Ragismic microtemperaments: Difference between revisions

Gud2228 (talk | contribs)
No edit summary
Tags: Mobile edit Mobile web edit
 
(102 intermediate revisions by 16 users not shown)
Line 1: Line 1:
The ragisma is [[4375/4374]] with a [[monzo]] of {{monzo| -1 -7 4 1 }}, the smallest 7-limit [[superparticular]] ratio. Since (10/9)<sup>4</sup> = 4375/4374 × 32/21, the minor tone 10/9 tends to be an interval of relatively low [[complexity]] in temperaments tempering out the ragisma, though when looking at [[microtemperament]]s the word "relatively" should be emphasized. Even so mitonic uses it as a generator, which ennealimmal and enneadecal can do also, and amity reaches it in three generators. We also have 7/6 = 4375/4374 × (27/25)<sup>2</sup>, so 27/25 also tends to relatively low complexity, with the same caveat about "relatively"; however 27/25 is the period for ennealimmal.
{{Technical data page}}
This is a collection of [[rank-2 temperament|rank-2]] [[regular temperament|temperaments]] [[tempering out]] the ragisma, [[4375/4374]] ({{monzo| -1 -7 4 1 }}). The ragisma is the smallest [[7-limit]] [[superparticular ratio]].  


Temperaments discussed elsewhere include:
Since {{nowrap|(10/9)<sup>4</sup> {{=}} (4375/4374)⋅(32/21) }}, the minor tone 10/9 tends to be an interval of relatively low [[complexity]] in temperaments tempering out the ragisma, though when looking at [[microtemperament]]s the word "relatively" should be emphasized. Even so mitonic uses it as a generator, which ennealimmal and enneadecal can do also, and amity reaches it in three generators. We also have {{nowrap| 7/6 {{=}} (4375/4374)⋅(27/25)<sup>2</sup> }}, so 27/25 also tends to relatively low complexity, with the same caveat about "relatively"; however 27/25 is the period for ennealimmal.
* ''[[Hystrix]]'', {36/35, 160/147} → [[Porcupine family #Hystrix|Porcupine family]]
* ''[[Rhinoceros]]'', {49/48, 4375/4374} → [[Unicorn family #Rhinoceros|Unicorn family]]
* ''[[Crepuscular]]'', {50/49, 4375/4374} → [[Jubilismic clan #Crepuscular|Jubilismic clan]] and [[Fifive family #Crepuscular|Fifive family]]
* ''[[Modus]]'', {64/63, 4375/4374} → [[Tetracot family #Modus|Tetracot family]]
* ''[[Flattone]]'', {81/80, 525/512} → [[Meantone family #Flattone|Meantone family]]
* [[Sensi]], {126/125, 245/243} → [[Sensipent family #Sensi|Sensipent family]] and [[Sensamagic clan #Sensi|Sensamagic clan]]
* [[Catakleismic]], {225/224, 4375/4374} → [[Kleismic family #Catakleismic|Kleismic family]]
* [[Unidec]], {1029/1024, 4375/4374} → [[Gamelismic clan #Unidec|Gamelismic clan]]
* ''[[Quartonic]]'', {1728/1715, 4000/3969} → [[Orwellismic temperaments #Quartonic|Orwellismic temperaments]]
* ''[[Srutal]]'', {2048/2025, 4375/4374} → [[Diaschismic family #Srutal|Diaschismic family]]
* ''[[Maja]]'', {2430/2401, 3125/3087} → [[Maja family #Septimal maja|Maja family]]
* [[Pontiac]], {4375/4374, 32805/32768} → [[Schismatic family #Pontiac|Schismatic family]]
* ''[[Zarvo]]'', {4375/4374, 33075/32768} → [[Gravity family #Zarvo|Gravity family]]
* ''[[Whirrschmidt]]'', {4375/4374, 393216/390625} → [[Würschmidt family #Whirrschmidt|Würschmidt family]]
* ''[[Mitonic]]'', {4375/4374, 2100875/2097152} → [[Minortonic family #Mitonic|Minortonic family]]
* ''[[Vishnu]]'', {4375/4374, 29360128/29296875} → [[Vishnuzmic family #Septimal vishnu|Vishnuzmic family]]
* ''[[Vulture]]'', {4375/4374, 33554432/33480783} → [[Vulture family #Septimal vulture|Vulture family]]
* ''[[Trillium]]'', {4375/4374, {{monzo| 40 -22 -1 -1 }}} → [[Tricot family #Trillium|Tricot family]]
* ''[[Unlit]]'', {4375/4374, {{monzo| 41 -20 -4 }}} → [[Undim family #Unlit|Undim family]]
* ''[[Quindro]]'', {4375/4374, {{monzo| 56 -28 -5 }}} → [[Quindromeda family #Quindro|Quindromeda family]]


Considered below are ennealimmal, gamera, supermajor, enneadecal, decal, sfourth, abigail, semidimi, brahmagupta, quasithird, semidimfourth, acrokleismic, seniority, orga, quatracot, octoid, amity, parakleismic, counterkleismic, quincy, trideci, chlorine, palladium, and monzism.  
Microtemperaments considered below, sorted by [[badness]], are supermajor, enneadecal, semidimi, brahmagupta, abigail, gamera, crazy, orga, seniority, monzismic, semidimfourth, acrokleismic, quasithird, deca, keenanose, aluminium, quatracot, moulin, and palladium. Some near-microtemperaments are appended as octoid, parakleismic, counterkleismic, quincy, sfourth, and trideci. Discussed elsewhere are:
* ''[[Hystrix]]'' (+36/35) → [[Porcupine family #Hystrix|Porcupine family]]
* ''[[Rhinoceros]]'' (+49/48) → [[Unicorn family #Rhinoceros|Unicorn family]]
* ''[[Crepuscular]]'' (+50/49) → [[Fifive family #Crepuscular|Fifive family]]
* ''[[Modus]]'' (+64/63) → [[Tetracot family #Modus|Tetracot family]]
* ''[[Flattone]]'' (+81/80) → [[Meantone family #Flattone|Meantone family]]
* [[Sensi]] (+126/125 or 245/243) → [[Sensipent family #Sensi|Sensipent family]]
* [[Catakleismic]] (+225/224) → [[Kleismic family #Catakleismic|Kleismic family]]
* [[Unidec]] (+1029/1024) → [[Gamelismic clan #Unidec|Gamelismic clan]]
* ''[[Quartonic]]'' (+1728/1715 or 4000/3969) → [[Quartonic family]]
* ''[[Srutal]]'' (+2048/2025) → [[Diaschismic family #Srutal|Diaschismic family]]
* [[Ennealimmal]] (+2401/2400) → [[Septiennealimmal clan #Ennealimmal|Septiennealimmal clan]]
* ''[[Maja]]'' (+2430/2401 or 3125/3087) → [[Maja family #Septimal maja|Maja family]]
* [[Amity]] (+5120/5103) → [[Amity family #Septimal amity|Amity family]]
* [[Pontiac]] (+32805/32768) → [[Schismatic family #Pontiac|Schismatic family]]
* ''[[Zarvo]]'' (+33075/32768) → [[Gravity family #Zarvo|Gravity family]]
* ''[[Whirrschmidt]]'' (+393216/390625) → [[Würschmidt family #Whirrschmidt|Würschmidt family]]
* ''[[Mitonic]]'' (+2100875/2097152) → [[Minortonic family #Mitonic|Minortonic family]]
* ''[[Vishnu]]'' (+29360128/29296875) → [[Vishnuzmic family #Septimal vishnu|Vishnuzmic family]]
* ''[[Vulture]]'' (+33554432/33480783) → [[Vulture family #Septimal vulture|Vulture family]]
* ''[[Alphatrillium]]'' (+{{monzo| 40 -22 -1 -1 }}) → [[Alphatricot family #Trillium|Alphatricot family]]
* ''[[Vacuum]]'' (+{{monzo| -68 18 17 }}) → [[Vavoom family #Vacuum|Vavoom family]]
* ''[[Unlit]]'' (+{{monzo| 41 -20 -4 }}) → [[Undim family #Unlit|Undim family]]
* ''[[Chlorine]]'' (+{{monzo| -52 -17 34}}) → [[17th-octave temperaments #Chlorine|17th-octave temperaments]]
* ''[[Quindro]]'' (+{{monzo| 56 -28 -5 }}) → [[Quindromeda family #Quindro|Quindromeda family]]
* ''[[Dzelic]]'' (+{{monzo|-223 47 -11 62}}) → [[37th-octave temperaments#Dzelic|37th-octave temperaments]]


== Ennealimmal ==
== Supermajor ==
{{Main| Ennealimmal }}
The generator for supermajor temperament is a supermajor third, 9/7, tuned about 0.002 cents flat. 37 of these give (2<sup>15</sup>)/3, 46 give (2<sup>19</sup>)/5, and 75 give (2<sup>30</sup>)/7. This is clearly quite a complex temperament; it makes up for it, to the extent it does, with extreme accuracy: 1106 or 1277 can be used as tunings, leading to accuracy even greater than that of ennealimmal. The 80-note mos is presumably the place to start, and if that is not enough notes for you, there is always the 171-note mos.


[[Ennealimmal]] tempers out the two smallest 7-limit superparticular commas, 2401/2400 and 4375/4374, leading to a temperament of unusual efficiency. It also tempers out the [[ennealimma]], {{monzo|1 -27 18}}, which leads to the identification of (27/25)<sup>9</sup> with the octave, and gives ennealimmal a period of 1/9 octave. Its [[pergen]] is (P8/9, P5/2). While 27/25 is a 5-limit interval, two period equates to 7/6 because of identification by 4375/4374, and this represents 7/6 with such accuracy (a fifth of a cent flat) that there is no realistic possibility of treating ennealimmal as anything other than 7-limit.
[[Subgroup]]: 2.3.5.7


Aside from 10/9 which has already been mentioned, possible generators include 36/35, 21/20, 6/5, 7/5 and the neutral thirds pair 49/40~60/49, all of which have their own interesting advantages. Possible tunings are 441-, 612-, or 3600edo, though its hardly likely anyone could tell the difference.
[[Comma list]]: 4375/4374, 52734375/52706752


If 1/9 of an octave is too small of a period for you, you could try generator-period pairs of [3, 5], [5/3, 3], [6/5, 4/3], [4/3, 8/5] or [10/9, 4/3] (for example). In particular, people fond of the idea of "tritaves" as analogous to octaves might consider the 28 or 43 note MOS with generator an approximate 5/3 within 3; for instance as given by 451/970 of a "tritave". Tetrads have a low enough complexity that (for example) there are nine 1-3/2-7/4-5/2 tetrads in the 28 notes to the tritave MOS, which is equivalent in average step size to a 17 2/3 to the octave MOS.
{{Mapping|legend=1| 1 15 19 30 | 0 -37 -46 -75 }}


Ennealimmal extensions discussed elsewhere include [[Compton family #Omicronbeta|omicronbeta]], [[Tritrizo clan #Undecentic|undecentic]], [[Tritrizo clan #Schisennealimmal|schisennealimmal]], and [[Tritrizo clan #Lunennealimmal|lunennealimmal]].
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~9/7 = 435.082


Subgroup: 2.3.5.7
{{Optimal ET sequence|legend=1| 11, 80, 171, 764, 1106, 1277, 3660, 4937, 6214 }}


[[Comma list]]: 2401/2400, 4375/4374
[[Badness]]: 0.010836
 
[[Mapping]]: [{{val| 9 1 1 12 }}, {{val| 0 2 3 2 }}]
 
{{Multival|legend=1| 18 27 18 1 -22 -34 }}
 
Mapping generators: ~27/25, ~5/3
 
[[POTE generator]]s: ~5/3 = 884.3129 or ~36/35 = 49.0205
 
[[Tuning ranges]]:
* 7-odd-limit [[diamond monotone]]: ~36/35 = [26.667, 66.667] (1\45 to 1\18)
* 9-odd-limit diamond monotone: ~36/35 = [44.444, 53.333] (1\27 to 2\45)
* 7- and 9-odd-limit [[diamond tradeoff]]: ~36/35 = [48.920, 49.179]
* 7- and 9-odd-limit diamond monotone and tradeoff: ~36/35 = [48.920, 49.179]
 
{{Val list|legend=1| 27, 45, 72, 99, 171, 441, 612 }}
 
[[Badness]]: 0.003610
 
=== 11-limit ===
The ennealimmal temperament can be described as 99e&amp;270 temperament, which tempers out 5632/5625 (vishdel comma) and 19712/19683 (symbiotic comma).


=== Semisupermajor ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 2401/2400, 4375/4374, 5632/5625
Comma list: 3025/3024, 4375/4374, 35156250/35153041


Mapping: [{{val| 9 1 1 12 -75 }}, {{val| 0 2 3 2 16 }}]
Mapping: {{mapping| 2 30 38 60 41 | 0 -37 -46 -75 -47 }}


POTE generator: ~5/3 = 884.4679 or ~36/35 = 48.8654
Optimal tuning (POTE): ~99/70 = 1\2, ~9/7 = 435.082


Optimal GPV sequence: {{Val list| 99e, 171e, 270, 909, 1179, 1449c, 1719c }}
{{Optimal ET sequence|legend=1| 80, 342, 764, 1106, 1448, 2554, 4002f, 6556cf }}


Badness: 0.027332
Badness: 0.012773


==== 13-limit ====
== Enneadecal ==
Subgroup: 2.3.5.7.11.13
Enneadecal temperament tempers out the [[enneadeca]], {{monzo| -14 -19 19 }}, and as a consequence has a period of 1/19 octave. This is because the enneadeca is the amount by which nineteen just minor thirds fall short of an octave. If to this we add 4375/4374 we get the 7-limit temperament we are considering here, but note should be taken of the fact that it makes for a reasonable 5-limit microtemperament also, where the generator can be ~25/24, ~27/25, ~10/9, ~5/4 or ~3/2. To this we may add possible 7-limit generators such as ~225/224, ~15/14 or ~9/7. Since enneadecal tempers out [[703125/702464]], the amount by which 81/80 falls short of three stacked 225/224, we can equate the 225/224 generator with (81/80)<sup>1/3</sup>. This is the interval needed to adjust the 1/3-comma meantone flat fifths and major thirds of [[19edo]] up to just ones. [[171edo]] is a good tuning for either the 5- or 7-limit, and [[494edo]] shows how to extend the temperament to the 11- or 13-limit, where it is accurate but very complex. Fans of near-perfect fifths may want to use [[665edo]] for a tuning.


Comma list: 1001/1000, 1716/1715, 4096/4095, 4375/4374
''For the 5-limit temperament, see [[19th-octave temperaments#(5-limit) enneadecal]].''


Mapping: [{{val| 9 1 1 12 -75 93 }}, {{val| 0 2 3 2 16 -9 }}]
[[Subgroup]]: 2.3.5.7


POTE generator: ~5/3 = 884.4304 or ~36/35 = 48.9030
[[Comma list]]: 4375/4374, 703125/702464


Optimal GPV sequence: {{Val list| 99e, 171e, 270 }}
{{Mapping|legend=1| 19 0 14 -37 | 0 1 1 3 }}


Badness: 0.029404
: mapping generators: ~28/27, ~3


===== 17-limit =====
[[Optimal tuning]] ([[CTE]]): ~28/27 = 1\19, ~3/2 = 701.9275 (~225/224 = 7.1907)
Subgroup: 2.3.5.7.11.13.17


Comma list: 715/714, 1001/1000, 1716/1715, 4096/4095, 4375/4374
{{Optimal ET sequence|legend=1| 19, , 152, 171, 665, 836, 1007, 2185, 3192c }}


Mapping: [{{val| 9 1 1 12 -75 93 -3 }}, {{val| 0 2 3 2 16 -9 6 }}]
[[Badness]]: 0.010954
 
POTE generator: ~5/3 = 884.4304 or ~36/35 = 48.9030
 
Optimal GPV sequence: {{Val list| 99e, 171e, 270 }}
 
===== 19-limit =====
Subgroup: 2.3.5.7.11.13.17.19
 
Comma list: 715/714, 1001/1000, 1216/1215, 1716/1715, 4096/4095, 4375/4374
 
Mapping: [{{val| 9 1 1 12 -75 93 -3 -48 }}, {{val| 0 2 3 2 16 -9 6 13 }}]
 
POTE generator: ~5/3 = 884.4304 or ~36/35 = 48.9030
 
Optimal GPV sequence: {{Val list| 99e, 171e, 270 }}
 
=== Ennealimmia ===
Ennealimmal temperament has various extensions to the 11-limit. Tempering out 131072/130977 (salururu comma) leads to the ''ennealimmia'' temperament (171&amp;270).


=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 2401/2400, 4375/4374, 131072/130977
Comma list: 540/539, 4375/4374, 16384/16335


Mapping: [{{val| 9 1 1 12 124 }}, {{val| 0 2 3 2 -14 }}]
Mapping: {{mapping| 19 0 14 -37 126 | 0 1 1 3 -2 }}


POTE generator: ~5/3 = 884.4089 or ~36/35 = 48.9244
Optimal tuning (CTE): ~28/27 = 1\19, ~3/2 = 702.1483 (~225/224 = 7.4115)


Optimal GPV sequence: {{Val list| 99, 171, 270, 711, 981, 1251, 2232e }}
{{Optimal ET sequence|legend=1| 19, 133d, 152, 323e, 475de, 627de }}


Badness: 0.026463
Badness: 0.043734


==== 13-limit ====
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 2080/2079, 2401/2400, 4096/4095, 4375/4374
Comma list: 540/539, 625/624, 729/728, 2205/2197


Mapping: [{{val| 9 1 1 12 124 93 }}, {{val| 0 2 3 2 -14 -9 }}]
Mapping: {{mapping| 19 0 14 -37 126 -20 | 0 1 1 3 -2 3 }}


POTE generator: ~5/3 = 884.3997 or ~36/35 = 48.9336
Optimal tuning (CTE): ~28/27 = 1\19, ~3/2 = 701.9258 (~225/224 = 7.1890)


Optimal GPV sequence: {{Val list| 99, 171, 270, 711, 981, 1692e, 2673e }}
{{Optimal ET sequence|legend=1| 19, 133df, 152f, 323ef }}
 
Badness: 0.033545


Badness: 0.016607
=== Hemienneadecal ===
Subgroup: 2.3.5.7.11


===== 17-limit =====
Comma list: 3025/3024, 4375/4374, 234375/234256
Subgroup: 2.3.5.7.11.13.17


Comma list: 936/935, 2080/2079, 2401/2400, 4096/4095, 4375/4374
Mapping: {{mapping| 38 0 28 -74 11 | 0 1 1 3 2 }}


Mapping: [{{val| 9 1 1 12 124 93 -3 }}, {{val| 0 2 3 2 -14 -9 6 }}]
: mapping generators: ~55/54, ~3


POTE generator: ~5/3 = 884.3997 or ~36/35 = 48.9336
Optimal tuning (CTE): ~55/54 = 1\38, ~3/2 = 701.9351 (~225/224 = 7.1983)


Optimal GPV sequence: {{Val list| 99, 171, 270 }}
{{Optimal ET sequence|legend=1| 152, 342, 836, 1178, 2014, 3192ce, 5206ce }}


===== 19-limit =====
Badness: 0.009985
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 936/935, 1216/1215, 2080/2079, 2401/2400, 4096/4095, 4375/4374
==== Hemienneadecalis ====
Subgroup: 2.3.5.7.11.13


Mapping: [{{val| 9 1 1 12 124 93 -3 -48 }}, {{val| 0 2 3 2 -14 -9 6 13 }}]
Comma list: 1716/1715, 2080/2079, 3025/3024, 234375/234256


POTE generator: ~5/3 = 884.3997 or ~36/35 = 48.9336
Mapping: {{mapping| 38 0 28 -74 11 -281 | 0 1 1 3 2 7 }}


Optimal GPV sequence: {{Val list| 99, 171, 270 }}
Optimal tuning (CTE): ~55/54 = 1\38, ~3/2 = 701.9955 (~225/224 = 7.2587)


=== Ennealimnic ===
{{Optimal ET sequence|legend=1| 152f, 342f, 494 }}
Ennealimnic temperament (72&amp;171) equates 11/9 with 27/22, 49/40, and 60/49 as a neutral third interval.


Subgroup: 2.3.5.7.11
Badness: 0.020782


Comma list: 243/242, 441/440, 4375/4356
==== Hemienneadec ====
Subgroup: 2.3.5.7.11.13


Mapping: [{{val| 9 1 1 12 -2 }}, {{val| 0 2 3 2 5 }}]
Comma list: 3025/3024, 4096/4095, 4375/4374, 31250/31213


POTE generator: ~5/3 = 883.9386 or ~36/35 = 49.3948
Mapping: {{mapping| 38 0 28 -74 11 502 | 0 1 1 3 2 -6 }}


Tuning ranges:
Optimal tuning (CTE): ~55/54 = 1\38, ~3/2 = 701.9812 (~225/224 = 7.2444)
* 11-odd-limit diamond monotone: ~36/35 = [44.444, 53.333] (1\27 to 2\45)
* 11-odd-limit diamond tradeoff: ~36/35 = [48.920, 52.592]
* 11-odd-limit diamond monotone and tradeoff: ~36/35 = [48.920, 52.592]


Optimal GPV sequence: {{Val list| 72, 171, 243 }}
{{Optimal ET sequence|legend=1| 152, 342, 494, 1330, 1824, 2318d }}


Badness: 0.020347
Badness: 0.030391


==== 13-limit ====
==== Semihemienneadecal ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 243/242, 364/363, 441/440, 625/624
Comma list: 3025/3024, 4225/4224, 4375/4374, 78125/78078


Mapping: [{{val| 9 1 1 12 -2 -33 }}, {{val| 0 2 3 2 5 10 }}]
Mapping: {{mapping| 38 1 29 -71 13 111 | 0 2 2 6 4 1 }}


POTE generator: ~5/3 = 883.9920 or ~36/35 = 49.3414
: mapping generators: ~55/54 = 1\38, ~55/54, ~429/250


Tuning ranges:
Optimal tuning (CTE): ~429/250 = 935.1789 (~144/143 = 12.1895)
* 13- and 15-odd-limit diamond monotone: ~36/35 = [48.485, 50.000] (4\99 to 3\72)
* 13- and 15-odd-limit diamond tradeoff: ~36/35 = [48.825, 52.592]
* 13- and 15-odd-limit diamond monotone and tradeoff: ~36/35 = [48.825, 50.000]


Optimal GPV sequence: {{Val list| 72, 171, 243 }}
{{Optimal ET sequence|legend=1| 190, 304d, 494, 684, 1178, 2850, 4028ce }}


Badness: 0.023250
Badness: 0.014694


===== 17-limit =====
=== Kalium ===
Subgroup: 2.3.5.7.11.13.17
Named after the 19th element, potassium, and after an archaic variant of the element's name to resolve a name conflict. [[19/16]] can be used as a generator. Since it is enfactored in the 17-limit and lower, it makes no sense to name it for the lower subgroups.


Comma list: 243/242, 364/363, 375/374, 441/440, 595/594
Subgroup: 2.3.5.7.11.13.17.19
 
Mapping: [{{val| 9 1 1 12 -2 -33 -3 }}, {{val| 0 2 3 2 5 10 6 }}]


POTE generator: ~5/3 = 883.9981 or ~36/35 = 49.3353
Comma list: 2500/2499, 3250/3249, 4225/4224, 4375/4374, 11016/11011, 57375/57344


Tuning ranges:  
Mapping: {{mapping| 19 3 17 -28 82 92 159 78 | 0 10 10 30 -6 -8 -30 1 }}
* 17-odd-limit diamond monotone: ~36/35 = [48.485, 50.000] (4\99 to 3\72)
* 17-odd-limit diamond tradeoff: ~36/35 = [46.363, 52.592]
* 17-odd-limit diamond monotone and tradeoff: ~36/35 = [48.485, 50.000]


Optimal GPV sequence: {{Val list| 72, 171, 243 }}
Optimal tuning (CTE): ~28/27 = 1\19, ~6545/5928 = 171.244


Badness: 0.014602
{{Optimal ET sequence|legend=1| 855, 988, 1843 }}


===== 19-limit =====
== Semidimi ==
Subgroup: 2.3.5.7.11.13.17.19
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Semidimi]].''


Comma list: 243/242, 364/363, 375/374, 441/440, 513/512, 595/594
The generator of semidimi temperament is a semi-diminished fourth interval tuned between 162/125 and 35/27. It tempers out 5-limit {{monzo| -12 -73 55 }} and 7-limit 3955078125/3954653486, as well as 4375/4374.


Mapping: [{{val| 9 1 1 12 -2 -33 -3 78  }}, {{val| 0 2 3 2 5 10 6 -6 }}]
[[Subgroup]]: 2.3.5.7


Optimal GPV sequence: {{Val list| 72, 171, 243 }}
[[Comma list]]: 4375/4374, 3955078125/3954653486


==== Ennealim ====
{{Mapping|legend=1| 1 36 48 61 | 0 -55 -73 -93 }}
Subgroup: 2.3.5.7.11.13


Comma list: 169/168, 243/242, 325/324, 441/440
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~35/27 = 449.1270


Mapping: [{{val| 9 1 1 12 -2 20 }}, {{val| 0 2 3 2 5 2 }}]
{{Optimal ET sequence|legend=1| 171, 863, 1034, 1205, 1376, 1547, 1718, 4983, 6701, 8419 }}


POTE generator: ~5/3 = 883.6257 or ~36/35 = 49.7076
[[Badness]]: 0.015075


Optimal GPV sequence: {{Val list| 27e, 45ef, 72 }}
== Brahmagupta ==
 
The brahmagupta temperament has a period of 1/7 octave, tempering out the [[akjaysma]], {{monzo| 47 -7 -7 -7 }} = 140737488355328 / 140710042265625.  
Badness: 0.020697


===== 17-limit =====
Early in the design of the [[Sagittal]] notation system, Secor and Keenan found that an economical JI notation system could be defined, which divided the apotome (Pythagorean sharp or flat) into 21 almost-equal divisions. This required only 10 microtonal accidentals, although a few others were added for convenience in alternative spellings. This is called the Athenian symbol set (which includes the Spartan set). Its symbols are defined to exactly notate many common 11-limit ratios and the 17th harmonic, and to approximate within ±0.4 ¢ many common 13-limit ratios. If the divisions were made exactly equal, this would be the specific tuning of Brahmagupta temperament that has pure octaves and pure fifths, which can also be described as a 17-limit extension having 1/7th octave period (171.4286 ¢) and 1/21st apotome generator (5.4136 ¢).
Subgroup: 2.3.5.7.11.13.17


Comma list: 169/168, 221/220, 243/242, 325/324, 441/440
[[Subgroup]]: 2.3.5.7


Mapping: [{{val| 9 1 1 12 -2 20 -3 }}, {{val| 0 2 3 2 5 2 6 }}]
[[Comma list]]: 4375/4374, 70368744177664/70338939985125
 
POTE generator: ~5/3 = 883.6257 or ~36/35 = 49.7076
 
Optimal GPV sequence: {{Val list| 27eg, 45efg, 72 }}


===== 19-limit =====
{{Mapping|legend=1| 7 2 -8 53 | 0 3 8 -11 }}
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 169/168, 221/220, 243/242, 325/324, 441/440
: mapping generators: ~1157625/1048576, ~27/20


Mapping: [{{val| 9 1 1 12 -2 20 -3 25 }}, {{val| 0 2 3 2 5 2 6 2 }}]
[[Optimal tuning]] ([[POTE]]): ~1157625/1048576 = 1\7, ~27/20 = 519.716


POTE generator: ~5/3 = 883.6257 or ~36/35 = 49.7076
{{Optimal ET sequence|legend=1| 7, 217, 224, 441, 1106, 1547 }}


Optimal GPV sequence: {{Val list| 27eg, 45efg, 72 }}
[[Badness]]: 0.029122


=== Ennealiminal ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 385/384, 1375/1372, 4375/4374
Comma list: 4000/3993, 4375/4374, 131072/130977


Mapping: [{{val| 9 1 1 12 51 }}, {{val| 0 2 3 2 -3 }}]
Mapping: {{mapping| 7 2 -8 53 3 | 0 3 8 -11 7 }}


POTE generator: ~5/3 = 883.8298 or ~36/35 = 49.5036
Optimal tuning (POTE): ~243/220 = 1\7, ~27/20 = 519.704


Optimal GPV sequence: {{Val list| 27, 45, 72, 171e, 243e, 315e }}
{{Optimal ET sequence|legend=1| 7, 217, 224, 441, 665, 1771ee }}


Badness: 0.031123
Badness: 0.052190


==== 13-limit ====
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 169/168, 325/324, 385/384, 1375/1372
Comma list: 1575/1573, 2080/2079, 4096/4095, 4375/4374


Mapping: [{{val| 9 1 1 12 51 20 }}, {{val| 0 2 3 2 -3 2 }}]
Mapping: {{mapping| 7 2 -8 53 3 35 | 0 3 8 -11 7 -3 }}


POTE generator: ~5/3 = 883.8476 or ~36/35 = 49.4857
Optimal tuning (POTE): ~243/220 = 1\7, ~27/20 = 519.706


Optimal GPV sequence: {{Val list| 27, 45f, 72, 171ef, 243ef }}
{{Optimal ET sequence|legend=1| 7, 217, 224, 441, 665, 1771eef }}


Badness: 0.030325
Badness: 0.023132


===== 17-limit =====
== Abigail ==
Subgroup: 2.3.5.7.11.13.17
Abigail temperament tempers out the [[pessoalisma]] in addition to the ragisma in the 7-limit. It was named by Gene Ward Smith after the birthday of First Lady Abigail Fillmore.<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_17927.html#17930]: "I propose Abigail as a name, on the grounds 313/1798 is an excellent generator, and Abigail Fillmore, wife of Millard, was born on 3-13-1798 at least as Americans recon things."</ref>


Comma list: 169/168, 221/220, 325/324, 385/384, 1375/1372
''For the 5-limit temperament, see [[Very high accuracy temperaments#Abigail]].''


Mapping: [{{val| 9 1 1 12 51 20 }}, {{val| 0 2 3 2 -3 2 -2 }}]
[[Subgroup]]: 2.3.5.7


POTE generator: ~5/3 = 883.8476 or ~36/35 = 49.4857
[[Comma list]]: 4375/4374, 2147483648/2144153025
 
Optimal GPV sequence: {{Val list| 27, 45f, 72 }}


===== 19-limit =====
{{Mapping|legend=1| 2 7 13 -1 | 0 -11 -24 19 }}
Subgroup: 2.3.5.7.11.13.17


Comma list: 153/152, 169/168, 221/220, 325/324, 385/384, 1375/1372
: mapping generators: ~46305/32768, ~27/20


Mapping: [{{val| 9 1 1 12 51 20 }}, {{val| 0 2 3 2 -3 2 -2 2 }}]
[[Optimal tuning]] ([[POTE]]): ~46305/32768 = 1\2, ~6912/6125 = 208.899


POTE generator: ~5/3 = 883.8476 or ~36/35 = 49.4857
{{Optimal ET sequence|legend=1| 46, 132, 178, 224, 270, 494, 764, 1034, 1798 }}


Optimal GPV sequence: {{Val list| 27, 45f, 72 }}
[[Badness]]: 0.037000
 
=== Hemiennealimmal ===
Hemiennealimmal (72&amp;198) has a period of 1/18 octave and tempers out the four smallest superparticular commas of the 11-limit JI, 2401/2400, 3025/3024, 4375/4374, and 9801/9800. Tempering out [[9801/9800]] leads an octave split into two equal parts.


=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 2401/2400, 3025/3024, 4375/4374
Comma list: 3025/3024, 4375/4374, 131072/130977


Mapping: [{{val| 18 0 -1 22 48 }}, {{val| 0 2 3 2 1 }}]
Mapping: {{mapping| 2 7 13 -1 1 | 0 -11 -24 19 17 }}


Mapping generators: ~80/77, ~400/231
Optimal tuning (POTE): ~99/70 = 1\2, ~1155/1024 = 208.901


POTE generator: ~400/231 = 950.9553
{{Optimal ET sequence|legend=1| 46, 132, 178, 224, 270, 494, 764 }}


Tuning ranges:  
Badness: 0.012860
* 11-odd-limit diamond monotone: ~99/98 = [13.333, 22.222] (1\90 to 1\54)
* 11-odd-limit diamond tradeoff: ~99/98 = [17.304, 17.985]
* 11-odd-limit diamond monotone and tradeoff: ~99/98 = [17.304, 17.985]


Optimal GPV sequence: {{Val list| 72, 198, 270, 342, 612, 954, 1566 }}
=== 13-limit ===
 
Badness: 0.006283
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 676/675, 1001/1000, 1716/1715, 3025/3024
Comma list: 1716/1715, 2080/2079, 3025/3024, 4096/4095


Mapping: [{{val| 18 0 -1 22 48 -19 }}, {{val| 0 2 3 2 1 6 }}]
Mapping: {{mapping| 2 7 13 -1 1 -2 | 0 -11 -24 19 17 27 }}


POTE generator ~26/15 = 951.0837
Optimal tuning (POTE): ~99/70 = 1\2, ~44/39 = 208.903


Tuning ranges:
{{Optimal ET sequence|legend=1| 46, 178, 224, 270, 494, 764, 1258 }}
* 13-odd-limit diamond monotone: ~99/98 = [16.667, 22.222] (1\72 to 1\54)
* 15-odd-limit diamond monotone: ~99/98 = [16.667, 19.048] (1\72 to 2\126)
* 13-odd-limit diamond tradeoff: ~99/98 = [17.304, 18.309]
* 15-odd-limit diamond tradeoff: ~99/98 = [17.304, 18.926]
* 13-odd-limit diamond monotone and tradeoff: ~99/98 = [17.304, 18.309]
* 15-odd-limit diamond monotone and tradeoff: ~99/98 = [17.304, 18.926]


Optimal GPV sequence: {{Val list| 72, 198, 270 }}
Badness: 0.008856


Badness: 0.012505
== Gamera ==
''For the 5-limit temperament, see [[High badness temperaments#Gamera]].


===== 17-limit =====
[[Subgroup]]: 2.3.5.7
Subgroup: 2.3.5.7.11.13.17


Comma list: 676/675, 715/714, 1001/1000, 1716/1715, 3025/3024
[[Comma list]]: 4375/4374, 589824/588245
 
Mapping: [{{val| 18 0 -1 22 48 -19 -12 }}, {{val| 0 2 3 2 1 6 6 }}]


POTE generator ~26/15 = 951.0837
{{Mapping|legend=1| 1 6 10 3 | 0 -23 -40 -1 }}


Optimal GPV sequence: {{Val list| 72, 198g, 270 }}
: mapping generators: ~2, ~8/7


===== 19-limit =====
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~8/7 = 230.336
Subgroup: 2.3.5.7.11.13.17.19


Comma list: 676/675, 1001/1000, 1331/1330, 1716/1715, 3025/3024
{{Optimal ET sequence|legend=1| 26, 73, 99, 224, 323, 422, 745d }}


Mapping: [{{val| 18 0 -1 22 48 -19 -12 48 105 }}, {{val| 0 2 3 2 1 6 6 -2 }}]
[[Badness]]: 0.037648
 
POTE generator ~26/15 = 951.0837
 
Optimal GPV sequence: {{Val list| 72, 198g, 270 }}
 
==== Semihemiennealimmal ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 2401/2400, 3025/3024, 4225/4224, 4375/4374
 
Mapping: [{{val| 18 0 -1 22 48 88 }}, {{val| 0 4 6 4 2 -3 }}]
 
Mapping generators: ~80/77, ~1053/800
 
POTE generator: ~1053/800 = 475.4727
 
Optimal GPV sequence: {{Val list| 126, 144, 270, 684, 954 }}
 
Badness: 0.013104
 
=== Semiennealimmal ===
Semiennealimmal tempers out [[4000/3993]], and uses a ~140/121 semifourth generator. Notably, however, two generator steps do not reach ~4/3, despite that the name may suggest so. In fact, it splits the generator of ennealimmal into three.


=== Hemigamera ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 2401/2400, 4000/3993, 4375/4374
Comma list: 3025/3024, 4375/4374, 589824/588245


Mapping: [{{val| 9 3 4 14 18 }}, {{val| 0 6 9 6 7 }}]
Mapping: {{mapping| 2 12 20 6 5 | 0 -23 -40 -1 5 }}


Mapping generators: ~27/25, ~140/121
: mapping generators: ~99/70, ~8/7


POTE generator: ~140/121 = 250.3367
Optimal tuning (POTE): ~99/70 = 1\2, ~8/7 = 230.3370


Optimal GPV sequence: {{Val list| 72, 369, 441 }}
{{Optimal ET sequence|legend=1| 26, 198, 224, 422, 646, 1068d }}


Badness: 0.034196
Badness: 0.040955


==== 13-limit ====
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 1575/1573, 2080/2079, 2401/2400, 4375/4374
Comma list: 1716/1715, 2080/2079, 2200/2197, 3025/3024


Mapping: [{{val| 9 3 4 14 18 -8 }}, {{val| 0 6 9 6 7 22 }}]
Mapping: {{mapping| 2 12 20 6 5 17 | 0 -23 -40 -1 5 -25 }}


POTE generator: ~140/121 = 250.3375
Optimal tuning (POTE): ~99/70 = 1\2, ~8/7 = 230.3373


Optimal GPV sequence: {{Val list| 72, 297ef, 369f, 441 }}
{{Optimal ET sequence|legend=1| 26, 198, 224, 422, 646f, 1068df }}


Badness: 0.026122
Badness: 0.020416


=== Quadraennealimmal ===
=== Semigamera ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 2401/2400, 4375/4374, 234375/234256
Comma list: 4375/4374, 14641/14580, 15488/15435


Mapping: [{{val| 9 1 1 12 -7 }}, {{val| 0 8 12 8 23 }}]
Mapping: {{mapping| 1 6 10 3 12 | 0 -46 -80 -2 -89 }}


Mapping generators: ~27/25, ~25/22
: mapping generators: ~2, ~77/72


POTE generator: ~25/22 = 221.0717
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.1642


Optimal GPV sequence: {{Val list| 342, 1053, 1395, 1737, 4869dd, 6606cdd }}
{{Optimal ET sequence|legend=1| 73, 125, 198, 323, 521 }}


Badness: 0.021320
Badness: 0.078


=== Trinealimmal ===
==== 13-limit ====
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11.13


Comma list: 2401/2400, 4375/4374, 2097152/2096325
Comma list: 676/675, 1001/1000, 4375/4374, 14641/14580


Mapping: [{{val| 27 1 0 34 177 }}, {{val| 0 2 3 2 -4 }}]
Mapping: {{mapping| 1 6 10 3 12 18 | 0 -46 -80 -2 -89 -149 }}


Mapping generators: ~2744/2673, ~2352/1375
Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.1628


POTE generator: ~2352/1375 = 928.8000
{{Optimal ET sequence|legend=1| 73f, 125f, 198, 323, 521 }}


Optimal GPV sequence: {{Val list| 27, 243, 270, 783, 1053, 1323 }}
Badness: 0.044


Badness: 0.029812
== Crazy ==
: ''For the 5-limit version, see [[Very high accuracy temperaments #Kwazy]].''


== Gamera ==
Crazy tempers out the [[kwazy comma]] in the 5-limit, and adds the ragisma to extend it to the 7-limit. It can be described as the {{nowrap| 118 & 494 }} temperament. [[1106edo]] is an strong tuning.  
Subgroup: 2.3.5.7


[[Comma list]]: 4375/4374, 589824/588245
[[Subgroup]]: 2.3.5.7


[[Mapping]]: [{{val| 1 6 10 3 }}, {{val| 0 -23 -40 -1 }}]
[[Comma list]]: 4375/4374, {{monzo| -53 10 16 }}


Mapping generators: ~2, ~8/7
{{Mapping|legend=1| 2 1 6 -15 | 0 8 -5 76 }}


{{Multival|legend=1| 23 40 1 10 -63 -110 }}
: mapping generators: ~332150625/234881024, ~1125/1024


[[POTE generator]] ~8/7 = 230.336
[[Optimal tuning]]s:
* [[CTE]]: ~332150625/234881024 = 600.0000, ~1125/1024 = 162.7475
* [[error map]]: {{val| 0.0000 +0.0253 -0.0514 -0.0133 }}
* [[CWE]]: ~332150625/234881024 = 600.0000, ~1125/1024 = 162.7474
* error map: {{val| 0.0000 +0.0244 -0.0508 -0.0218 }}


{{Val list|legend=1| 26, 73, 99, 224, 323, 422, 745d }}
{{Optimal ET sequence|legend=1| 118, 376, 494, 612, 1106, 1718 }}


[[Badness]]: 0.037648
[[Badness]] (Smith): 0.0394


=== Hemigamera ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 3025/3024, 4375/4374, 589824/588245
Comma list: 3025/3024, 4375/4374, 2791309312/2790703125


Mapping: [{{val| 2 12 20 6 5 }}, {{val| 0 -23 -40 -1 5 }}]
Mapping: {{mapping| 2 1 6 -15 -8 | 0 8 -5 76 55 }}


Mapping generators: ~99/70, ~8/7
Optimal tunings:
* CTE: ~99/70 = 162.7485, ~1125/1024 = 162.7485
* CWE: ~99/70 = 162.7485, ~1125/1024 = 162.7481


POTE generator: ~8/7 = 230.3370
{{Optimal ET sequence|legend=0| 118, 376, 494, 612, 1106, 2824, 3930e }}


Optimal GPV sequence: {{Val list| 26, 198, 224, 422, 646, 1068d }}
Badness (Smith): 0.0170


Badness: 0.040955
== Orga ==
[[Subgroup]]: 2.3.5.7


==== 13-limit ====
[[Comma list]]: 4375/4374, 54975581388800/54936068900769
Subgroup: 2.3.5.7.11.13


Comma list: 1716/1715, 2080/2079, 2200/2197, 3025/3024
{{Mapping|legend=1| 2 21 36 5 | 0 -29 -51 1 }}


Mapping: [{{val| 2 12 20 6 5 17 }}, {{val| 0 -23 -40 -1 5 -25 }}]
: mapping generators: ~7411887/5242880, ~1310720/1058841


POTE generator: ~8/7 = 230.3373
[[Optimal tuning]] ([[POTE]]): ~7411887/5242880 = 1\2, ~8/7 = 231.104


Optimal GPV sequence: {{Val list| 26, 198, 224, 422, 646f, 1068df }}
{{Optimal ET sequence|legend=1| 26, 244, 270, 836, 1106, 1376, 2482 }}


Badness: 0.020416
[[Badness]]: 0.040236


=== Semigamera ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 4375/4374, 14641/14580, 15488/15435
Comma list: 3025/3024, 4375/4374, 5767168/5764801


Mapping: [{{val| 1 6 10 3 12 }}, {{val| 0 -46 -80 -2 -89 }}]
Mapping: {{mapping| 2 21 36 5 2 | 0 -29 -51 1 8 }}


Mapping generators: ~2, ~77/72
Optimal tuning (POTE): ~99/70 = 1\2, ~8/7 = 231.103


POTE generator: ~77/72 = 115.1642
{{Optimal ET sequence|legend=1| 26, 244, 270, 566, 836, 1106 }}


Optimal GPV sequence: {{Val list| 73, 125, 198, 323, 521 }}
Badness: 0.016188


Badness: 0.078
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


==== 13-limit ====
Comma list: 1716/1715, 2080/2079, 3025/3024, 15379/15360
Subgroup: 2.3.5.7.11.13


Comma list: 676/675, 1001/1000, 4375/4374, 14641/14580
Mapping: {{mapping| 2 21 36 5 2 24 | 0 -29 -51 1 8 -27 }}


Mapping: [{{val| 1 6 10 3 12 18 }}, {{val| 0 -46 -80 -2 -89 -149 }}]
Optimal tuning (POTE): ~99/70 = 1\2, ~8/7 = 231.103


POTE generator: ~77/72 = 115.1628
{{Optimal ET sequence|legend=1| 26, 244, 270, 566, 836f, 1106f }}


Optimal GPV sequence: {{Val list| 73f, 125f, 198, 323, 521 }}
Badness: 0.021762


Badness: 0.044
== Seniority ==
{{See also| Very high accuracy temperaments #Senior }}


== Supermajor ==
Aside from the ragisma, the seniority temperament (26 &amp; 145) tempers out the wadisma, 201768035/201326592. It is so named because the senior comma ({{monzo| -17 62 -35 }}, quadla-sepquingu) is tempered out.
The generator for supermajor temperament is a supermajor third, 9/7, tuned about 0.002 cents flat. 37 of these give (2^15)/3, 46 give (2^19)/5, and 75 give (2^30)/7, leading to a wedgie of {{multival|37 46 75 -13 15 45}}. This is clearly quite a complex temperament; it makes up for it, to the extent it does, with extreme accuracy: 1106 or 1277 can be used as tunings, leading to accuracy even greater than that of ennealimmal. The 80 note MOS is presumably the place to start, and if that isn't enough notes for you, there's always the 171 note MOS.


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 4375/4374, 52734375/52706752
[[Comma list]]: 4375/4374, 201768035/201326592


[[Mapping]]: [{{val|1 15 19 30}}, {{val|0 -37 -46 -75}}]
{{Mapping|legend=1| 1 11 19 2 | 0 -35 -62 3 }}


{{Multival|legend=1|37 46 75 -13 15 45}}
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3087/2560 = 322.804


[[POTE generator]]: ~9/7 = 435.082
{{Optimal ET sequence|legend=1| 26, 145, 171, 1513d, 1684d, 1855d, 2026d, 2197d, 2368d, 2539d, 2710d }}


{{Val list|legend=1| 11, 80, 171, 764, 1106, 1277, 3660, 4937, 6214 }}
[[Badness]]: 0.044877


[[Badness]]: 0.010836
=== Senator ===
The senator temperament (26 &amp; 145) is an 11-limit extension of the seniority, which tempers out 441/440 and 65536/65219. It can be extended to the 13- and 17-limit immediately, by adding 364/363 and 595/594 to the comma list in this order.


=== Semisupermajor ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 3025/3024, 4375/4374, 35156250/35153041
Comma list: 441/440, 4375/4374, 65536/65219


Mapping: [{{val|2 30 38 60 41}}, {{val|0 -37 -46 -75 -47}}]
Mapping: {{mapping| 1 11 19 2 4 | 0 -35 -62 3 -2 }}


POTE generator: ~9/7 = 435.082
Optimal tuning (POTE): ~2 = 1\1, ~77/64 = 322.793


Optimal GPV sequence: {{Val list| 80, 342, 764, 1106, 1448, 2554, 4002f, 6556cf }}
{{Optimal ET sequence|legend=1| 26, 119c, 145, 171, 316e, 487ee }}


Badness: 0.012773
Badness: 0.092238


== Enneadecal ==
==== 13-limit ====
Enneadecal temperament tempers out the enneadeca, {{monzo|-14 -19 19}}, and as a consequence has a period of 1/19 octave. This is because the enneadeca is the amount by which nineteen just minor thirds fall short of an octave. If to this we add 4375/4374 we get the 7-limit temperament we are considering here, but note should be taken of the fact that it makes for a reasonable 5-limit microtemperament also, where the generator can be 25/24, 27/25, 10/9, 5/4 or 3/2. To this we may add possible 7-limit generators such as 225/224, 15/14 or 9/7. Since enneadecal tempers out 703125/702464, the amount by which 81/80 falls short of three stacked 225/224, we can equate the 225/224 generator with (81/80)^(1/3). This is the interval needed to adjust the 1/3 comma meantone flat fifths and major thirds of [[19edo|19EDO]] up to just ones. [[171edo|171EDO]] is a good tuning for either the 5 or 7 limits, and [[494edo|494EDO]] shows how to extend the temperament to the 11 or 13 limit, where it is accurate but very complex. Fans of near-perfect fifths may want to use [[665edo|665EDO]] for a tuning.
Subgroup: 2.3.5.7.11.13


Subgroup: 2.3.5.7
Comma list: 364/363, 441/440, 2200/2197, 4375/4374


[[Comma list]]: 4375/4374, 703125/702464
Mapping: {{mapping| 1 11 19 2 4 15 | 0 -35 -62 3 -2 -42 }}


[[Mapping]]: [{{val|19 0 14 -37}}, {{val|0 1 1 3}}]
Optimal tuning (POTE): ~2 = 1\1, ~77/64 = 322.793


{{Multival|legend=1|19 19 57 -14 37 79}}
{{Optimal ET sequence|legend=1| 26, 119c, 145, 171, 316ef, 487eef }}


Mapping generators: ~28/27, ~3
Badness: 0.044662


[[POTE generator]]: ~3/2 = 701.880
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17


{{Val list|legend=1| 19, 152, 171, 665, 836, 1007, 2185 }}
Comma list: 364/363, 441/440, 595/594, 1156/1155, 2200/2197


[[Badness]]: 0.010954
Mapping: {{mapping| 1 11 19 2 4 15 17 | 0 -35 -62 3 -2 -42 -48 }}


=== 11-limit ===
Optimal tuning (POTE): ~77/64 = 322.793
Subgroup: 2.3.5.7.11


Comma list: 540/539, 4375/4374, 16384/16335
{{Optimal ET sequence|legend=1| 26, 119c, 145, 171, 316ef, 487eef }}


Mapping: [{{val|19 0 14 -37 126}}, {{val|0 1 1 3 -2}}]
Badness: 0.026562


POTE generator: ~3/2 = 702.360
== Monzismic ==
: ''For the 5-limit version of this temperament, see [[Very high accuracy temperaments #Monzismic]].  


Optimal GPV sequence: {{Val list| 19, 152, 323e, 475de, 627de }}
The monzismic temperament (53 &amp; 612) tempers out the [[monzisma]], {{monzo| 54 -37 2 }}, and in the 7-limit, the [[nanisma]], {{monzo| 109 -67 0 -1 }}, as well as the ragisma, [[4375/4374]].


Badness: 0.043734
[[Subgroup]]: 2.3.5.7


==== 13-limit ====
[[Comma list]]: 4375/4374, {{monzo| -55 30 2 1 }}
Subgroup: 2.3.5.7.11.13


Comma list: 540/539, 625/624, 729/728, 2205/2197
{{Mapping|legend=1| 1 2 10 -25 | 0 -2 -37 134 }}


Mapping: [{{val|19 0 14 -37 126 -20}}, {{val|0 1 1 3 -2 3}}]
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~{{monzo| -27 11 3 1 }} = 249.0207


POTE generator: ~3/2 = 702.212
{{Optimal ET sequence|legend=1| 53, …, 559, 612, 1277, 1889 }}


Optimal GPV sequence: {{Val list| 19, 152f, 323e }}
[[Badness]]: 0.046569
 
Badness: 0.033545


=== Hemienneadecal ===
=== Monzism ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 3025/3024, 4375/4374, 234375/234256
Comma list: 4375/4374, 41503/41472, 184549376/184528125


Mapping: [{{val|38 0 28 -74 11}}, {{val|0 1 1 3 2}}]
Mapping: {{mapping| 1 2 10 -25 46 | 0 -2 -37 134 -205 }}


Mapping generators: ~55/54, ~3
Optimal tuning (POTE): ~231/200 = 249.0193


POTE generator: ~3/2 = 701.881
{{Optimal ET sequence|legend=1| 53, 559, 612 }}


Optimal GPV sequence: {{Val list| 152, 342, 494, 836, 1178, 2014 }}
Badness: 0.057083
 
Badness: 0.009985


==== 13-limit ====
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 3025/3024, 4096/4095, 4375/4374, 31250/31213
Comma list: 2200/2197, 4096/4095, 4375/4374, 40656/40625


Mapping: [{{val|38 0 28 -74 11 502}}, {{val|0 1 1 3 2 -6}}]
Mapping: {{mapping| 1 2 10 -25 46 23 | 0 -2 -37 134 -205 -93 }}


POTE generator: ~3/2 = 701.986
Optimal tuning (POTE): ~231/200 = 249.0199


Optimal GPV sequence: {{Val list| 152, 342, 494, 836 }}
{{Optimal ET sequence|legend=1| 53, 559, 612 }}


Badness: 0.030391
Badness: 0.053780


== Deca ==
== Semidimfourth ==
Deca temperament has a period of 1/10 octave and tempers out the [[15/14ths equal temperament #Linus temperaments|linus comma]], {{monzo|11 -10 -10 10}} and {{monzo|12 -3 -14 9}} = 165288374272/164794921875 (satritrizo-asepbigu).
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Semidimfourth]].''


Subgroup: 2.3.5.7
The semidimfourth temperament is featured by a semi-diminished fourth inverval which is [[128/125]] above the pythagorean major third [[81/64]]. In the 7-limit, this temperament tempers out the ragisma and the triwellisma, 235298/234375.


[[Comma list]]: 4375/4374, 165288374272/164794921875
[[Subgroup]]: 2.3.5.7


[[Mapping]]: [{{val|10 4 9 2}}, {{val|0 5 6 11}}]
[[Comma list]]: 4375/4374, 235298/234375


{{Multival|legend=1|50 60 110 -21 34 87}}
[[Mapping]]: {{mapping| 1 21 28 36 | 0 -31 -41 -53 }}


[[POTE generator]]: ~6/5 = 315.577
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~35/27 = 448.456


{{Val list|legend=1| 80, 190, 270, 1270, 1540, 1810, 2080 }}
{{Optimal ET sequence|legend=1| 8d, 91, 99, 289, 388, 875, 1263d, 1651d }}


[[Badness]]: 0.080637
[[Badness]]: 0.055249


=== 11-limit ===
=== Neusec ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 3025/3024, 4375/4374, 422576/421875
Comma list: 3025/3024, 4375/4374, 235298/234375


Mapping: [{{val|10 4 9 2 18}}, {{val|0 5 6 11 7}}]
Mapping: {{mapping| 2 11 15 19 15 | 0 -31 -41 -53 -32 }}


POTE generator: ~6/5 = 315.582
Optimal tuning (POTE): ~99/70 = 1\2, ~12/11 = 151.547


Optimal GPV sequence: {{Val list| 80, 190, 270, 1000, 1270 }}
{{Optimal ET sequence|legend=1| 8d, 190, 388 }}


Badness: 0.024329
Badness: 0.059127


=== 13-limit ===
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 1001/1000, 3025/3024, 4225/4224, 4375/4374
Comma list: 847/845, 1001/1000, 3025/3024, 4375/4374


Mapping: [{{val|10 4 9 2 18 37}}, {{val|0 5 6 11 7 0}}]
Mapping: {{mapping| 2 11 15 19 15 17 | 0 -31 -41 -53 -32 -38 }}


POTE generator: ~6/5 = 315.602
Optimal tuning (POTE): ~99/70 = 1\2, ~12/11 = 151.545


Optimal GPV sequence: {{Val list| 80, 190, 270, 730, 1000 }}
{{Optimal ET sequence|legend=1| 8d, 190, 198, 388 }}


Badness: 0.016810
Badness: 0.030941


== Sfourth ==
== Acrokleismic ==
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Sfourth]].''
[[Subgroup]]: 2.3.5.7


Subgroup: 2.3.5.7
[[Comma list]]: 4375/4374, 2202927104/2197265625


[[Comma list]]: 4375/4374, 64827/64000
{{Mapping|legend=1| 1 10 11 27 | 0 -32 -33 -92 }}


[[Mapping]]: [{{val|1 2 3 3}}, {{val|0 -19 -31 -9}}]
: mapping generators: ~2, ~6/5


{{Multival|legend=1|19 31 9 5 -39 -66}}
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 315.557


[[POTE generator]]: ~49/48 = 26.287
{{Optimal ET sequence|legend=1| 19, …, 251, 270, 2449c, 2719c, 2989bc }}


{{Val list|legend=1| 45, 46, 91, 137d }}
[[Badness]]: 0.056184
 
[[Badness]]: 0.123291


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 121/120, 441/440, 4375/4374
Comma list: 4375/4374, 41503/41472, 172032/171875


Mapping: [{{val|1 2 3 3 4}}, {{val|0 -19 -31 -9 -25}}]
Mapping: {{mapping| 1 10 11 27 -16 | 0 -32 -33 -92 74 }}


POTE generator: ~49/48 = 26.286
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.558


Optimal GPV sequence: {{Val list| 45e, 46, 91e, 137de }}
{{Optimal ET sequence|legend=1| 19, 251, 270, 829, 1099, 1369, 1639 }}


Badness: 0.054098
Badness: 0.036878


==== 13-limit ====
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 121/120, 169/168, 325/324, 441/440
Comma list: 676/675, 1001/1000, 4375/4374, 10985/10976


Mapping: [{{val|1 2 3 3 4 4}}, {{val|0 -19 -31 -9 -25 -14}}]
Mapping: {{mapping| 1 10 11 27 -16 25 | 0 -32 -33 -92 74 -81 }}


POTE generator: ~49/48 = 26.310
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.557


Optimal GPV sequence: {{Val list| 45ef, 46, 91ef, 137def }}
{{Optimal ET sequence|legend=1| 19, 251, 270 }}


Badness: 0.033067
Badness: 0.026818


=== Sfour ===
=== Counteracro ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 385/384, 2401/2376, 4375/4374
Comma list: 4375/4374, 5632/5625, 117649/117612


Mapping: [{{val|1 2 3 3 3}}, {{val|0 -19 -31 -9 21}}]
Mapping: {{mapping| 1 10 11 27 55 | 0 -32 -33 -92 -196 }}


POTE generator: ~49/48 = 26.246
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.553


Optimal GPV sequence: {{Val list| 45, 46, 91, 137d }}
{{Optimal ET sequence|legend=1| 19e, 251e, 270, 1061e, 1331c, 1601c, 1871bc, 4012bcde }}


Badness: 0.076567
Badness: 0.042572


==== 13-limit ====
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 196/195, 364/363, 385/384, 4375/4374
Comma list: 676/675, 1716/1715, 4225/4224, 4375/4374


Mapping: [{{val|1 2 3 3 3 3}}, {{val|0 -19 -31 -9 21 32}}]
Mapping: {{mapping| 1 10 11 27 55 25 | 0 -32 -33 -92 -196 -81 }}


POTE generator: ~49/48 = 26.239
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.554


Optimal GPV sequence: {{Val list| 45, 46, 91, 137d }}
{{Optimal ET sequence|legend=1| 19e, 251e, 270, 1331c, 1601c, 1871bcf, 2141bcf }}


Badness: 0.051893
Badness: 0.026028


== Abigail ==
== Quasithird ==
Subgroup: 2.3.5.7
The quasithird temperament is featured by a major third interval which is 1600000/1594323 ([[amity comma]]) or 5120/5103 ([[5120/5103|hemifamity comma]]) below the just major third [[5/4]] as a generator, five of which give a fifth with octave reduction. This temperament has a period of a quarter octave, which allows to temper out the [[4375/4374|ragisma]] and {{monzo|-60 29 0 5}}.


[[Comma list]]: 4375/4374, 2147483648/2144153025
[[Subgroup]]: 2.3.5


[[Mapping]]: [{{val|2 7 13 -1}}, {{val|0 -11 -24 19}}]
[[Comma list]]: {{monzo| 55 -64 20 }}


{{Multival|legend=1|22 48 -38 25 -122 -223}}
{{Mapping|legend=1| 4 0 -11 | 0 5 16 }}


[[POTE generator]]: ~6912/6125 = 208.899
: mapping generators: ~51200000/43046721, ~1594323/1280000


{{Val list|legend=1| 46, 132, 178, 224, 270, 494, 764, 1034, 1798 }}
[[Optimal tuning]] ([[POTE]]): ~51200000/43046721, ~1594323/1280000 = 380.395


[[Badness]]: 0.037000
{{Optimal ET sequence|legend=1| 60, 104c, 164, 224, 388, 612, 1612, 2224, 2836, 6284, 9120, 15404 }}


=== 11-limit ===
[[Badness]]: 0.099519
Subgroup: 2.3.5.7.11


Comma list: 3025/3024, 4375/4374, 131072/130977
=== 7-limit ===
[[Subgroup]]: 2.3.5.7


Mapping: [{{val|2 7 13 -1 1}}, {{val|0 -11 -24 19 17}}]
[[Comma list]]: 4375/4374, {{monzo| -60 29 0 5 }}


POTE generator: ~1155/1024 = 208.901
{{Mapping|legend=1| 4 0 -11 48 | 0 5 16 -29 }}


Optimal GPV sequence: {{Val list| 46, 132, 178, 224, 270, 494, 764 }}
[[Optimal tuning]] ([[POTE]]): ~65536/55125 = 1\4, ~5103/4096 = 380.388


Badness: 0.012860
{{Optimal ET sequence|legend=1| 60d, 164, 224, 388, 612, 1448, 2060 }}


=== 13-limit ===
[[Badness]]: 0.061813
Subgroup: 2.3.5.7.11.13


Comma list: 1716/1715, 2080/2079, 3025/3024, 4096/4095
=== 11-limit ===
Subgroup: 2.3.5.7.11


Mapping: [{{val|2 7 13 -1 1 -2}}, {{val|0 -11 -24 19 17 27}}]
Comma list: 3025/3024, 4375/4374, 4296700485/4294967296


POTE generator: ~44/39 = 208.903
Mapping: {{mapping| 4 0 -11 48 43 | 0 5 16 -29 -23 }}


Optimal GPV sequence: {{Val list| 46, 178, 224, 270, 494, 764, 1258 }}
Optimal tuning (POTE): ~5103/4096 = 380.387 (or ~22/21 = 80.387)


Badness: 0.008856
{{Optimal ET sequence|legend=1| 60d, 164, 224, 388, 612, 836, 1448 }}


== Semidimi ==
Badness: 0.021125
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Semidimi]].''


The generator of semidimi temperament is a semi-diminished fourth interval tuned between 162/125 and 35/27. It tempers out 5-limit {{monzo|-12 -73 55}} and 7-limit 3955078125/3954653486, as well as 4375/4374.
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


Subgroup: 2.3.5.7
Comma list: 2200/2197, 3025/3024, 4096/4095, 4375/4374


[[Comma list]]: 4375/4374, 3955078125/3954653486
Mapping: {{mapping| 4 0 -11 48 43 11 | 0 5 16 -29 -23 3 }}


[[Mapping]]: [{{val|1 36 48 61}}, {{val|0 -55 -73 -93}}]
Optimal tuning (POTE): ~81/65 = 380.385 (or ~22/21 = 80.385)


{{Multival|legend=1|55 73 93 -12 -7 11}}
{{Optimal ET sequence|legend=1| 60d, 164, 224, 388, 612, 836, 1448f, 2284f }}


[[POTE generator]]: ~35/27 = 449.1270
Badness: 0.029501


{{Val list|legend=1| 171, 863, 1034, 1205, 1376, 1547, 1718, 4983, 6701, 8419 }}
== Deca ==
: ''For 5-limit version of this temperament, see [[10th-octave temperaments #Neon]].''


[[Badness]]: 0.015075
Deca temperament has a period of 1/10 octave and tempers out the [[linus comma]], {{monzo| 11 -10 -10 10 }}, neon comma {{monzo| 21 60 -50 }} and {{monzo| 12 -3 -14 9 }} = 165288374272/164794921875 (satritrizo-asepbigu).


== Brahmagupta ==
[[Subgroup]]: 2.3.5.7
The brahmagupta temperament has a period of 1/7 octave, tempering out the [[akjaysma]], {{monzo|47 -7 -7 -7}} = 140737488355328 / 140710042265625.


Subgroup: 2.3.5.7
[[Comma list]]: 4375/4374, 165288374272/164794921875


[[Comma list]]: 4375/4374, 70368744177664/70338939985125
{{Mapping|legend=1| 10 4 9 2 | 0 5 6 11 }}


[[Mapping]]: [{{val|7 2 -8 53}}, {{val|0 3 8 -11}}]
: mapping generators: ~15/14, ~6/5


{{Multival|legend=1|21 56 -77 40 -181 -336}}
[[Optimal tuning]] ([[POTE]]): ~15/14 = 1\10, ~6/5 = 315.577


[[POTE generator]]: ~27/20 = 519.716
{{Optimal ET sequence|legend=1| 80, 190, 270, 1270, 1540, 1810, 2080 }}


{{Val list|legend=1| 7, 217, 224, 441, 1106, 1547 }}
[[Badness]]: 0.080637


[[Badness]]: 0.029122
Badness (Sintel): 2.041


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 4000/3993, 4375/4374, 131072/130977
Comma list: 3025/3024, 4375/4374, 391314/390625
 
Mapping: {{mapping| 10 4 9 2 18 | 0 5 6 11 7 }}


Mapping: [{{val|7 2 -8 53 3}}, {{val|0 3 8 -11 7}}]
Optimal tuning (POTE): ~15/14 = 1\10, ~6/5 = 315.582


POTE generator: ~27/20 = 519.704
{{Optimal ET sequence|legend=1| 80, 190, 270, 1000, 1270, 1540e, 1810e }}


Optimal GPV sequence: {{Val list| 7, 217, 224, 441, 665, 1771ee }}
Badness: 0.024329


Badness: 0.052190
Badness (Sintel): 0.804


=== 13-limit ===
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 1575/1573, 2080/2079, 4096/4095, 4375/4374
Comma list: 1001/1000, 3025/3024, 4225/4224, 4375/4374


Mapping: [{{val|7 2 -8 53 3 35}}, {{val|0 3 8 -11 7 -3}}]
Mapping: {{mapping| 10 4 9 2 18 37 | 0 5 6 11 7 0 }}


POTE generator: ~27/20 = 519.706
Optimal tuning (POTE): ~15/14 = 1\10, ~6/5 = 315.602 (~40/39 = 44.398)


Optimal GPV sequence: {{Val list| 7, 217, 224, 441, 665, 1771eef }}
{{Optimal ET sequence|legend=1| 80, 190, 270, 730, 1000 }}


Badness: 0.023132
Badness: 0.016810


== Quasithird ==
Badness (Sintel): 0.695
The '''quasithird''' temperament is featured by a major third interval which is 1600000/1594323 ([[amity comma]]) or 5120/5103 ([[5120/5103|hemifamity comma]]) below the just major third [[5/4]] as a generator, five of which give a fifth with octave reduction. This temperament has a period of a quarter octave, which allows to temper out the [[4375/4374|ragisma]] and {{monzo|-60 29 0 5}}.


Subgroup: 2.3.5
=== no-17's 19-limit ===
Subgroup: 2.3.5.7.11.13.19


[[Comma]]: {{monzo| 55 -64 20 }}
Comma list: 1001/1000, 3025/3024, 4225/4224, 4375/4374, 1521/1520


[[Mapping]]: [{{val| 4 0 -11 }}, {{val| 0 5 16 }}]
Mapping: {{mapping| 10 4 9 2 18 37 33 | 0 5 6 11 7 0 4 }}


Mapping generators: ~51200000/43046721, ~1594323/1280000
Optimal tuning (CTE): ~15/14 = 1\10, ~6/5 = 315.581 (~39/38 = 44.419)


[[POTE generator]]: ~1594323/1280000 = 380.395
{{Optimal ET sequence|legend=1| 80, 190, 270, 730, 1000 }}


{{Val list|legend=1| 60, 104c, 164, 224, 388, 612, 1612, 2224, 2836, 6284, 9120, 15404 }}
Badness (Sintel): 0.556


[[Badness]]: 0.099519
== Keenanose ==
Keenanose is named for the fact that it uses [[385/384]], the keenanisma, as the generator.


=== 7-limit ===
[[Subgroup]]: 2.3.5.7
Subgroup: 2.3.5.7


[[Comma list]]: 4375/4374, 1153470752371588581/1152921504606846976
[[Comma list]]: 4375/4374, {{monzo| -56 1 -8 26 }}


[[Mapping]]: [{{val| 4 0 -11 48 }}, {{val| 0 5 16 -29 }}]
{{Mapping|legend=1| 1 2 3 3 | 0 -112 -183 -52 }}


{{Multival|legend=1| 20 64 -116 55 -240 -449 }}
: mapping generators: ~2, ~{{monzo| 21 3 1 -10 }}


[[POTE generator]]: ~5103/4096 = 380.388
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~{{monzo| 21 3 1 -10 }} = 4.4465


{{Val list|legend=1| 60d, 164, 224, 388, 612, 1448, 2060 }}
{{Optimal ET sequence|legend=1| 270, 1079, 1349, 1619, 1889, 2159, 4048, 18081cd }}


[[Badness]]: 0.061813
[[Badness]]: 0.0858


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 3025/3024, 4375/4374, 4296700485/4294967296
Comma list: 4375/4374, 117649/117612, 67110351/67108864


Mapping: [{{val| 4 0 -11 48 43 }}, {{val| 0 5 16 -29 -23 }}]
Mapping: {{mapping| 1 2 3 3 3 | 0 -112 -183 -52 124 }}


POTE generator: ~5103/4096 = 380.387 (or ~22/21 = 80.387)
Optimal tuning (CTE): ~2 = 1\1, ~385/384 = 4.4465


Optimal GPV sequence: {{Val list| 60d, 164, 224, 388, 612, 836, 1448 }}
{{Optimal ET sequence|legend=1| 270, 1349, 1619, 1889, 2159, 11065, 13224 }}


Badness: 0.021125
Badness: 0.0308


=== 13-limit ===
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 2200/2197, 3025/3024, 4096/4095, 4375/4374
Comma list: 4225/4224, 4375/4374, 6656/6655, 117649/117612
 
Mapping: {{mapping| 1 2 3 3 3 3 | 0 -112 -183 -52 124 189 }}
 
Optimal tuning (CTE): ~2 = 1\1, ~385/384 = 4.4466
 
{{Optimal ET sequence|legend=1| 270, 1079, 1349, 1619, 1889, 4048 }}
 
Badness: 0.0213
 
== Aluminium ==
Aluminium is named after the 13th element, and tempers out the {{monzo| 92 -39 -13 }} comma which sets [[135/128]] interval to be equal to 1/13th of the octave.


Mapping: [{{val| 4 0 -11 48 43 11 }}, {{val| 0 5 16 -29 -23 3 }}]
[[Subgroup]]: 2.3.5


POTE generator: ~81/65 = 380.385 (or ~22/21 = 80.385)
[[Comma list]]: {{monzo| 92 -39 -13 }}


Optimal GPV sequence: {{Val list| 60d, 164, 224, 388, 612, 836, 1448f, 2284f }}
[[Mapping]]: {{mapping| 13 0 92 | 0 1 -3 }}


Badness: 0.029501
: mapping generators: ~135/128, ~3


== Semidimfourth ==
[[Optimal tuning]] ([[CTE]]): ~135/128 = 1\13, ~3/2 = 701.9897
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Semidimfourth]].''


The '''semidimfourth''' temperament is featured by a semi-diminished fourth inverval which is [[128/125]] above the pythagorean major third [[81/64]]. In the 7-limit, this temperament tempers out the ragisma and the triwellisma, 235298/234375.
{{Optimal ET sequence|legend=1| 65, 299, 364, 429, 494, 559, 1053, 1612, 5889, 7501, 9113, 10725, 23062bc, 33787bcc, 44512bbcc }}


Subgroup: 2.3.5.7
[[Badness]]: 0.123


[[Comma list]]: 4375/4374, 235298/234375
=== 7-limit ===
[[Subgroup]]: 2.3.5.7


[[Mapping]]: [{{val|1 21 28 36}}, {{val|0 -31 -41 -53}}]
[[Comma list]]: 4375/4374, {{monzo| 92 -39 -13 }}


[[Wedgie]]: {{multival|31 41 53 -7 -3 8}}
[[Mapping]]: {{mapping| 13 0 92 -355 | 0 1 -3 19 }}


[[POTE generator]]: ~35/27 = 448.456
[[Optimal tuning]] ([[CTE]]): ~135/128 = 1\13, ~3/2 = 702.0024


{{Val list|legend=1| 8d, 91, 99, 289, 388, 875, 1263d, 1651d }}
{{Optimal ET sequence|legend=1| 494, 1053, 1547, 8788, 10335, 11882, 13429b, 14976b }}


[[Badness]]: 0.055249
[[Badness]]: 0.126


=== Neusec ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 3025/3024, 4375/4374, 235298/234375
Comma list: 4375/4374, 234375/234256, 2097152/2096325


Mapping: [{{val|2 11 15 19 15}}, {{val|0 -31 -41 -53 -32}}]
Mapping: {{mapping| 13 0 92 -355 148 | 0 1 -3 19 -5 }}


POTE generator: ~12/11 = 151.547
Optimal tuning (CTE): ~135/128 = 1\13, ~3/2 = 702.0042


Optimal GPV sequence: {{Val list| 8d, 190, 388 }}
{{Optimal ET sequence|legend=1| 494, 1053, 1547, 3588e, 5135e }}


Badness: 0.059127
Badness: 0.0421


==== 13-limit ====
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 847/845, 1001/1000, 3025/3024, 4375/4374
Comma list: 4096/4095, 4375/4374, 6656/6655, 78125/78078
 
Mapping: {{mapping| 13 0 92 -355 148 419 | 0 1 -3 19 -5 -18 }}
 
Optimal tuning (CTE): ~135/128 = 1\13, ~3/2 = 702.0099


Mapping: [{{val|2 11 15 19 15 17}}, {{val|0 -31 -41 -53 -32 -38}}]
{{Optimal ET sequence|legend=1| 494, 1547, 2041, 4576def }}


POTE generator: ~12/11 = 151.545
Badness: 0.0286


Optimal GPV sequence: {{Val list| 8d, 190, 198, 388 }}
== Countritonic ==
: ''For the 5-limit version of this temperament, see [[Schismic–Mercator equivalence continuum #Countritonic]].''


Badness: 0.030941
Countritonic (''co-un-tritonic'') can be described as the 53 & 422 temperament, generated by an octave-reduced 91st harmonic or subharmonic in the 13-limit.  


== Acrokleismic ==
[[Subgroup]]: 2.3.5.7
Subgroup: 2.3.5.7


[[Comma list]]: 4375/4374, 2202927104/2197265625
[[Comma list]]: 4375/4374, 68719476736/68356598625


[[Mapping]]: [{{val|1 10 11 27}}, {{val|0 -32 -33 -92}}]
{{Mapping|legend=1| 1 6 19 -33 | 0 -9 -34 73 }}


[[Wedgie]]: {{multival|32 33 92 -22 56 121}}
: mapping generators: ~2, ~45927/32768


[[POTE generator]]: ~6/5 = 315.557
[[Optimal tuning]] (CTE): ~2 = 1\1, ~45927/32768 = 588.6216


{{Val list|legend=1| 19, 251, 270 }}
{{Optimal ET sequence|legend=1| 53, 210d, 263, 316, 369, 422, 791, 1213cd, 2004bcdd }}


[[Badness]]: 0.056184
[[Badness]]: 0.133


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 4375/4374, 41503/41472, 172032/171875
Comma list: 4375/4374, 5632/5625, 2621440/2614689
 
Mapping: {{mapping| 1 6 19 -13 79 | 0 -9 -34 73 154 }}
 
Optimal tuning (CTE): ~2 = 1\1, ~539/384 = 588.6258
 
{{Optimal ET sequence|legend=1| 53, 316e, 369, 422, 791e, 1213cde }}


Mapping: [{{val|1 10 11 27 -16}}, {{val|0 -32 -33 -92 74}}]
Badness: 0.0707


POTE generator: ~6/5 = 315.558
=== 13-limit ===
Subgroup: 2.3.5.7.11


Optimal GPV sequence: {{Val list| 19, 251, 270, 829, 1099, 1369, 1639 }}
Comma list: 2080/2079, 2200/2197, 4375/4374, 5632/5625


Badness: 0.036878
Mapping: {{mapping| 1 6 19 -13 79 | 0 -9 -34 73 154 -74 }}


==== 13-limit ====
Optimal tuning (CTE): ~2 = 1\1, ~128/91 = 588.6277
Subgroup: 2.3.5.7.11.13


Comma list: 676/675, 1001/1000, 4375/4374, 10985/10976
{{Optimal ET sequence|legend=1| 53, 316ef, 369f, 422, 1213cdeff, 1635bcdefff }}


Mapping: [{{val|1 10 11 27 -16 25}}, {{val|0 -32 -33 -92 74 -81}}]
Badness: 0.0366


POTE generator: ~6/5 = 315.557
== Quatracot ==
{{See also| Stratosphere }}


Optimal GPV sequence: {{Val list| 19, 251, 270 }}
[[Subgroup]]: 2.3.5.7


Badness: 0.026818
[[Comma list]]: 4375/4374, {{monzo| -32 5 14 -3 }}


=== Counteracro ===
{{Mapping|legend=1| 2 7 7 23 | 0 -13 -8 -59 }}
Subgroup: 2.3.5.7.11


Comma list: 4375/4374, 5632/5625, 117649/117612
: mapping generators: ~2278125/1605632, ~448/405


Mapping: [{{val|1 10 11 27 55}}, {{val|0 -32 -33 -92 -196}}]
[[Optimal tuning]] ([[POTE]]): ~2278125/1605632 = 1\2, ~448/405 = 176.805


POTE generator: ~6/5 = 315.553
{{Optimal ET sequence|legend=1| 190, 224, 414, 638, 1052c, 1690bcc }}


Optimal GPV sequence: {{Val list| 19e, 251e, 270, 1061e, 1331c, 1601c, 1871bc, 4012bcde }}
[[Badness]]: 0.175982


Badness: 0.042572
=== 11-limit ===
Subgroup: 2.3.5.7.11


==== 13-limit ====
Comma list: 3025/3024, 4375/4374, 1265625/1261568
Subgroup: 2.3.5.7.11.13


Comma list: 676/675, 1716/1715, 4225/4224, 4375/4374
Mapping: {{mapping| 2 7 7 23 19 | 0 -13 -8 -59 -41 }}


Mapping: [{{val|1 10 11 27 55 25}}, {{val|0 -32 -33 -92 -196 -81}}]
Optimal tuning (POTE): ~99/70 = 1\2, ~448/405 = 176.806


POTE generator: ~6/5 = 315.554
{{Optimal ET sequence|legend=1| 190, 224, 414, 638, 1052c }}


Optimal GPV sequence: {{Val list| 19e, 251e, 270, 1331c, 1601c, 1871bcf, 2141bcf }}
Badness: 0.041043


Badness: 0.026028
=== 13-limit ===
Subgroup: 2.3.5.7.11.13


== Seniority ==
Comma list: 625/624, 729/728, 1575/1573, 2200/2197
{{see also|Very high accuracy temperaments #Senior}}


Aside from the ragisma, the seniority temperament (26&amp;145) tempers out the wadisma, 201768035/201326592. It is so named because the senior comma ({{monzo|-17 62 -35}}, quadla-sepquingu) is tempered out.
Mapping: {{mapping| 2 7 7 23 19 13 | 0 -13 -8 -59 -41 -19 }}


Subgroup: 2.3.5.7
Optimal tuning (POTE): ~99/70 = 1\2, ~195/176 = 176.804


[[Comma list]]: 4375/4374, 201768035/201326592
{{Optimal ET sequence|legend=1| 190, 224, 414, 638, 1690bcc, 2328bccde }}


[[Mapping]]: [{{val|1 11 19 2}}, {{val|0 -35 -62 3}}]
Badness: 0.022643


[[Wedgie]]: {{multival|35 62 -3 17 -103 -181}}
== Moulin ==
Moulin has a generator of 22/13, and it is named after the ''Law & Order: Special Victims Unit'' episode Season 22, Episode 13. "Trick-Rolled At The Moulin". It can be described as the 494 & 1619 temperament.


[[POTE generator]]: ~3087/2560 = 322.804
[[Subgroup]]: 2.3.5.7


{{Val list|legend=1| 26, 145, 171, 1513d, 1684d, 1855d, 2026d, 2197d, 2368d, 2539d, 2710d }}
[[Comma list]]: 4375/4374, {{monzo| -88 2 45 -7 }}


[[Badness]]: 0.044877
{{Mapping|legend=1| 1 57 38 248 | 0 -73 -47 -323 }}


=== Senator ===
: mapping generators: ~2, ~6422528/3796875
The senator temperament (26&amp;145) is an 11-limit extension of the seniority, which tempers out 441/440 and 65536/65219. It can be extended to the 13- and 17-limit immediately, by adding 364/363 and 595/594 to the comma list in this order.


Subgroup: 2.3.5.7.11
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~6422528/3796875 = 910.9323


Comma list: 441/440, 4375/4374, 65536/65219
{{Optimal ET sequence|legend=1| 494, 1125, 1619 }}


Mapping: [{{val|1 11 19 2 4}}, {{val|0 -35 -62 3 -2}}]
[[Badness]]: 0.234


POTE generator: ~77/64 = 322.793
=== 11-limit ===
Subgroup: 2.3.5.7.11


Optimal GPV sequence: {{Val list| 26, 119c, 145, 171, 316e, 487ee }}
Comma list: 4375/4374, 759375/758912, 100663296/100656875


Badness: 0.092238
Mapping: {{mapping| 1 57 38 248 -14 | 0 -73 -47 -323 23 }}


==== 13-limit ====
Optimal tuning (CTE): ~2 = 1\1, ~1024/605 = 910.9323
Subgroup: 2.3.5.7.11.13


Comma list: 364/363, 441/440, 2200/2197, 4375/4374
{{Optimal ET sequence|legend=1| 494, 1125, 1619, 2113 }}


Mapping: [{{val|1 11 19 2 4 15}}, {{val|0 -35 -62 3 -2 -42}}]
Badness: 0.0678


POTE generator: ~77/64 = 322.793
=== 13-limit ===
Since 11/8 is within 23 generators, the 25 tone MOS (4L 21s) of this temperament contains the 8:11:13 triad.


Optimal GPV sequence: {{Val list| 26, 119c, 145, 171, 316ef, 487eef }}
Subgroup: 2.3.5.7.11.13


Badness: 0.044662
Comma list: 4225/4224, 4375/4374, 6656/6655, 78125/78078


==== 17-limit ====
Mapping: {{mapping| 1 57 38 248 -14 -13 | 0 -73 -47 -323 23 22 }}
Subgroup: 2.3.5.7.11.13.17


Comma list: 364/363, 441/440, 595/594, 1156/1155, 2200/2197
Optimal tuning (CTE): ~2 = 1\1, ~22/13 = 910.9323


Mapping: [{{val|1 11 19 2 4 15 17}}, {{val|0 -35 -62 3 -2 -42 -48}}]
{{Optimal ET sequence|legend=1| 494, 1125, 1619, 2113 }}


POTE generator: ~77/64 = 322.793
Badness: 0.0271


Optimal GPV sequence: {{Val list| 26, 119c, 145, 171, 316ef, 487eef }}
== Palladium ==
: ''For the 5-limit version of this temperament, see [[46th-octave temperaments]]''.


Badness: 0.026562
The name of the ''palladium'' temperament comes from palladium, the 46th element. Palladium has a period of 1/46 octave. It tempers out the 46-9/5-comma, {{monzo| -39 92 -46 }}, by which 46 minortones (10/9) fall short of seven octaves. This temperament can be described as 46 &amp; 414 temperament, which tempers out {{monzo| -51 8 2 12 }} as well as the ragisma.


== Orga ==
[[Subgroup]]: 2.3.5.7
Subgroup: 2.3.5.7


[[Comma list]]: 4375/4374, 54975581388800/54936068900769
[[Comma list]]: 4375/4374, {{monzo| -51 8 2 12 }}


[[Mapping]]: [{{val|2 21 36 5}}, {{val|0 -29 -51 1}}]
{{Mapping|legend=1| 46 0 -39 202 | 0 1 2 -1 }}


[[Wedgie]]: {{multival|58 102 -2 27 -166 -291}}
: mapping generators: ~83349/81920, ~3


[[POTE generator]]: ~8/7 = 231.104
[[Optimal tuning]] ([[POTE]]): ~83349/81920 = 1\46, ~3/2 = 701.6074


{{Val list|legend=1| 26, 244, 270, 836, 1106, 1376, 2482 }}
{{Optimal ET sequence|legend=1| 46, 368, 414, 460, 874d }}


[[Badness]]: 0.040236
[[Badness]]: 0.308505


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 3025/3024, 4375/4374, 5767168/5764801
Comma list: 3025/3024, 4375/4374, 134775333/134217728


Mapping: [{{val|2 21 36 5 2}}, {{val|0 -29 -51 1 8}}]
Mapping: {{mapping| 46 0 -39 202 232 | 0 1 2 -1 -1 }}


POTE generator: ~8/7 = 231.103
Optimal tuning (POTE): ~8192/8085 = 1\46, ~3/2 = 701.5951


Optimal GPV sequence: {{Val list| 26, 244, 270, 566, 836, 1106 }}
{{Optimal ET sequence|legend=1| 46, 368, 414, 460, 874de }}


Badness: 0.016188
Badness: 0.073783


=== 13-limit ===
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 1716/1715, 2080/2079, 3025/3024, 15379/15360
Comma list: 3025/3024, 4225/4224, 4375/4374, 26411/26364


Mapping: [{{val|2 21 36 5 2 24}}, {{val|0 -29 -51 1 8 -27}}]
Mapping: {{mapping| 46 0 -39 202 232 316 | 0 1 2 -1 -1 -2 }}


POTE generator: ~8/7 = 231.103
Optimal tuning (POTE): ~65/64 = 1\46, ~3/2 = 701.6419


Optimal GPV sequence: {{Val list| 26, 244, 270, 566, 836f, 1106f }}
{{Optimal ET sequence|legend=1| 46, 368, 414, 460, 874de, 1334de }}


Badness: 0.021762
Badness: 0.040751


== Quatracot ==
=== 17-limit ===
{{See also| Stratosphere }}
Subgroup: 2.3.5.7.11.13.17


Subgroup: 2.3.5.7
Comma list: 833/832, 1089/1088, 1225/1224, 1701/1700, 4225/4224


[[Comma list]]: 4375/4374, 1483154296875/1473173782528
Mapping: {{mapping| 46 0 -39 202 232 316 188 | 0 1 2 -1 -1 -2 0 }}


[[Mapping]]: [{{val| 2 7 7 23 }}, {{val| 0 -13 -8 -59 }}]
Optimal tuning (POTE): ~65/64 = 1\46, ~3/2 = 701.6425


{{Multival|legend=1| 26 16 118 -35 114 229 }}
{{Optimal ET sequence|legend=1| 46, 368, 414, 460, 874de, 1334deg }}


[[POTE generator]]: ~448/405 = 176.805
Badness: 0.022441
 
{{Val list|legend=1| 190, 224, 414, 638, 1052c, 1690bcc }}
 
[[Badness]]: 0.175982
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 3025/3024, 4375/4374, 1265625/1261568


Mapping: [{{val| 2 7 7 23 19 }}, {{val| 0 -13 -8 -59 -41 }}]
== Oviminor ==
{{See also| Syntonic–kleismic equivalence continuum }}


POTE generator: ~448/405 = 176.806
Oviminor is named after the facts that it takes 184 minor thirds of 6/5 to reach 4/3, the Roman consul was Eggius in the year 184 AD, and the Latin word for egg is ovum, and with prefix ovi-. It sets a new record of complexity for a chain of nineteen 6/5's past [[egads]], though it is less accurate.  


Optimal GPV sequence: {{Val list| 190, 224, 414, 638, 1052c }}
[[Subgroup]]: 2.3.5.7


Badness: 0.041043
[[Comma list]]: 4375/4374, {{monzo| -100 53 48 -34 }}


=== 13-limit ===
{{Mapping|legend=1| 1 50 51 147 | 0 -184 -185 -548 }}
Subgroup: 2.3.5.7.11.13


Comma list: 625/624, 729/728, 1575/1573, 2200/2197
: mapping generators: ~2, ~6/5


Mapping: [{{val| 2 7 7 23 19 13 }}, {{val| 0 -13 -8 -59 -41 -19 }}]
[[Optimal tuning]] ([[CTE]]): ~2 = 1\1, ~6/5 = 315.7501


POTE generator: ~195/176 = 176.804
{{Optimal ET sequence|legend=1| 19, …, 1600, 1619, 4838, 6457c }}


Optimal GPV sequence: {{Val list| 190, 224, 414, 638, 1690bcc, 2328bccde }}
[[Badness]]: 0.582


Badness: 0.022643
== Octoid ==
''For the 5-limit temperament, see [[8th-octave temperaments#Octoid (5-limit)]].''


== Octoid ==
The octoid temperament has a period of 1/8 octave and tempers out 4375/4374 ([[4375/4374|ragisma]]) and 16875/16807 ([[16875/16807|mirkwai]]). In the 11-limit, it tempers out 540/539, 1375/1372, and 6250/6237. In this temperament, one period gives both 12/11 and 49/45, two gives 25/21, three gives 35/27, and four gives both 99/70 and 140/99.
The '''octoid''' temperament has a period of 1/8 octave and tempers out 4375/4374 ([[4375/4374|ragisma]]) and 16875/16807 ([[16875/16807|mirkwai]]). In the 11-limit, it tempers out 540/539, 1375/1372, and 6250/6237. In this temperament, one period gives both 12/11 and 49/45, two gives 25/21, three gives 35/27, and four gives both 99/70 and 140/99.


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 4375/4374, 16875/16807
[[Comma list]]: 4375/4374, 16875/16807


[[Mapping]]: [{{val|8 1 3 3}}, {{val|0 3 4 5}}]
{{Mapping|legend=1| 8 1 3 3 | 0 3 4 5 }}


[[Wedgie]]: {{multival|24 32 40 -5 -4 3}}
: mapping generators: ~49/45, ~7/5


Mapping generators: ~49/45, ~7/5
[[Optimal tuning]] ([[POTE]]): ~49/45 = 1\8, ~7/5 = 583.940
 
[[POTE generator]]: ~7/5 = 583.940


[[Tuning ranges]]:  
[[Tuning ranges]]:  
Line 1,171: Line 1,092:
* 7-odd-limit [[diamond tradeoff]]: ~7/5 = [582.512, 584.359]
* 7-odd-limit [[diamond tradeoff]]: ~7/5 = [582.512, 584.359]
* 9-odd-limit diamond tradeoff: ~7/5 = [582.512, 585.084]
* 9-odd-limit diamond tradeoff: ~7/5 = [582.512, 585.084]
* 7-odd-limit diamond monotone and tradeoff: ~7/5 = [582.512, 584.359]
* 9-odd-limit diamond monotone and tradeoff: ~7/5 = [582.512, 585.084]


{{Val list|legend=1| 8d, 72, 152, 224 }}
{{Optimal ET sequence|legend=1| 8d, 72, 152, 224 }}


[[Badness]]: 0.042670
[[Badness]]: 0.042670


Scales: [[Octoid72]], [[Octoid80]]
Scales: [[octoid72]], [[octoid80]]


=== 11-limit ===
=== 11-limit ===
The [[11-limit]] is the last place where all the extensions of octoid shown here agree in the mappings of primes. [[80edo]] is an alternative tuning for octoid in the 11-limit; though [[72edo]] does better for minimaxing the damage on the [[11-odd-limit]], 80edo damages prime 7 in favor of practically-just [[17/16]]'s, [[11/10]]'s and [[9/7]]'s. In higher limits, if one wants to use 80edo as the tuning, one must use octopus — not octoid — as 80edo doesn't temper 324/323, 375/374, 495/494, 625/624, 715/714 or 729/728.
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 540/539, 1375/1372, 4000/3993
Comma list: 540/539, 1375/1372, 4000/3993


Mapping: [{{val|8 1 3 3 16}}, {{val|0 3 4 5 3}}]
Mapping: {{mapping| 8 1 3 3 16 | 0 3 4 5 3 }}


POTE generator: ~7/5 = 583.962
Optimal tuning (POTE): ~12/11 = 1\8, ~7/5 = 583.962


Tuning ranges:  
Tuning ranges:  
* 11-odd-limit diamond monotone: ~7/5 = [581.250, 586.364] (31\64, 43\88)
* 11-odd-limit diamond monotone: ~7/5 = [581.250, 586.364] (31\64, 43\88)
* 11-odd-limit diamond tradeoff: ~7/5 = [582.512, 585.084]
* 11-odd-limit diamond tradeoff: ~7/5 = [582.512, 585.084]
* 11-odd-limit diamond monotone and tradeoff: ~7/5 = [582.512, 585.084]


Optimal GPV sequence: {{Val list| 72, 152, 224 }}
{{Optimal ET sequence|legend=1| 72, 152, 224 }}


Badness: 0.014097
Badness: 0.014097


Scales: [[Octoid72]], [[Octoid80]]
Scales: [[octoid72]], [[octoid80]]


==== 13-limit ====
==== 13-limit ====
Line 1,205: Line 1,125:
Comma list: 540/539, 625/624, 729/728, 1375/1372
Comma list: 540/539, 625/624, 729/728, 1375/1372


Mapping: [{{val|8 1 3 3 16 -21}}, {{val|0 3 4 5 3 13}}]
Mapping: {{mapping| 8 1 3 3 16 -21 | 0 3 4 5 3 13 }}


POTE generator: ~7/5 = 583.905
Optimal tuning (POTE): ~12/11 = 1\8, ~7/5 = 583.905


Optimal GPV sequence: {{Val list| 72, 152f, 224 }}
{{Optimal ET sequence|legend=1| 72, 152f, 224 }}


Badness: 0.015274
Badness: 0.015274


Scales: [[Octoid72]], [[Octoid80]]
Scales: [[octoid72]], [[octoid80]]


; Music
; Music
* [http://www.archive.org/details/Dreyfus http://www.archive.org/details/Dreyfus] [http://www.archive.org/download/Dreyfus/Genewardsmith-Dreyfus.mp3 play]
* ''Dreyfus'' (archived 2010) by [[Gene Ward Smith]] – [https://soundcloud.com/genewardsmith/genewardsmith-dreyfus SoundCloud] | [https://www.archive.org/details/Dreyfus details] | [https://www.archive.org/download/Dreyfus/Genewardsmith-Dreyfus.mp3 play] – octoid[72] in 224edo tuning


===== 17-limit =====
===== 17-limit =====
Line 1,223: Line 1,143:
Comma list: 375/374, 540/539, 625/624, 715/714, 729/728
Comma list: 375/374, 540/539, 625/624, 715/714, 729/728


Mapping: [{{val|8 1 3 3 16 -21 -14}}, {{val|0 3 4 5 3 13 12}}]
Mapping: {{mapping| 8 1 3 3 16 -21 -14 | 0 3 4 5 3 13 12 }}


POTE generator: ~7/5 = 583.842
Optimal tuning (POTE): ~12/11 = 1\8, ~7/5 = 583.842


Optimal GPV sequence: {{Val list| 72, 152fg, 224, 296, 520g }}
{{Optimal ET sequence|legend=1| 72, 152fg, 224, 296, 520g }}


Badness: 0.014304
Badness: 0.014304


Scales: [[Octoid72]], [[Octoid80]]
Scales: [[octoid72]], [[octoid80]]


===== 19-limit =====
===== 19-limit =====
Line 1,238: Line 1,158:
Comma list: 324/323, 375/374, 400/399, 495/494, 540/539, 715/714
Comma list: 324/323, 375/374, 400/399, 495/494, 540/539, 715/714


Mapping: [{{val|8 1 3 3 16 -21 -14 34}}, {{val|0 3 4 5 3 13 12 0}}]
Mapping: {{mapping| 8 1 3 3 16 -21 -14 34 | 0 3 4 5 3 13 12 0 }}


POTE generator: ~7/5 = 583.932
Optimal tuning (POTE): ~12/11 = 1\8, ~7/5 = 583.932


Optimal GPV sequence: {{Val list| 72, 152fg, 224 }}
{{Optimal ET sequence|legend=1| 72, 152fg, 224 }}


Badness: 0.016036
Badness: 0.016036


Scales: [[Octoid72]], [[Octoid80]]
Scales: [[octoid72]], [[octoid80]]


==== Octopus ====
==== Octopus ====
A reasonable alternative tuning of octopus not shown here which works well for 23-limit harmony (and beyond) is [[80edo]], which has a strong sharp tendency that can be thought of as matching the sharpness of mapping [[19/16]] to 1\4 = 300{{cent}}.
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 169/168, 325/324, 364/363, 540/539
Comma list: 169/168, 325/324, 364/363, 540/539


Mapping: [{{val|8 1 3 3 16 14}}, {{val|0 3 4 5 3 4}}]
Mapping: {{mapping| 8 1 3 3 16 14 | 0 3 4 5 3 4 }}


POTE generator: ~7/5 = 583.892
Optimal tuning (POTE): ~12/11 = 1\8, ~7/5 = 583.892


Optimal GPV sequence: {{Val list| 72, 152, 224f }}
{{Optimal ET sequence|legend=1| 72, 152, 224f }}


Badness: 0.021679
Badness: 0.021679


Scales: [[Octoid72]], [[Octoid80]]
Scales: [[octoid72]], [[octoid80]]


===== 17-limit =====
===== 17-limit =====
Line 1,268: Line 1,190:
Comma list: 169/168, 221/220, 289/288, 325/324, 540/539
Comma list: 169/168, 221/220, 289/288, 325/324, 540/539


Mapping: [{{val|8 1 3 3 16 14 21}}, {{val|0 3 4 5 3 4 3}}]
Mapping: {{mapping| 8 1 3 3 16 14 21 | 0 3 4 5 3 4 3 }}


POTE generator: ~7/5 = 583.811
Optimal tuning (POTE): ~12/11 = 1\8, ~7/5 = 583.811


Optimal GPV sequence: {{Val list| 72, 152, 224fg, 296ffg }}
{{Optimal ET sequence|legend=1| 72, 152, 224fg, 296ffg }}


Badness: 0.015614
Badness: 0.015614
Line 1,283: Line 1,205:
Comma list: 169/168, 221/220, 286/285, 289/288, 325/324, 400/399
Comma list: 169/168, 221/220, 286/285, 289/288, 325/324, 400/399


Mapping: [{{val|8 1 3 3 16 14 21 34}}, {{val|0 3 4 5 3 4 3 0}}]
Mapping: {{mapping| 8 1 3 3 16 14 21 34 | 0 3 4 5 3 4 3 0 }}


POTE generator: ~7/5 = 584.064
Optimal tuning (POTE): ~12/11 = 1\8, ~7/5 = 584.064


Optimal GPV sequence: {{Val list| 72, 152, 224fg, 376ffgh }}
{{Optimal ET sequence|legend=1| 72, 152, 224fg, 376ffgh }}


Badness: 0.016321
Badness: 0.016321
Line 1,294: Line 1,216:


==== Hexadecoid ====
==== Hexadecoid ====
Hexadecoid (80&amp;144) has a period of 1/16 octave and tempers out 4225/4224.
{{ See also | 16th-octave temperaments }}
 
Hexadecoid (80 &amp; 144) has a period of 1/16 octave and tempers out 4225/4224.


Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13
Line 1,300: Line 1,224:
Comma list: 540/539, 1375/1372, 4000/3993, 4225/4224
Comma list: 540/539, 1375/1372, 4000/3993, 4225/4224


Mapping: [{{val|16 26 38 46 56 59}}, {{val|0 -3 -4 -5 -3 1}}]
Mapping: {{mapping| 16 2 6 6 32 67 | 0 3 4 5 3 -1 }}


POTE generator: ~13/8 = 841.015
: mapping generators: ~448/429, ~7/5


Optimal GPV sequence: {{Val list| 80, 144, 224 }}
Optimal tuning (POTE): ~448/429 = 1\16, ~13/8 = 841.015
 
{{Optimal ET sequence|legend=1| 80, 144, 224 }}


Badness: 0.030818
Badness: 0.030818
Line 1,313: Line 1,239:
Comma list: 540/539, 715/714, 936/935, 4000/3993, 4225/4224
Comma list: 540/539, 715/714, 936/935, 4000/3993, 4225/4224


Mapping: [{{val|16 26 38 46 56 59 65}}, {{val|0 -3 -4 -5 -3 1 2}}]
Mapping: {{mapping| 16 2 6 6 32 67 81 | 0 3 4 5 3 -1 -2 }}


POTE generator: ~13/8 = 840.932
Optimal tuning (POTE): ~117/112 = 1\16, ~13/8 = 840.932


Optimal GPV sequence: {{Val list| 80, 144, 224, 528dg }}
{{Optimal ET sequence|legend=1| 80, 144, 224, 528dg }}


Badness: 0.028611
Badness: 0.028611
Line 1,326: Line 1,252:
Comma list: 400/399, 540/539, 715/714, 936/935, 1331/1330, 1445/1444
Comma list: 400/399, 540/539, 715/714, 936/935, 1331/1330, 1445/1444


Mapping: [{{val|16 26 38 46 56 59 65 68}}, {{val|0 -3 -4 -5 -3 1 2 0}}]
Mapping: {{mapping| 16 2 6 6 32 67 81 68 | 0 -3 -4 -5 -3 1 2 0 }}


POTE generator: ~13/8 = 840.896
Optimal tuning (POTE): ~117/112 = 1\16, ~13/8 = 840.896


Optimal GPV sequence: {{Val list| 80, 144, 224, 304dh, 528dghh }}
{{Optimal ET sequence|legend=1| 80, 144, 224, 304dh, 528dghh }}


Badness: 0.023731
Badness: 0.023731
== Amity ==
{{main| Amity }}
{{see also| Amity family #Amity }}
The generator for amity temperament is the acute minor third, which means the 6/5 just minor third raised by an 81/80 comma to 243/200, and from this it derives its name. Aside from the ragisma it tempers out the 5-limit [[amity comma]], 1600000/1594323, [[5120/5103]] and [[6144/6125]]. It can also be described as the 46&amp;53 temperament. [[99edo|99EDO]] is a good tuning for amity, with generator 28\99, and MOS of 11, 18, 25, 32, 39, 46 or 53 notes are available. If you are looking for a different kind of neutral third this could be the temperament for you.
In the 5-limit amity is a genuine microtemperament, with 58\205 being a possible tuning. Another good choice is (64/5)<sup>1/13</sup>, which gives pure major thirds.
Subgroup: 2.3.5.7
[[Comma list]]: 4375/4374, 5120/5103
[[Mapping]]: [{{val| 1 3 6 -2 }}, {{val| 0 -5 -13 17 }}]
{{Multival|legend=1| 5 13 -17 9 -41 -76 }}
[[POTE generator]]: ~128/105 = 339.432
{{Val list|legend=1| 7, 32c, 39, 46, 53, 99, 251, 350, 601cd, 951bcdd }}
[[Badness]]: 0.023649
=== 11-limit ===
Subgroup: 2.3.5.7.11
Comma list: 540/539, 4375/4374, 5120/5103
Mapping: [{{val| 1 3 6 -2 21 }}, {{val| 0 -5 -13 17 -62 }}]
POTE generator: ~128/105 = 339.464
Optimal GPV sequence: {{Val list| 46e, 53, 99e, 152, 555dee, 707ddee, 859bddee }}
Badness: 0.031506
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Comma list: 352/351, 540/539, 625/624, 847/845
Mapping: [{{val| 1 3 6 -2 21 17 }}, {{val| 0 -5 -13 17 -62 -47 }}]
POTE generator: ~128/105 = 339.481
Optimal GPV sequence: {{Val list| 46ef, 53, 99ef, 152f }} <nowiki>*</nowiki>
<nowiki>*</nowiki> optimal patent val: [[205edo|205]]
Badness: 0.028008
=== Hitchcock ===
Subgroup: 2.3.5.7.11
Comma list: 121/120, 176/175, 2200/2187
Mapping: [{{val| 1 3 6 -2 6 }}, {{val| 0 -5 -13 17 -9 }}]
POTE generator: ~11/9 = 339.390
Optimal GPV sequence: {{Val list| 7, 39, 46, 53, 99 }}
Badness: 0.035187
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Comma list: 121/120, 169/168, 176/175, 325/324
Mapping: [{{val| 1 3 6 -2 6 2 }}, {{val| 0 -5 -13 17 -9 6 }}]
POTE generator: ~11/9 = 339.419
Optimal GPV sequence: {{Val list| 7, 39, 46, 53, 99 }}
Badness: 0.022448
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17
Comma list: 121/120, 154/153, 169/168, 176/175, 273/272
Mapping: [{{val| 1 3 6 -2 6 2 -1 }}, {{val| 0 -5 -13 17 -9 6 18 }}]
POTE generator: ~11/9 = 339.366
Optimal GPV sequence: {{Val list| 7, 39, 46, 53, 99 }}
Badness: 0.019395
==== 19-limit ====
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 121/120, 154/153, 169/168, 171/170, 176/175, 190/189
Mapping: [{{val| 1 3 6 -2 6 2 -1 0 }}, {{val| 0 -5 -13 17 -9 6 18 15 }}]
POTE generator: ~11/9 = 339.407
Optimal GPV sequence: {{Val list| 7, 39h, 46, 53, 99h }}
Badness: 0.017513
=== Catamite ===
Subgroup: 2.3.5.7.11
Comma list: 441/440, 896/891, 4375/4374
Mapping: [{{val|1 3 6 -2 -7}}, {{val|0 -5 -13 17 37}}]
POTE generator: ~128/105 = 339.340
Optimal GPV sequence: {{Val list| 46, 99e, 145, 244e }}
Badness: 0.040976
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Comma list: 196/195, 352/351, 364/363, 4375/4374
Mapping: [{{val|1 3 6 -2 -7 -11}}, {{val|0 -5 -13 17 37 52}}]
POTE generator: ~128/105 = 339.313
Optimal GPV sequence: {{Val list| 46, 99ef, 145 }}
Badness: 0.034215
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17
Comma list: 196/195, 256/255, 352/351, 364/363, 1156/1155
Mapping: [{{val|1 3 6 -2 -7 -11 -1}}, {{val|0 -5 -13 17 37 52 18}}]
POTE generator: ~17/14 = 339.313
Optimal GPV sequence: {{Val list| 46, 99ef, 145 }}
Badness: 0.021193
==== 19-limit ====
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 196/195, 256/255, 343/342, 352/351, 364/363, 476/475
Mapping: [{{val|1 3 6 -2 -7 -11 -1 -13}}, {{val|0 -5 -13 17 37 52 18 61}}]
POTE generator: ~17/14 = 339.325
Optimal GPV sequence: {{Val list| 46, 99ef, 145 }}
Badness: 0.018864
=== Hemiamity ===
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4375/4374, 5120/5103
Mapping: [{{val| 2 1 -1 13 13 }}, {{val| 0 5 13 -17 -14 }}]
Mapping generators: ~99/70, ~64/55
POTE generator: ~64/55 = 260.561
Optimal GPV sequence: {{Val list| 14cde, 46, 106, 152, 350, 502d }}
Badness: 0.031307
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Comma list: 352/351, 847/845, 1716/1715, 3025/3024
Mapping: [{{val| 2 1 -1 13 13 20 }}, {{val| 0 5 13 -17 -14 -29 }}]
POTE generator: ~64/55 = 260.583
Optimal GPV sequence: {{Val list| 46, 106f, 152f, 198, 350f, 548cdff }}
Badness: 0.025784


== Parakleismic ==
== Parakleismic ==
{{main| Parakleismic }}
{{Main| Parakleismic }}


In the 5-limit, parakleismic is an undoubted microtemperament, tempering out the parakleisma, {{monzo|8 14 -13}}, with the [[118edo|118EDO]] tuning giving errors well under a cent. It has a generator a very slightly (half a cent or less) flat 6/5, 13 of which give 32/3, and 14 give 64/5. However while 118 no longer has better than a cent of accuracy in the 7 or 11 limits, it is a decent temperament there nonetheless, and this allows an extension, with the 7-limit wedgie being {{multival|13 14 35 -8 19 42}} and adding 3136/3125 and 4375/4374, and the 11-limit wedgie {{multival|13 14 35 -36 -8 19 -102 42 -132 -222}} adding 385/384. For the 7-limit [[99edo|99EDO]] may be preferred, but in the 11-limit it is best to stick with 118.
In the 5-limit, parakleismic is an undoubted microtemperament, tempering out the parakleisma, {{monzo| 8 14 -13 }}, with the [[118edo]] tuning giving errors well under a cent. It has a generator a very slightly (half a cent or less) flat 6/5, 13 of which give 32/3, and 14 give 64/5. However while 118 no longer has better than a cent of accuracy in the 7- or 11-limit, it is a decent temperament there nonetheless, and this allows an extension adding 3136/3125 and 4375/4374, and 11-limit adding 385/384. For the 7-limit [[99edo]] may be preferred, but in the 11-limit it is best to stick with 118.


Subgroup: 2.3.5
[[Subgroup]]: 2.3.5


[[Comma list]]: 1224440064/1220703125
[[Comma list]]: 1224440064/1220703125


[[Mapping]]: [{{val|1 5 6}}, {{val|0 -13 -14}}]
{{Mapping|legend=1| 1 5 6 | 0 -13 -14 }}


[[POTE generator]]: ~6/5 = 315.240
: mapping generators: ~2, ~6/5


{{Val list|legend=1| 19, 61, 80, 99, 118, 453, 571, 689, 1496 }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 315.240
 
{{Optimal ET sequence|legend=1| 19, 61, 80, 99, 118, 453, 571, 689, 1496 }}


[[Badness]]: 0.043279
[[Badness]]: 0.043279


=== 7-limit ===
=== 7-limit ===
Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 3136/3125, 4375/4374
[[Comma list]]: 3136/3125, 4375/4374


[[Mapping]]: [{{val|1 5 6 12}}, {{val|0 -13 -14 -35}}]
{{Mapping|legend=1| 1 5 6 12 | 0 -13 -14 -35 }}


[[Wedgie]]: {{multival|13 14 35 -8 19 42}}


[[POTE generator]]: ~6/5 = 315.181
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 315.181


{{Val list|legend=1| 19, 80, 99, 217, 316, 415 }}
{{Optimal ET sequence|legend=1| 19, 80, 99, 217, 316, 415 }}


[[Badness]]: 0.027431
[[Badness]]: 0.027431
Line 1,553: Line 1,298:
Comma list: 385/384, 3136/3125, 4375/4374
Comma list: 385/384, 3136/3125, 4375/4374


Mapping: [{{val|1 5 6 12 -6}}, {{val|0 -13 -14 -35 36}}]
Mapping: {{mapping| 1 5 6 12 -6 | 0 -13 -14 -35 36 }}


POTE generator: ~6/5 = 315.251
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.251


Optimal GPV sequence: {{Val list| 19, 99, 118 }}
{{Optimal ET sequence|legend=1| 19, 99, 118 }}


Badness: 0.049711
Badness: 0.049711


=== Paralytic ===
=== Paralytic ===
The ''paralytic'' temperament (118&amp;217) tempers out 441/440, 5632/5625, and 19712/19683. In 13-limit, 118&amp;217 tempers out 1001/1000, 1575/1573, and 3584/3575.
The ''paralytic'' temperament (118&amp;217) tempers out 441/440, 5632/5625, and 19712/19683. In 13-limit, 118 &amp; 217 tempers out 1001/1000, 1575/1573, and 3584/3575.


Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11
Line 1,568: Line 1,313:
Comma list: 441/440, 3136/3125, 4375/4374
Comma list: 441/440, 3136/3125, 4375/4374


Mapping: [{{val|1 5 6 12 25}}, {{val|0 -13 -14 -35 -82}}]
Mapping: {{mapping| 1 5 6 12 25 | 0 -13 -14 -35 -82 }}


POTE generator: ~6/5 = 315.220
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.220


Optimal GPV sequence: {{Val list| 19e, 99e, 118, 217, 335, 552d, 887dd }}
{{Optimal ET sequence|legend=1| 19e, 99e, 118, 217, 335, 552d, 887dd }}


Badness: 0.036027
Badness: 0.036027
Line 1,581: Line 1,326:
Comma list: 441/440, 1001/1000, 3136/3125, 4375/4374
Comma list: 441/440, 1001/1000, 3136/3125, 4375/4374


Mapping: [{{val|1 5 6 12 25 -16}}, {{val|0 -13 -14 -35 -82 75}}]
Mapping: {{mapping| 1 5 6 12 25 -16 | 0 -13 -14 -35 -82 75 }}


POTE generator: ~6/5 = 315.214
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.214


Optimal GPV sequence: {{Val list| 99e, 118, 217, 552d, 769de }}
{{Optimal ET sequence|legend=1| 99e, 118, 217, 552d, 769de }}


Badness: 0.044710
Badness: 0.044710


==== Paraklein ====
==== Paraklein ====
The ''paraklein'' temperament (19e&amp;118) is another 13-limit extension of paralytic, which equates [[13/11]] with [[32/27]], [[14/13]] with [[15/14]], [[25/24]] with [[26/25]], and [[27/26]] with [[28/27]].
The ''paraklein'' temperament (19e &amp; 118) is another 13-limit extension of paralytic, which equates [[13/11]] with [[32/27]], [[14/13]] with [[15/14]], [[25/24]] with [[26/25]], and [[27/26]] with [[28/27]].


Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13
Line 1,596: Line 1,341:
Comma list: 196/195, 352/351, 625/624, 729/728
Comma list: 196/195, 352/351, 625/624, 729/728


Mapping: [{{val|1 5 6 12 25 15}}, {{val|0 -13 -14 -35 -82 -43}}]
Mapping: {{mapping| 1 5 6 12 25 15 | 0 -13 -14 -35 -82 -43 }}


POTE generator: ~6/5 = 315.225
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.225


Optimal GPV sequence: {{Val list| 19e, 99ef, 118, 217ff, 335ff }}
{{Optimal ET sequence|legend=1| 19e, 99ef, 118, 217ff, 335ff }}


Badness: 0.037618
Badness: 0.037618
Line 1,609: Line 1,354:
Comma list: 176/175, 1375/1372, 2200/2187
Comma list: 176/175, 1375/1372, 2200/2187


Mapping: [{{val|1 5 6 12 20}}, {{val|0 -13 -14 -35 -63}}]
Mapping: {{mapping| 1 5 6 12 20 | 0 -13 -14 -35 -63 }}


POTE generator: ~6/5 = 315.060
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.060


Optimal GPV sequence: {{Val list| 19e, 80, 179, 259cd }}
{{Optimal ET sequence|legend=1| 19e, 80, 179, 259cd }}


Badness: 0.055884
Badness: 0.055884
Line 1,622: Line 1,367:
Comma list: 169/168, 176/175, 325/324, 1375/1372
Comma list: 169/168, 176/175, 325/324, 1375/1372


Mapping: [{{val|1 5 6 12 20 10}}, {{val|0 -13 -14 -35 -63 -24}}]
Mapping: {{mapping| 1 5 6 12 20 10 | 0 -13 -14 -35 -63 -24 }}


POTE generator: ~6/5 = 315.075
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.075


Optimal GPV sequence: {{Val list| 19e, 80, 179 }}
{{Optimal ET sequence|legend=1| 19e, 80, 179 }}


Badness: 0.036559
Badness: 0.036559
Line 1,635: Line 1,380:
Comma list: 540/539, 896/891, 3136/3125
Comma list: 540/539, 896/891, 3136/3125


Mapping: [{{val|1 5 6 12 -1}}, {{val|0 -13 -14 -35 17}}]
Mapping: {{mapping| 1 5 6 12 -1 | 0 -13 -14 -35 17 }}


POTE generator: ~6/5 = 315.096
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.096


Optimal GPV sequence: {{Val list| 19, 61d, 80, 99e, 179e }}
{{Optimal ET sequence|legend=1| 19, 61d, 80, 99e, 179e }}


Badness: 0.041720
Badness: 0.041720
Line 1,648: Line 1,393:
Comma list: 169/168, 325/324, 540/539, 832/825
Comma list: 169/168, 325/324, 540/539, 832/825


Mapping: [{{val|1 5 6 12 -1 10}}, {{val|0 -13 -14 -35 17 -24}}]
Mapping: {{mapping| 1 5 6 12 -1 10 | 0 -13 -14 -35 17 -24 }}


POTE generator: ~6/5 = 315.080
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 315.080


Optimal GPV sequence: {{Val list| 19, 61d, 80, 99e, 179e }}
{{Optimal ET sequence|legend=1| 19, 61d, 80, 99e, 179e }}


Badness: 0.035781
Badness: 0.035781
Line 1,661: Line 1,406:
Comma list: 3025/3024, 3136/3125, 4375/4374
Comma list: 3025/3024, 3136/3125, 4375/4374


Mapping: [{{val|2 10 12 24 19}}, {{val|0 -13 -14 -35 -23}}]
Mapping: {{mapping| 2 10 12 24 19 | 0 -13 -14 -35 -23 }}


POTE generator: ~6/5 = 315.181
Optimal tuning (POTE): ~99/70 = 1\2, ~6/5 = 315.181


Optimal GPV sequence: {{Val list| 80, 118, 198, 316, 514c, 830c }}
{{Optimal ET sequence|legend=1| 80, 118, 198, 316, 514c, 830c }}


Badness: 0.034208
Badness: 0.034208
Line 1,676: Line 1,421:
Comma list: 352/351, 1001/1000, 3025/3024, 4375/4374
Comma list: 352/351, 1001/1000, 3025/3024, 4375/4374


Mapping: [{{val|2 10 12 24 19 -1}}, {{val|0 -13 -14 -35 -23 16}}]
Mapping: {{mapping| 2 10 12 24 19 -1 | 0 -13 -14 -35 -23 16 }}


POTE generator: ~6/5 = 315.156
Optimal tuning (POTE): ~99/70 = 1\2, ~6/5 = 315.156


Optimal GPV sequence: {{Val list| 80, 118, 198 }}
{{Optimal ET sequence|legend=1| 80, 118, 198 }}


Badness: 0.033775
Badness: 0.033775
Line 1,691: Line 1,436:
Comma list: 169/168, 325/324, 364/363, 3136/3125
Comma list: 169/168, 325/324, 364/363, 3136/3125


Mapping: [{{val|2 10 12 24 19 20}}, {{val|0 -13 -14 -35 -23 -24}}]
Mapping: {{mapping| 2 10 12 24 19 20 | 0 -13 -14 -35 -23 -24 }}


POTE generator: ~6/5 = 315.184
Optimal tuning (POTE): ~55/39 = 1\2, ~6/5 = 315.184


Optimal GPV sequence: {{Val list| 80, 118f, 198f }}
{{Optimal ET sequence|legend=1| 80, 118f, 198f }}


Badness: 0.040467
Badness: 0.040467


== Counterkleismic ==
== Counterkleismic ==
{{see also| High badness temperaments #Counterhanson}}
{{See also| High badness temperaments #Counterhanson}}


In the 5-limit, the counterhanson temperament tempers out the counterhanson (quinquinyo) comma, {{monzo|-20 -24 25}}, the amount by which six [[648/625|major dieses (648/625)]] fall short of the [[5/4|classic major third (5/4)]]. It can be described as 19&amp;224 temperament (''counterkleismic'', named by analogy to [[catakleismic]] and parakleismic), tempering out the ragisma and 158203125/157351936 (laquadru-atritriyo comma).
In the 5-limit, the counterhanson temperament tempers out the counterhanson (quinquinyo) comma, {{monzo| -20 -24 25 }}, the amount by which six [[648/625|major dieses (648/625)]] fall short of the [[5/4|classic major third (5/4)]]. It can be described as 19 &amp; 224 temperament (''counterkleismic'', named by analogy to [[catakleismic]] and parakleismic), tempering out the ragisma and 158203125/157351936 (laquadru-atritriyo comma).


Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 4375/4374, 158203125/157351936
[[Comma list]]: 4375/4374, 158203125/157351936


[[Mapping]]: [{{val|1 -5 -4 -18}}, {{val|0 25 24 79}}]
{{Mapping|legend=1| 1 20 20 61 | 0 -25 -24 -79 }}


[[Wedgie]]: {{multival|25 24 79 -20 55 116}}
: mapping generators: ~2, ~5/3


[[POTE generator]]: ~6/5 = 316.060
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 316.060


{{Val list|legend=1| 19, 205, 224, 243, 467 }}
{{Optimal ET sequence|legend=1| 19, 205, 224, 243, 467 }}


[[Badness]]: 0.090553
[[Badness]]: 0.090553
Line 1,723: Line 1,468:
Comma list: 540/539, 4375/4374, 2097152/2096325
Comma list: 540/539, 4375/4374, 2097152/2096325


Mapping: [{{val|1 -5 -4 -18 19}}, {{val|0 25 24 79 -59}}]
Mapping: {{mapping| 1 20 20 61 -40 | 0 -25 -24 -79 59 }}


POTE generator: ~6/5 = 316.071
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 316.071


Optimal GPV sequence: {{Val list| 19, 205, 224 }}
{{Optimal ET sequence|legend=1| 19, 205, 224 }}


Badness: 0.070952
Badness: 0.070952
Line 1,736: Line 1,481:
Comma list: 540/539, 625/624, 729/728, 10985/10976
Comma list: 540/539, 625/624, 729/728, 10985/10976


Mapping: [{{val|1 -5 -4 -18 19 -15}}, {{val|0 25 24 79 -59 71}}]
Mapping: {{mapping| 1 20 20 61 -40 56 | 0 -25 -24 -79 59 -71 }}


POTE generator: ~6/5 = 316.070
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 316.070


Optimal GPV sequence: {{Val list| 19, 205, 224, 1587cde, 1811ccdef, 2035ccddeef, 2259ccddeef, 2483ccddeef, 2707ccddeef }}
{{Optimal ET sequence|legend=1| 19, 205, 224, 1587cde, 1811ccdef, 2035ccddeef, 2259ccddeef, 2483ccddeef, 2707ccddeef }}


Badness: 0.033874
Badness: 0.033874
Line 1,749: Line 1,494:
Comma list: 1375/1372, 4375/4374, 496125/495616
Comma list: 1375/1372, 4375/4374, 496125/495616


Mapping: [{{val|1 -5 -4 -18 -40}}, {{val|0 25 24 79 165}}]
Mapping: {{mapping| 1 20 20 61 125 | 0 -25 -24 -79 -165 }}


POTE generator: ~6/5 = 316.065
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 316.065


Optimal GPV sequence: {{Val list| 19e, 205e, 224 }}
{{Optimal ET sequence|legend=1| 19e, 205e, 224 }}


Badness: 0.065400
Badness: 0.065400
Line 1,762: Line 1,507:
Comma list: 625/624, 729/728, 1375/1372, 10985/10976
Comma list: 625/624, 729/728, 1375/1372, 10985/10976


Mapping: [{{val|1 -5 -4 -18 -40 -15}}, {{val|0 25 24 79 165 71}}]
Mapping: {{mapping| 1 20 20 61 125 56 | 0 -25 -24 -79 -165 -71 }}


POTE generator: ~6/5 = 316.065
Optimal tuning (POTE): ~2 = 1\1, ~6/5 = 316.065


Optimal GPV sequence: {{Val list| 19e, 205e, 224 }}
{{Optimal ET sequence|legend=1| 19e, 205e, 224 }}


Badness: 0.029782
Badness: 0.029782


== Quincy ==
== Quincy ==
Subgroup: 2.3.5.7
[[Subgroup]]: 2.3.5.7


[[Comma list]]: 4375/4374, 823543/819200
[[Comma list]]: 4375/4374, 823543/819200


[[Mapping]]: [{{val|1 2 3 3}}, {{val|0 -30 -49 -14}}]
{{Mapping|legend=1| 1 2 3 3 | 0 -30 -49 -14 }}


[[Wedgie]]: {{multival|30 49 14 8 -62 -105}}
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~1728/1715 = 16.613


[[POTE generator]]: ~1728/1715 = 16.613
{{Optimal ET sequence|legend=1| 72, 217, 289 }}
 
{{Val list|legend=1| 72, 217, 289 }}


[[Badness]]: 0.079657
[[Badness]]: 0.079657
Line 1,790: Line 1,533:
Comma list: 441/440, 4000/3993, 4375/4374
Comma list: 441/440, 4000/3993, 4375/4374


Mapping: [{{val|1 2 3 3 4}}, {{val|0 -30 -49 -14 -39}}]
Mapping: {{mapping| 1 2 3 3 4 | 0 -30 -49 -14 -39 }}


POTE generator: ~100/99 = 16.613
Optimal tuning (POTE): ~2 = 1\1, ~100/99 = 16.613


Optimal GPV sequence: {{Val list| 72, 217, 289 }}
{{Optimal ET sequence|legend=1| 72, 217, 289 }}


Badness: 0.030875
Badness: 0.030875
Line 1,803: Line 1,546:
Comma list: 364/363, 441/440, 676/675, 4375/4374
Comma list: 364/363, 441/440, 676/675, 4375/4374


Mapping: [{{val|1 2 3 3 4 5}}, {{val|0 -30 -49 -14 -39 -94}}]
Mapping: {{mapping| 1 2 3 3 4 5 | 0 -30 -49 -14 -39 -94 }}


POTE generator: ~100/99 = 16.602
Optimal tuning (POTE): ~2 = 1\1, ~100/99 = 16.602


Optimal GPV sequence: {{Val list| 72, 145, 217, 289 }}
{{Optimal ET sequence|legend=1| 72, 145, 217, 289 }}


Badness: 0.023862
Badness: 0.023862
Line 1,816: Line 1,559:
Comma list: 364/363, 441/440, 595/594, 676/675, 1156/1155
Comma list: 364/363, 441/440, 595/594, 676/675, 1156/1155


Mapping: [{{val|1 2 3 3 4 5 5}}, {{val|0 -30 -49 -14 -39 -94 -66}}]
Mapping: {{mapping| 1 2 3 3 4 5 5 | 0 -30 -49 -14 -39 -94 -66 }}


POTE generator: ~100/99 = 16.602
Optimal tuning (POTE): ~2 = 1\1, ~100/99 = 16.602


Optimal GPV sequence: {{Val list| 72, 145, 217, 289 }}
{{Optimal ET sequence|legend=1| 72, 145, 217, 289 }}


Badness: 0.014741
Badness: 0.014741
Line 1,829: Line 1,572:
Comma list: 343/342, 364/363, 441/440, 476/475, 595/594, 676/675
Comma list: 343/342, 364/363, 441/440, 476/475, 595/594, 676/675


Mapping: [{{val|1 2 3 3 4 5 5 4}}, {{val|0 -30 -49 -14 -39 -94 -66 18}}]
Mapping: {{mapping| 1 2 3 3 4 5 5 4 | 0 -30 -49 -14 -39 -94 -66 18 }}


POTE generator: ~100/99 = 16.594
Optimal tuning (POTE): ~2 = 1\1, ~100/99 = 16.594


Optimal GPV sequence: {{Val list| 72, 145, 217 }}
{{Optimal ET sequence|legend=1| 72, 145, 217 }}


Badness: 0.015197
Badness: 0.015197


== Trideci ==
== Sfourth ==
{{see also| High badness temperaments #Tridecatonic }}
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Sfourth]].''


The ''trideci'' temperament (26&amp;65) has a period of 1/13 octave and tempers out 245/242 and 385/384 in the 11-limit. It tempers out the same 5-limit comma as the [[Octagar temperaments #Tridecatonic|tridecatonic temperament]], but with the ragisma (4375/4374) rather than the octagar (4000/3969) tempered out. The name ''trideci'' comes from "tridecim" (Latin for "[[wikipedia:13|thirteen]]").
[[Subgroup]]: 2.3.5.7


Subgroup: 2.3.5.7
[[Comma list]]: 4375/4374, 64827/64000


[[Comma list]]: 4375/4374, 83349/81920
{{Mapping|legend=1| 1 2 3 3 | 0 -19 -31 -9 }}


[[Mapping]]: [{{val|13 21 31 36}}, {{val|0 -1 -2 1}}]
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~49/48 = 26.287


[[POTE generator]]: ~3/2 = 699.1410
{{Optimal ET sequence|legend=1| 45, 46, 91, 137d }}


{{Val list|legend=1| 26, 65, 91, 156d, 247cdd }}
[[Badness]]: 0.123291
 
[[Badness]]: 0.184585


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 245/242, 385/384, 4375/4374
Comma list: 121/120, 441/440, 4375/4374


Mapping: [{{val|13 21 31 36 45}}, {{val|0 -1 -2 1 0}}]
Mapping: {{mapping| 1 2 3 3 4 | 0 -19 -31 -9 -25 }}


POTE generator: ~3/2 = 699.6179
Optimal tuning (POTE): ~2 = 1\1, ~49/48 = 26.286


Optimal GPV sequence: {{Val list| 26, 65, 91, 156d, 247cdde }}
{{Optimal ET sequence|legend=1| 45e, 46, 91e, 137de }}


Badness: 0.084590
Badness: 0.054098


=== 13-limit ===
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 169/168, 245/242, 325/324, 385/384
Comma list: 121/120, 169/168, 325/324, 441/440


Mapping: [{{val|13 21 31 36 45 48}}, {{val|0 -1 -2 1 0 0}}]
Mapping: {{mapping| 1 2 3 3 4 4 | 0 -19 -31 -9 -25 -14 }}


POTE generator: ~3/2 = 699.2969
Optimal tuning (POTE): ~2 = 1\1, ~49/48 = 26.310


Optimal GPV sequence: {{Val list| 26, 65f, 91f, 156dff }}
{{Optimal ET sequence|legend=1| 45ef, 46, 91ef, 137def }}


Badness: 0.052366
Badness: 0.033067


== Chlorine ==
=== Sfour ===
The name of chlorine temperament comes from Chlorine, the 17th element.
Subgroup: 2.3.5.7.11


Chlorine temperament has a period of 1/17 octave. It tempers out the septendecima, {{monzo|-52 -17 34}}, by which 17 chromatic semitones (25/24) exceed an octave. This temperament can be described as 289&amp;323 temperament, which tempers out {{monzo|-49 4 22 -3}} as well as the ragisma. Not only the semitwelfth, but also the ~5/4 can be used as a generator.
Comma list: 385/384, 2401/2376, 4375/4374


Subgroup: 2.3.5
Mapping: {{mapping| 1 2 3 3 3 | 0 -19 -31 -9 21 }}


[[Comma]]: {{monzo| -52 -17 34 }}
Optimal tuning (POTE): ~2 = 1\1, ~49/48 = 26.246


[[Mapping]]: [{{val| 17 0 26 }}, {{val| 0 2 1 }}]
{{Optimal ET sequence|legend=1| 45, 46, 91, 137d }}


Mapping generators: ~25/24, ~{{monzo| 26 9 -17 }}
Badness: 0.076567


[[POTE generator]]: ~{{monzo| 26 9 -17 }} = 950.9746
==== 13-limit ====
Subgroup: 2.3.5.7.11.13


{{Val list|legend=1| 34, 153, 187, 221, 255, 289, 323, 612, 3349, 3961, 4573, 5185, 5797 }}
Comma list: 196/195, 364/363, 385/384, 4375/4374


[[Badness]]: 0.077072
Mapping: {{mapping| 1 2 3 3 3 3 | 0 -19 -31 -9 21 32 }}


=== 7-limit ===
Optimal tuning (POTE): ~2 = 1\1, ~49/48 = 26.239
Subgroup: 2.3.5.7


[[Comma list]]: 4375/4374, 193119049072265625/193091834023510016
{{Optimal ET sequence|legend=1| 45, 46, 91, 137d }}


[[Mapping]]: [{{val| 17 0 26 -87 }}, {{val| 0 2 1 10 }}]
Badness: 0.051893


{{Multival|legend=1| 34 17 170 -52 174 347 }}
== Trideci ==
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Tridecatonic]].''


[[POTE generator]]: ~822083584/474609375 = 950.9995
The trideci temperament (26 &amp; 65) has a period of 1/13 octave and tempers out 245/242 and 385/384 in the 11-limit. It tempers out the same 5-limit comma as the [[Octagar temperaments #Tridecatonic|tridecatonic temperament]], but with the ragisma (4375/4374) rather than the octagar (4000/3969) tempered out. The name ''trideci'' comes from "tridecim" (Latin for "[[wikipedia:13|thirteen]]").


{{Val list|legend=1| 289, 323, 612, 935, 1547 }}
[[Subgroup]]: 2.3.5.7


[[Badness]]: 0.041658
[[Comma list]]: 4375/4374, 83349/81920


=== 11-limit ===
{{Mapping|legend=1| 13 0 -11 57 | 0 1 2 -1 }}
Subgroup: 2.3.5.7.11


Comma list: 4375/4374, 41503/41472, 1879453125/1879048192
[[Optimal tuning]] ([[POTE]]): ~256/245 = 1\13, ~3/2 = 699.1410


Mapping: [{{val| 17 0 26 -87 207 }}, {{val| 0 2 1 10 -11 }}]
{{Optimal ET sequence|legend=1| 26, 65, 91, 156d, 247cdd }}


POTE generators: ~822083584/474609375 = 950.9749
[[Badness]]: 0.184585
 
Optimal GPV sequence: {{Val list| 289, 323, 612 }}
 
Badness: 0.063706
 
== Palladium ==
The name of ''palladium temperament'' comes from Palladium, the 46th element.
 
Palladium temperament has a period of 1/46 octave. It tempers out the 46-9/5-comma, {{monzo|-39 92 -46}}, by which 46 minortones (10/9) fall short of seven octaves. This temperament can be described as 46&amp;414 temperament, which tempers out {{monzo|-51 8 2 12}} as well as the ragisma.
 
Subgroup: 2.3.5.7
 
[[Comma list]]: 4375/4374, 2270317133144025/2251799813685248
 
[[Mapping]]: [{{val|46 73 107 129}}, {{val|0 -1 -2 1}}]
 
[[Wedgie]]: {{multival|46 92 -46 39 -202 -365}}
 
[[POTE generator]]: ~3/2 = 701.6074
 
{{Val list|legend=1| 46, 368, 414, 460, 874d }}
 
[[Badness]]: 0.308505


=== 11-limit ===
=== 11-limit ===
Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11


Comma list: 3025/3024, 9801/9800, 134775333/134217728
Comma list: 245/242, 385/384, 4375/4374


Mapping: [{{val|46 73 107 129 159}}, {{val|0 -1 -2 1 1}}]
Mapping: {{mapping| 13 0 -11 57 45 | 0 1 2 -1 0 }}


POTE generator: ~3/2 = 701.5951
Optimal tuning (POTE): ~22/21 = 1\13, ~3/2 = 699.6179


Optimal GPV sequence: {{Val list| 46, 368, 414, 460, 874de }}
{{Optimal ET sequence|legend=1| 26, 65, 91, 156d, 247cdde }}


Badness: 0.073783
Badness: 0.084590


=== 13-limit ===
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
Subgroup: 2.3.5.7.11.13


Comma list: 3025/3024, 4225/4224, 4375/4374, 26411/26364
Comma list: 169/168, 245/242, 325/324, 385/384


Mapping: [{{val|46 73 107 129 159 170}}, {{val|0 -1 -2 1 1 2}}]
Mapping: {{mapping| 13 0 -11 57 45 48 | 0 1 2 -1 0 0 }}


POTE generator: ~3/2 = 701.6419
Optimal tuning (POTE): ~22/21 = 1\13, ~3/2 = 699.2969


Optimal GPV sequence: {{Val list| 46, 368, 414, 460, 874de, 1334de }}
{{Optimal ET sequence|legend=1| 26, 65f, 91f, 156dff }}


Badness: 0.040751
Badness: 0.052366


=== 17-limit ===
== Counterorson ==
Subgroup: 2.3.5.7.11.13.17
Counterorson tempers out the {{monzo| 147 -103 7 }} comma in the 5-limit. It uses a generator that reaches the 3rd harmonic in 7 steps, but unlike the [[semicomma family]], 5th harmonic is 103 generators up and not 3 generators down. The two mappings converge on [[53edo]].  
 
Comma list: 833/832, 1089/1088, 1225/1224, 1701/1700, 4225/4224
 
Mapping: [{{val|46 73 107 129 159 170 188}}, {{val|0 -1 -2 1 1 2 0}}]
 
POTE generator: ~3/2 = 701.6425
 
Optimal GPV sequence: {{Val list| 46, 368, 414, 460, 874de, 1334deg }}
 
Badness: 0.022441
 
== Monzism ==
The ''monzism'' temperament (53&amp;612) is a rank-two temperament which tempers out the [[monzisma]], {{monzo|54 -37 2}} and the [[nanisma]], {{monzo|109 -67 0 -1}}, as well as the ragisma, [[4375/4374]].  


Subgroup: 2.3.5.7
Subgroup: 2.3.5.7


[[Comma list]]: 4375/4374, 36030948116563575/36028797018963968
Comma list: 4375/4374, {{monzo| 154 -54 -21 -7 }}


[[Mapping]]: [{{val|1 2 10 -25}}, {{val|0 -2 -37 134}}]
Mapping: {{mapping| 1 0 -21 85 | 0 7 103 -363 }}


[[Wedgie]]: {{multival|2 37 -134 54 -218 -415}}
Optimal tuning (CTE): ~2 = 1\1, ~{{monzo| 66 -23 -9 -3 }} = 271.7113


[[POTE generator]]: ~310078125/268435456 = 249.0207
{{Optimal ET sequence|legend=1| 53, …, 1612, 1665, 1718 }}


{{Val list|legend=1| 53, 559, 612, 1277, 1889 }}
Badness: 0.312806


[[Badness]]: 0.046569
== Notes ==
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 4375/4374, 41503/41472, 184549376/184528125
 
Mapping: [{{val|1 2 10 -25 46}}, {{val|0 -2 -37 134 -205}}]
 
POTE generator: ~231/200 = 249.0193
 
Optimal GPV sequence: {{Val list| 53, 559, 612 }}
 
Badness: 0.057083
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 2200/2197, 4096/4095, 4375/4374, 40656/40625
 
Mapping: [{{val|1 2 10 -25 46 23}}, {{val|0 -2 -37 134 -205 -93}}]
 
POTE generator: ~231/200 = 249.0199
 
Optimal GPV sequence: {{Val list| 53, 559, 612 }}
 
Badness: 0.053780


[[Category:Temperament collections]]
[[Category:Pages with mostly numerical content]]
[[Category:Ragismic microtemperaments| ]] <!-- main article -->
[[Category:Ragismic| ]] <!-- key article -->
[[Category:Rank 2]]
[[Category:Microtemperaments]]
[[Category:Abigail]]
[[Category:Abigail]]
[[Category:Amity]]
[[Category:Deca]]
[[Category:Deca]]
[[Category:Enneadecal]]
[[Category:Enneadecal]]
Line 2,039: Line 1,723:
[[Category:Quincy]]
[[Category:Quincy]]
[[Category:Supermajor]]
[[Category:Supermajor]]
[[Category:Microtemperaments]]
[[Category:Ragismic]]
[[Category:Rank 2]]
[[Category:Temperament collections]]
[[Category:Ragismic microtemperaments| ]] <!-- main article -->