:
'''[[EDF|Division of the just perfect fifth]] into 14 equal parts''' (14EDF) is related to [[24edo|24 edo]], but with the 3/2 rather than the 2/1 being just. The octave is about 3.3514 cents stretched and the step size is about 50.1396 cents. The patent val has a generally sharp tendency for harmonics up to 22, with the exception for 7, 14, and 21.
{{Infobox ET}}
{{ED intro}}


Lookalikes: [[24edo]], [[38edt]]
== Theory ==
==Intervals==
14edf is related to [[24edo]], but with the perfect fifth rather than the [[2/1|octave]] being just, which stretches the octave by about 3.35 cents. The [[patent val]] has a generally sharp tendency for harmonics up to 22, with the exception for [[7/1|7]], [[14/1|14]], and [[21/1|21]].
{| class="wikitable"
 
|+
=== Harmonics ===
! rowspan="2" |
{{Harmonics in equal|14|3|2|intervals=integer|columns=11}}
! rowspan="2" |''ed233\420-5¢ (~51ed4!)''
{{Harmonics in equal|14|3|2|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 14edf (continued)}}
! rowspan="2" |ed31\54 (~49ed4!)
 
! rowspan="2" |ed121/81
=== Subsets and supersets ===
! rowspan="2" |ed3/2
Since 14 factors into primes as {{nowrap| 2 × 7 }}, 14edf contains subset edfs [[2edf]] and [[7edf]].
! colspan="2" |Pyrite
 
! rowspan="2" |ed122/81 (~ed13\22)
== Intervals ==
! rowspan="2" |ed34\57 (~47ed4!)
{{todo|inline=1|complete table|text=Add column with approximated JI ratios and/or notation.}}
! rowspan="2" |''ed37\60+5¢''
 
{| class="wikitable center-1 right-2"
|-
|-
!(~ed17\29)
! #
!(~ed10\17)
! Cents
|-
|-
|1
| 0
|''47.1939-47.551''
| 0.0
|49.20635
|49.6297
|50.1396
|50.2597
|50.41825
|50.6475
|51.1278
|''52.8571-53.2143''
|-
|-
|2
| 1
|''94.3878-95.102''
| 50.1
|98.4127
|99.2594
|100.2793
|100.5194
|100.8365
|101.295
|102.2556
|''105.7143-106.4286''
|-
|-
|3
| 2
|''141.5816-142.653''
| 100.3
|147.61905
|148.8891
|150.4189
|150.77915
|151.2547
|151.9425
|153.3835
|''158.5714-159.6429''
|-
|-
|4
| 3
|''188.7755-190.2041''
| 150.4
|196.8254
|198.5188
|200.5586
|201.0389
|201.673
|202.5899
|204.5113
|''211.4286-212.8571''
|-
|-
|5
| 4
|''235.9694-237.7551''
| 200.6
|246.03175
|248.1485
|250.6982
|251.2986
|252.0912
|253.2374
|255.6391
|''264.2857-266.0714''
|-
|-
|6
| 5
|''283.1633-285.3061''
| 250.7
|295.2381
|297.782
|300.8379
|301.5583
|302.5095
|303.8849
|306.7669
|''317.1429-319.2857''
|-
|-
|7
| 6
|''331.3571-332.857''1
| 300.8
|344.4444
|347.408
|350.9775
|351.818
|352.9277
|354.5324
|357.8947
|''370-372.5''
|-
|-
|8
| 7
|''377.551-380.4082''
| 351.0
|393.6508
|397.03765
|401.1171
|402.0777
|403.346
|405.1799
|409.0226
|''422.8571-425.7143''
|-
|-
|9
| 8
|''424.7449-427.9592''
| 401.1
|442.8571
|446.66735
|451.2568
|452.33745
|453.7642
|455.8274
|460.1504
|''475.7143-478.9286''
|-
|-
|10
| 9
|''471.9388-475.5102''
| 451.3
|492.0635
|496.2971
|501.3964
|502.5972
|504.1825
|506.4749
|511.2781
|''528.5714-532.1429''
|-
|-
|11
| 10
|''519.13265-523.0612''
| 501.4
|541.2698
|545.9268
|551.536
|552.8569
|554.6007
|557.1223
|562.406
|''581.4286-585.3571''
|-
|-
|12
| 11
|''566.3265-570.6122''
| 551.5
|590.4762
|595.5565
|601.6757
|603.1166
|605.019
|607.7698
|613.5338
|''634.2857-638.5714''
|-
|-
|13
| 12
|''613.5204-618.1633''
| 601.7
|639.6825
|645.1862
|651.8154
|653.3763
|655.4372
|658.4173
|664.66165
|''687.1429-691.7857''
|-
|-
|14
| 13
|''660.7143-665.714''3
| 651.8
|688.8889
|694.8158
|701.955
|703.636
|705.85545
|709.0648
|715.7895
|''740-745''
|-
|-
|15
| 14
|''707.9082-713.2653''
| 702.0
|738.0952
|744.4456
|752.0946
|753.89575
|756.2736
|759.7123
|766.9173
|''792.8571-798.2143''
|-
|-
|16
| 15
|''755.102-760.8163''
| 752.1
|787.3016
|794.0753
|802.2343
|804.1555
|806.6919
|810.3598
|818.0451
|''845.7143-851.4286''
|-
|-
|17
| 16
|''802.2959-808.36735''
| 802.2
|836.5079
|843.705
|852.3739
|854.4152
|857.1102
|961.0073
|869.1729
|''898.5714-904.6429''
|-
|-
|18
| 17
|''849.4898-855.9184''
| 852.4
|885.7143
|893.3347
|902.5136
|904.6749
|907.5284
|911.6547
|920.30075
|''951.4286-957.8571''
|-
|-
|19
| 18
|''896.6387-903.4694''
| 902.5
|934.9206
|942.9644
|952.6532
|954.9346
|957.9467
|962.3022
|971.4286
|''1004.2857-1011.0714''
|-
|-
|20
| 19
|''943.8776-951.0204''
| 952.7
|984.127
|992.5941
|1002.7929
|1005.1943
|1008.3649
|1012.9497
|1022.5564
|''1057.1429-1064.2857''
|-
|-
|21
| 20
|''991.0714-998.5714''
| 1002.8
|1033.333
|1042.2238
|1052.9235
|1055.454
|1058.7832
|1063.5972
|1073.6842
|''1110-1117.5''
|-
|-
|22
| 21
|''1038.2653-1046.12245''
| 1052.9
|1082.5397
|1091.8535
|1103.0721
|1105.7138
|1109.2014
|1114.2447
|1124.812
|''1162.8571-1170.7143''
|-
|-
|23
| 22
|''1085.4592-1093.6735''
| 1103.1
|1131.7646
|1141.4832
|1153.2118
|1155.9735
|1159.6297
|1164.8922
|1175.93985
|''1215.7143-1223.9286''
|-
|-
|24
| 23
|''1132.6531-1141.2245''
| 1153.2
|1180.9524
|1191.1129
|1203.3514
|1206.2332
|1210.0379
|1215.5397
|1227.0677
|''1268.5714-1277.5714''
|-
|-
|25
| 24
|''1179.8469-1188.7755''
| 1203.4
|1230.1587
|1240.74265
|1253.4911
|1256.4929
|1260.4561
|1266.18715
|1278.1955
|''1321.4286-1330.3571''
|-
|-
|26
| 25
|''1227.0408-1236.3265''
| 1253.5
|1279.3651
|1290.37235
|1303.6307
|1306.7526
|1310.8744
|1316.8346
|1329.3233
|''1374.2857-1383.5714''
|-
|-
|27
| 26
|''1274.2347-1283.87755''
| 1303.6
|1328.5714
|1340.0021
|1353.7704
|1357.01235
|1361.2927
|1367.4821
|1380.4511
|''1427.1429-1436.7857''
|-
|-
|28
| 27
|''1321.4286-1331.4286''
| 1353.8
|1377.7778
|-
|1389.6318
| 28
|1403.91
| 1403.9
|1407.2721
|1411.7109
|1418.1296
|1431.57895
|''1480-1490''
|}
|}
[[Category:Edf]]
 
[[Category:Edonoi]]
== See also ==
[[Category:todo:improve synopsis]]
* [[24edo]] – relative edo
* [[38edt]] – relative edt
* [[56ed5]] – relative ed5
* [[62ed6]] – relative ed6
* [[83ed11]] – relative ed11
* [[86ed12]] – relative ed12
* [[198ed304]] – close to the zeta-optimized tuning for 24edo
 
[[Category:24edo]]