Keemic temperaments: Difference between revisions

Cmloegcmluin (talk | contribs)
"optimal GPV sequence" → "optimal ET sequence", per Talk:Optimal_ET_sequence
 
(21 intermediate revisions by 6 users not shown)
Line 1: Line 1:
These temper out the keema, {{monzo| -5 -3 3 1 }} = [[875/864]]. Keemic temperaments include [[Jubilismic clan #Doublewide|doublewide]], [[Meantone family #Flattone|flattone]], [[Porcupine family #Porcupine|porcupine]], [[Gamelismic clan #Superkleismic|superkleismic]], [[Magic family #Magic|magic]], [[Kleismic family #Keemun|keemun]], and [[Sycamore family #Sycamore|sycamore]]. Discussed below are quasitemp and barbad.
{{Technical data page}}
These temper out the keema, {{monzo| -5 -3 3 1 }} = [[875/864]] = {{S|5/S6}}, whose fundamental equivalence entails that [[6/5]] is sharpened so that it stacks three times to reach [[7/4]], and the interval between 6/5 and [[5/4]] is compressed so that [[7/6]] - 6/5 - 5/4 - [[9/7]] are set equidistant from each other. As the [[Keemic family#Undecimal supermagic|canonical extension]] of rank-3 keemic to the [[11-limit]] tempers out the commas [[100/99]] and [[385/384]] (whereby ([[6/5]])<sup>2</sup> is identified with [[16/11]]), this provides a clean way to extend the various keemic temperaments to the 11-limit as well.
 
Full [[7-limit]] keemic temperaments discussed elsewhere are:
* [[Keemun]] (+49/48) → [[Kleismic family #Keemun|Kleismic family]]
* ''[[Doublewide]]'' (+50/49) → [[Jubilismic clan #Doublewide|Jubilismic clan]]
* [[Porcupine]] (+64/63) → [[Porcupine family #Septimal porcupine|Porcupine family]]
* [[Flattone]] (+81/80) → [[Meantone family #Flattone|Meantone family]]
* [[Magic]] (+225/224) → [[Magic family #Septimal magic|Magic family]]
* ''[[Sycamore]]'' (+686/675) → [[Sycamore family #Septimal sycamore|Sycamore family]]
* [[Superkleismic]] (+1029/1024) → [[Gamelismic clan #Superkleismic|Gamelismic clan]]
* ''[[Undeka]]'' (+3200/3087) → [[11th-octave temperaments #Undeka|11th-octave temperaments]]
 
Discussed below are quasitemp, chromo, barbad, hyperkleismic, and sevond.


== Quasitemp ==
== Quasitemp ==
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Quasitemp]].''
: ''For the 5-limit version of this temperament, see [[Miscellaneous 5-limit temperaments #Quasitemp]].''
 
Quasitemp is a full 7-limit strong extension of [[gariberttet]], the 2.5/3.7/3 subgroup temperament defined by tempering out [[3125/3087]]. In gariberttet, three generators reach [[5/3]] and five reach [[7/3]], so that the generator itself has the interpretation of [[25/21]] (which is equated to [[13/11]] in the 13-limit extension). This implies that 3:5:7 and 5:6:7 chords are reached rather quickly. In quasitemp, tempering out 875/864 entails that [[8/7]] is found after 9 generators, from which the mappings of 3 and 5 follow.


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 875/864, 2401/2400
[[Comma list]]: 875/864, 2401/2400


[[Mapping]]: [{{val| 1 5 5 5 }}, {{val| 0 -14 -11 -9 }}]
{{Mapping|legend=1| 1 5 5 5 | 0 -14 -11 -9 }}


{{Multival|legend=1| 14 11 9 -15 -25 -10 }}
: Mapping generators: ~2, ~25/21


[[POTE generator]]: ~25/21 = 292.710
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~25/21 = 292.710


{{Optimal ET sequence|legend=1| 4, 37, 41 }}
{{Optimal ET sequence|legend=1| 4, 37, 41 }}
Line 23: Line 38:
Comma list: 100/99, 385/384, 1375/1372
Comma list: 100/99, 385/384, 1375/1372


Mapping: [{{val| 1 5 5 5 2 }}, {{val| 0 -14 -11 -9 6 }}]
Mapping: {{mapping| 1 5 5 5 2 | 0 -14 -11 -9 6 }}


POTE generator: ~25/21 = 292.547
Optimal tuning (POTE): ~2 = 1\1, ~25/21 = 292.547


{{Optimal ET sequence|legend=1| 4, 37, 41, 119 }}
{{Optimal ET sequence|legend=1| 4, 37, 41, 119 }}
Line 36: Line 51:
Comma list: 100/99, 196/195, 275/273, 385/384
Comma list: 100/99, 196/195, 275/273, 385/384


POTE generator: ~13/11 = 292.457
Mapping: {{mapping| 1 5 5 5 2 2 | 0 -14 -11 -9 6 7 }}
 
Mapping: [{{val| 1 5 5 5 2 2 }}, {{val| 0 -14 -11 -9 6 7 }}]


POTE generator: ~13/11 = 292.457
Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 292.457


{{Optimal ET sequence|legend=1| 4, 37, 41, 78, 119f }}
{{Optimal ET sequence|legend=1| 4, 37, 41, 78, 119f }}
Line 51: Line 64:
Comma list: 243/242, 441/440, 625/616
Comma list: 243/242, 441/440, 625/616


Mapping: [{{val| 1 5 5 5 12 }}, {{val| 0 -14 -11 -9 -35 }}]
Mapping: {{mapping| 1 5 5 5 12 | 0 -14 -11 -9 -35 }}


POTE generator: ~25/21 = 292.851
Optimal tuning (POTE): ~2 = 1\1, ~25/21 = 292.851


{{Optimal ET sequence|legend=1| 41, 127cd, 168cd }}
{{Optimal ET sequence|legend=1| 41, 127cd, 168cd }}
Line 64: Line 77:
Comma list: 105/104, 243/242, 275/273, 325/324
Comma list: 105/104, 243/242, 275/273, 325/324


Mapping: [{{val| 1 5 5 5 12 12 }}, {{val| 0 -14 -11 -9 -35 -34 }}]
Mapping: {{mapping| 1 5 5 5 12 12 | 0 -14 -11 -9 -35 -34 }}


POTE generator: ~13/11 = 292.928
Optimal tuning (POTE): ~2 = 1\1, ~13/11 = 292.928


{{Optimal ET sequence|legend=1| 41, 86ce, 127cd }}
{{Optimal ET sequence|legend=1| 41, 86ce, 127cd }}
Line 73: Line 86:


== Chromo ==
== Chromo ==
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Chromo]].''
: ''For the 5-limit version of this temperament, see [[Miscellaneous 5-limit temperaments #Chromo]].''
Chromo represents the [[13edf]] chain as a rank-2 temperament, with [[6/5]] and [[5/4]] mapped to 6 and 7 steps, respectively. Since the difference of those two intervals is abbreviated considerably from just, keemic provides the most meaningful 7-limit extension (setting [[7/6]], 6/5, 5/4, [[9/7]] equidistant) so that the temperament then approximates the [[4:5:6:7]] tetrad with 0:7:13:18 generator steps.
 
Note that if one allows a more complex mapping for prime 7 and wants a larger prime limit, one may prefer [[escapade]].


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 875/864, 2430/2401
[[Comma list]]: 875/864, 2430/2401


[[Mapping]]: [{{Val|1 1 2 2}}, {{Val|0 13 7 18}}]
{{Mapping|legend=1| 1 1 2 2 | 0 13 7 18 }}
 
: Mapping generators: ~2, ~25/24


[[POTE generator]]: ~25/24 = 53.816
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~25/24 = 53.816


{{Optimal ET sequence|legend=1| 22, 45, 67c }}
{{Optimal ET sequence|legend=1| 22, 45, 67c }}


[[Badness]]: 0.090769
[[Badness]]: 0.090769
== Undeka ==
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Undeka]].''
Subgroup: 2.3.5.7
[[Comma list]]: 875/864, 3200/3087
[[Mapping]]: [{{Val|11 0 8 31}}, {{Val|0 1 1 0}}]
{{Multival|legend=1|11 11 0 -8 -31 -31}}
[[POTE generator]]: ~3/2 = 708.792
{{Optimal ET sequence|legend=1| 11c, 22 }}
[[Badness]]: 0.141782
=== 11-limit ===
Subgroup: 2.3.5.7.11
Comma list: 100/99, 352/343, 385/384
Mapping: [{{Val|11 0 8 31 38}}, {{Val|0 1 1 0 0}}]
POTE generator: ~3/2 = 706.768
{{Optimal ET sequence|legend=1| 11c, 22 }}
Badness: 0.068672
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Comma list: 65/63, 100/99, 169/165, 352/343
Mapping: [{{Val|11 0 8 31 38 23}}, {{Val|0 1 1 0 0 1}}]
POTE generator: ~3/2 = 707.764
{{Optimal ET sequence|legend=1| 11cf, 22 }}
Badness: 0.056528


== Barbad ==
== Barbad ==
Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 875/864, 16875/16807
[[Comma list]]: 875/864, 16875/16807


[[Mapping]]: [{{val| 1 9 7 11 }}, {{val| 0 -19 -12 -21 }}]
{{Mapping|legend=1| 1 9 7 11 | 0 -19 -12 -21 }}


{{Multival|legend=1| 19 12 21 -25 -20 15 }}
: Mapping generators: ~2, ~98/75


[[POTE generator]]: ~98/75 = 468.331
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~98/75 = 468.331


{{Optimal ET sequence|legend=1| 18, 23d, 41 }}
{{Optimal ET sequence|legend=1| 18, 23d, 41 }}
Line 150: Line 125:
Comma list: 245/242, 540/539, 625/616
Comma list: 245/242, 540/539, 625/616


Mapping: [{{val| 1 9 7 11 14 }}, {{val| 0 -19 -12 -21 -27 }}]
Mapping: {{mapping| 1 9 7 11 14 | 0 -19 -12 -21 -27 }}


POTE generator: ~98/75 = 468.367
Optimal tuning (POTE): ~2 = 1\1, ~98/75 = 468.367


{{Optimal ET sequence|legend=1| 18e, 23de, 41, 228ccdd }}
{{Optimal ET sequence|legend=1| 18e, 23de, 41, 228ccdd }}
Line 163: Line 138:
Comma list: 144/143, 196/195, 245/242, 275/273
Comma list: 144/143, 196/195, 245/242, 275/273


Mapping: [{{val| 1 9 7 11 14 8 }}, {{val| 0 -19 -12 -21 -27 -11 }}]
Mapping: {{mapping| 1 9 7 11 14 8 | 0 -19 -12 -21 -27 -11 }}


POTE generator: ~13/10 = 468.270
Optimal tuning (POTE): ~2 = 1\1, ~13/10 = 468.270


{{Optimal ET sequence|legend=1| 18e, 23de, 41 }}
{{Optimal ET sequence|legend=1| 18e, 23de, 41 }}
Line 172: Line 147:


== Hyperkleismic ==
== Hyperkleismic ==
Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 875/864, 51200/50421
[[Comma list]]: 875/864, 51200/50421


[[Mapping]]: [{{val|1 -3 -2 2}}, {{val|0 17 16 3}}]
{{Mapping|legend=1| 1 -3 -2 2 | 0 17 16 3 }}


{{Multival|legend=1|17 16 3 -14 -43 -38}}
: Mapping generators: ~2, ~6/5


[[POTE generator]]: ~6/5 = 323.780
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 323.780


{{Optimal ET sequence|legend=1| 26, 37, 63 }}
{{Optimal ET sequence|legend=1| 26, 37, 63 }}
Line 189: Line 164:
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 100/99, 385/384, 2420/2401<br>
Comma list: 100/99, 385/384, 2420/2401


Mapping: [{{val|1 -3 -2 2 4}}, {{val|0 17 16 3 -2}}]<br>
Mapping: {{mapping| 1 -3 -2 2 4 | 0 17 16 3 -2}}


POTE generator: ~6/5 = 323.796<br>
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 323.796


{{Optimal ET sequence|legend=1| 26, 37, 63 }}
{{Optimal ET sequence|legend=1| 26, 37, 63 }}
Line 204: Line 179:
Comma list: 100/99, 169/168, 275/273, 385/384
Comma list: 100/99, 169/168, 275/273, 385/384


Mapping: [{{val|1 -3 -2 2 4 1}}, {{val|0 17 16 3 -2 10}}]
Mapping: {{mapping| 1 -3 -2 2 4 1 | 0 17 16 3 -2 10 }}


POTE generator: ~6/5 = 323.790
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 323.790


{{Optimal ET sequence|legend=1| 26, 37, 63 }}
{{Optimal ET sequence|legend=1| 26, 37, 63 }}
Line 213: Line 188:


== Sevond ==
== Sevond ==
Subgroup: 2.3.5.7
10/9 is tempered to be exactly 1\7 of an octave. Therefore 3/2 is 1 generator sharp of a 7edo step and 5/4 is 2 generators sharp.
 
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 875/864, 327680/321489
[[Comma list]]: 875/864, 327680/321489


[[Mapping]]: [{{val| 7 0 -6 53 }}, {{val| 0 1 2 -3 }}]
{{Mapping|legend=1| 7 0 -6 53 | 0 1 2 -3 }}
 
: Mapping generators: ~10/9, ~3


[[POTE generator]]: ~3/2 = 705.613
[[Optimal tuning]] ([[POTE]]): ~10/9 = 1\7, ~3/2 = 705.613


{{Optimal ET sequence|legend=1| 7, 56, 63, 119 }}
{{Optimal ET sequence|legend=1| 7, 56, 63, 119 }}
Line 230: Line 209:
Comma list: 100/99, 385/384, 6655/6561
Comma list: 100/99, 385/384, 6655/6561


Mapping: [{{val| 7 0 -6 53 2 }}, {{val| 0 1 2 -3 2 }}]
Mapping: {{mapping| 7 0 -6 53 2 | 0 1 2 -3 2 }}


POTE generator: ~3/2 = 705.518
Optimal tuning (POTE): ~10/9 = 1\7, ~3/2 = 705.518


{{Optimal ET sequence|legend=1| 7, 56, 63, 119 }}
{{Optimal ET sequence|legend=1| 7, 56, 63, 119 }}
Line 243: Line 222:
Comma list: 100/99, 169/168, 352/351, 385/384
Comma list: 100/99, 169/168, 352/351, 385/384


Mapping: [{{val| 7 0 -6 53 2 37 }}, {{val| 0 1 2 -3 2 -1 }}]
Mapping: {{mapping| 7 0 -6 53 2 37 | 0 1 2 -3 2 -1 }}


POTE generator: ~3/2 = 705.344
Optimal tuning (POTE): ~10/9 = 1\7, ~3/2 = 705.344


{{Optimal ET sequence|legend=1| 7, 56, 63, 119 }}
{{Optimal ET sequence|legend=1| 7, 56, 63, 119 }}
Line 252: Line 231:


[[Category:Temperament collections]]
[[Category:Temperament collections]]
[[Category:Pages with mostly numerical content]]
[[Category:Keemic temperaments| ]] <!-- main article -->
[[Category:Keemic temperaments| ]] <!-- main article -->
[[Category:Rank 2]]
[[Category:Rank 2]]