Ragismic microtemperaments: Difference between revisions

moved ennealimmal onto tritrizo clan
 
(12 intermediate revisions by 7 users not shown)
Line 1: Line 1:
This is a collection of [[Rank-2 temperament|rank-2]] [[temperament]]s [[tempering out]] the ragisma, [[4375/4374]] = {{monzo| -1 -7 4 1 }}. The ragisma is the smallest [[7-limit]] [[superparticular ratio]].  
{{Technical data page}}
This is a collection of [[rank-2 temperament|rank-2]] [[regular temperament|temperaments]] [[tempering out]] the ragisma, [[4375/4374]] ({{monzo| -1 -7 4 1 }}). The ragisma is the smallest [[7-limit]] [[superparticular ratio]].  


Since (10/9)<sup>4</sup> = 4375/4374 × 32/21, the minor tone 10/9 tends to be an interval of relatively low [[complexity]] in temperaments tempering out the ragisma, though when looking at [[microtemperament]]s the word "relatively" should be emphasized. Even so mitonic uses it as a generator, which ennealimmal and enneadecal can do also, and amity reaches it in three generators. We also have 7/6 = 4375/4374 × (27/25)<sup>2</sup>, so 27/25 also tends to relatively low complexity, with the same caveat about "relatively"; however 27/25 is the period for ennealimmal.
Since {{nowrap|(10/9)<sup>4</sup> {{=}} (4375/4374)⋅(32/21) }}, the minor tone 10/9 tends to be an interval of relatively low [[complexity]] in temperaments tempering out the ragisma, though when looking at [[microtemperament]]s the word "relatively" should be emphasized. Even so mitonic uses it as a generator, which ennealimmal and enneadecal can do also, and amity reaches it in three generators. We also have {{nowrap| 7/6 {{=}} (4375/4374)⋅(27/25)<sup>2</sup> }}, so 27/25 also tends to relatively low complexity, with the same caveat about "relatively"; however 27/25 is the period for ennealimmal.


Microtemperaments considered below are ennealimmal, supermajor, enneadecal, semidimi, brahmagupta, abigail, gamera, orga, seniority, monzismic, semidimfourth, acrokleismic, quasithird, deca, keenanose, aluminium, quatracot, moulin, and palladium. Some near-microtemperaments are appended as octoid, parakleismic, counterkleismic, quincy, sfourth, and trideci. Discussed elsewhere are:
Microtemperaments considered below, sorted by [[badness]], are supermajor, enneadecal, semidimi, brahmagupta, abigail, gamera, crazy, orga, seniority, monzismic, semidimfourth, acrokleismic, quasithird, deca, keenanose, aluminium, quatracot, moulin, and palladium. Some near-microtemperaments are appended as octoid, parakleismic, counterkleismic, quincy, sfourth, and trideci. Discussed elsewhere are:  
* ''[[Hystrix]]'' (+36/35) → [[Porcupine family #Hystrix|Porcupine family]]
* ''[[Hystrix]]'' (+36/35) → [[Porcupine family #Hystrix|Porcupine family]]
* ''[[Rhinoceros]]'' (+49/48) → [[Unicorn family #Rhinoceros|Unicorn family]]
* ''[[Rhinoceros]]'' (+49/48) → [[Unicorn family #Rhinoceros|Unicorn family]]
* ''[[Crepuscular]]'' (+50/49) → [[Jubilismic clan #Crepuscular|Jubilismic clan]] and [[Fifive family #Crepuscular|Fifive family]]
* ''[[Crepuscular]]'' (+50/49) → [[Fifive family #Crepuscular|Fifive family]]
* ''[[Modus]]'' (+64/63) → [[Tetracot family #Modus|Tetracot family]]
* ''[[Modus]]'' (+64/63) → [[Tetracot family #Modus|Tetracot family]]
* ''[[Flattone]]'' (+81/80) → [[Meantone family #Flattone|Meantone family]]
* ''[[Flattone]]'' (+81/80) → [[Meantone family #Flattone|Meantone family]]
* [[Sensi]] (+126/125 or 245/243) → [[Sensipent family #Sensi|Sensipent family]] and [[Sensamagic clan #Sensi|Sensamagic clan]]
* [[Sensi]] (+126/125 or 245/243) → [[Sensipent family #Sensi|Sensipent family]]
* [[Catakleismic]] (+225/224) → [[Kleismic family #Catakleismic|Kleismic family]]
* [[Catakleismic]] (+225/224) → [[Kleismic family #Catakleismic|Kleismic family]]
* [[Unidec]] (+1029/1024) → [[Gamelismic clan #Unidec|Gamelismic clan]]
* [[Unidec]] (+1029/1024) → [[Gamelismic clan #Unidec|Gamelismic clan]]
* ''[[Quartonic]]'' (+1728/1715 or 4000/3969) → [[Quartonic family]]
* ''[[Quartonic]]'' (+1728/1715 or 4000/3969) → [[Quartonic family]]
* ''[[Srutal]]'' (+2048/2025) → [[Diaschismic family #Srutal|Diaschismic family]]
* ''[[Srutal]]'' (+2048/2025) → [[Diaschismic family #Srutal|Diaschismic family]]
* [[Ennealimmal]] (+2401/2400) → [[Tritrizo clan #Ennealimmal|Tritrizo clan]]
* [[Ennealimmal]] (+2401/2400) → [[Septiennealimmal clan #Ennealimmal|Septiennealimmal clan]]
* ''[[Maja]]'' (+2430/2401 or 3125/3087) → [[Maja family #Septimal maja|Maja family]]
* ''[[Maja]]'' (+2430/2401 or 3125/3087) → [[Maja family #Septimal maja|Maja family]]
* [[Amity]] (+5120/5103) → [[Amity family #Septimal amity|Amity family]]
* [[Amity]] (+5120/5103) → [[Amity family #Septimal amity|Amity family]]
Line 23: Line 24:
* ''[[Vishnu]]'' (+29360128/29296875) → [[Vishnuzmic family #Septimal vishnu|Vishnuzmic family]]
* ''[[Vishnu]]'' (+29360128/29296875) → [[Vishnuzmic family #Septimal vishnu|Vishnuzmic family]]
* ''[[Vulture]]'' (+33554432/33480783) → [[Vulture family #Septimal vulture|Vulture family]]
* ''[[Vulture]]'' (+33554432/33480783) → [[Vulture family #Septimal vulture|Vulture family]]
* ''[[Trillium]]'' (+{{monzo| 40 -22 -1 -1 }}) → [[Tricot family #Trillium|Tricot family]]
* ''[[Alphatrillium]]'' (+{{monzo| 40 -22 -1 -1 }}) → [[Alphatricot family #Trillium|Alphatricot family]]
* ''[[Vacuum]]'' (+{{monzo| -68 18 17 }}) → [[Vavoom family #Vacuum|Vavoom family]]
* ''[[Vacuum]]'' (+{{monzo| -68 18 17 }}) → [[Vavoom family #Vacuum|Vavoom family]]
* ''[[Unlit]]'' (+{{monzo| 41 -20 -4 }}) → [[Undim family #Unlit|Undim family]]
* ''[[Unlit]]'' (+{{monzo| 41 -20 -4 }}) → [[Undim family #Unlit|Undim family]]
* ''[[Chlorine]]'' (+{{monzo| -52 -17 34}}) → [[17th-octave temperaments#Chlorine|17th-octave temperaments]]
* ''[[Chlorine]]'' (+{{monzo| -52 -17 34}}) → [[17th-octave temperaments #Chlorine|17th-octave temperaments]]
* ''[[Quindro]]'' (+{{monzo| 56 -28 -5 }}) → [[Quindromeda family #Quindro|Quindromeda family]]
* ''[[Quindro]]'' (+{{monzo| 56 -28 -5 }}) → [[Quindromeda family #Quindro|Quindromeda family]]
* ''[[Dzelic]]'' (+{{monzo|-223 47 -11 62}}) → [[37th-octave temperaments#Dzelic|37th-octave temperaments]]
* ''[[Dzelic]]'' (+{{monzo|-223 47 -11 62}}) → [[37th-octave temperaments#Dzelic|37th-octave temperaments]]


== Supermajor ==
== Supermajor ==
The generator for supermajor temperament is a supermajor third, 9/7, tuned about 0.002 cents flat. 37 of these give (2<sup>15</sup>)/3, 46 give (2<sup>19</sup>)/5, and 75 give (2<sup>30</sup>)/7, leading to a wedgie of {{multival| 37 46 75 -13 15 45 }}. This is clearly quite a complex temperament; it makes up for it, to the extent it does, with extreme accuracy: 1106 or 1277 can be used as tunings, leading to accuracy even greater than that of ennealimmal. The 80-note mos is presumably the place to start, and if that is not enough notes for you, there is always the 171-note mos.
The generator for supermajor temperament is a supermajor third, 9/7, tuned about 0.002 cents flat. 37 of these give (2<sup>15</sup>)/3, 46 give (2<sup>19</sup>)/5, and 75 give (2<sup>30</sup>)/7. This is clearly quite a complex temperament; it makes up for it, to the extent it does, with extreme accuracy: 1106 or 1277 can be used as tunings, leading to accuracy even greater than that of ennealimmal. The 80-note mos is presumably the place to start, and if that is not enough notes for you, there is always the 171-note mos.


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 38: Line 39:


{{Mapping|legend=1| 1 15 19 30 | 0 -37 -46 -75 }}
{{Mapping|legend=1| 1 15 19 30 | 0 -37 -46 -75 }}
{{Multival|legend=1| 37 46 75 -13 15 45 }}


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~9/7 = 435.082
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~9/7 = 435.082
Line 70: Line 69:


{{Mapping|legend=1| 19 0 14 -37 | 0 1 1 3 }}
{{Mapping|legend=1| 19 0 14 -37 | 0 1 1 3 }}
{{Multival|legend=1| 19 19 57 -14 37 79 }}


: mapping generators: ~28/27, ~3
: mapping generators: ~28/27, ~3
Line 186: Line 183:


{{Mapping|legend=1| 1 36 48 61 | 0 -55 -73 -93 }}
{{Mapping|legend=1| 1 36 48 61 | 0 -55 -73 -93 }}
{{Multival|legend=1| 55 73 93 -12 -7 11 }}


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~35/27 = 449.1270
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~35/27 = 449.1270
Line 196: Line 191:


== Brahmagupta ==
== Brahmagupta ==
The brahmagupta temperament has a period of 1/7 octave, tempering out the [[akjaysma]], {{monzo| 47 -7 -7 -7 }} = 140737488355328 / 140710042265625.
The brahmagupta temperament has a period of 1/7 octave, tempering out the [[akjaysma]], {{monzo| 47 -7 -7 -7 }} = 140737488355328 / 140710042265625.
 
Early in the design of the [[Sagittal]] notation system, Secor and Keenan found that an economical JI notation system could be defined, which divided the apotome (Pythagorean sharp or flat) into 21 almost-equal divisions. This required only 10 microtonal accidentals, although a few others were added for convenience in alternative spellings. This is called the Athenian symbol set (which includes the Spartan set). Its symbols are defined to exactly notate many common 11-limit ratios and the 17th harmonic, and to approximate within ±0.4 ¢ many common 13-limit ratios. If the divisions were made exactly equal, this would be the specific tuning of Brahmagupta temperament that has pure octaves and pure fifths, which can also be described as a 17-limit extension having 1/7th octave period (171.4286 ¢) and 1/21st apotome generator (5.4136 ¢).


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 205: Line 202:


: mapping generators: ~1157625/1048576, ~27/20
: mapping generators: ~1157625/1048576, ~27/20
{{Multival|legend=1| 21 56 -77 40 -181 -336 }}


[[Optimal tuning]] ([[POTE]]): ~1157625/1048576 = 1\7, ~27/20 = 519.716
[[Optimal tuning]] ([[POTE]]): ~1157625/1048576 = 1\7, ~27/20 = 519.716
Line 252: Line 247:


: mapping generators: ~46305/32768, ~27/20
: mapping generators: ~46305/32768, ~27/20
{{Multival|legend=1| 22 48 -38 25 -122 -223 }}


[[Optimal tuning]] ([[POTE]]): ~46305/32768 = 1\2, ~6912/6125 = 208.899
[[Optimal tuning]] ([[POTE]]): ~46305/32768 = 1\2, ~6912/6125 = 208.899
Line 297: Line 290:


: mapping generators: ~2, ~8/7
: mapping generators: ~2, ~8/7
{{Multival|legend=1| 23 40 1 10 -63 -110 }}


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~8/7 = 230.336
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~8/7 = 230.336
Line 361: Line 352:


Badness: 0.044
Badness: 0.044
== Crazy ==
: ''For the 5-limit version, see [[Very high accuracy temperaments #Kwazy]].''
Crazy tempers out the [[kwazy comma]] in the 5-limit, and adds the ragisma to extend it to the 7-limit. It can be described as the {{nowrap| 118 & 494 }} temperament. [[1106edo]] is an strong tuning.
[[Subgroup]]: 2.3.5.7
[[Comma list]]: 4375/4374, {{monzo| -53 10 16 }}
{{Mapping|legend=1| 2 1 6 -15 | 0 8 -5 76 }}
: mapping generators: ~332150625/234881024, ~1125/1024
[[Optimal tuning]]s:
* [[CTE]]: ~332150625/234881024 = 600.0000, ~1125/1024 = 162.7475
* [[error map]]: {{val| 0.0000 +0.0253 -0.0514 -0.0133 }}
* [[CWE]]: ~332150625/234881024 = 600.0000, ~1125/1024 = 162.7474
* error map: {{val| 0.0000 +0.0244 -0.0508 -0.0218 }}
{{Optimal ET sequence|legend=1| 118, 376, 494, 612, 1106, 1718 }}
[[Badness]] (Smith): 0.0394
=== 11-limit ===
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4375/4374, 2791309312/2790703125
Mapping: {{mapping| 2 1 6 -15 -8 | 0 8 -5 76 55 }}
Optimal tunings:
* CTE: ~99/70 = 162.7485, ~1125/1024 = 162.7485
* CWE: ~99/70 = 162.7485, ~1125/1024 = 162.7481
{{Optimal ET sequence|legend=0| 118, 376, 494, 612, 1106, 2824, 3930e }}
Badness (Smith): 0.0170


== Orga ==
== Orga ==
Line 370: Line 399:


: mapping generators: ~7411887/5242880, ~1310720/1058841
: mapping generators: ~7411887/5242880, ~1310720/1058841
{{Multival|legend=1| 58 102 -2 27 -166 -291 }}


[[Optimal tuning]] ([[POTE]]): ~7411887/5242880 = 1\2, ~8/7 = 231.104
[[Optimal tuning]] ([[POTE]]): ~7411887/5242880 = 1\2, ~8/7 = 231.104
Line 415: Line 442:


{{Mapping|legend=1| 1 11 19 2 | 0 -35 -62 3 }}
{{Mapping|legend=1| 1 11 19 2 | 0 -35 -62 3 }}
{{Multival|legend=1| 35 62 -3 17 -103 -181 }}


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3087/2560 = 322.804
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3087/2560 = 322.804
Line 475: Line 500:


{{Mapping|legend=1| 1 2 10 -25 | 0 -2 -37 134 }}
{{Mapping|legend=1| 1 2 10 -25 | 0 -2 -37 134 }}
{{Multival|legend=1| 2 37 -134 54 -218 -415 }}


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~{{monzo| -27 11 3 1 }} = 249.0207
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~{{monzo| -27 11 3 1 }} = 249.0207
Line 520: Line 543:


[[Mapping]]: {{mapping| 1 21 28 36 | 0 -31 -41 -53 }}
[[Mapping]]: {{mapping| 1 21 28 36 | 0 -31 -41 -53 }}
{{Multival|legend=1| 31 41 53 -7 -3 8 }}


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~35/27 = 448.456
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~35/27 = 448.456
Line 563: Line 584:


: mapping generators: ~2, ~6/5
: mapping generators: ~2, ~6/5
{{Multival|legend=1| 32 33 92 -22 56 121 }}


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 315.557
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 315.557
Line 647: Line 666:


{{Mapping|legend=1| 4 0 -11 48 | 0 5 16 -29 }}
{{Mapping|legend=1| 4 0 -11 48 | 0 5 16 -29 }}
{{Multival|legend=1| 20 64 -116 55 -240 -449 }}


[[Optimal tuning]] ([[POTE]]): ~65536/55125 = 1\4, ~5103/4096 = 380.388  
[[Optimal tuning]] ([[POTE]]): ~65536/55125 = 1\4, ~5103/4096 = 380.388  
Line 694: Line 711:


: mapping generators: ~15/14, ~6/5
: mapping generators: ~15/14, ~6/5
{{Multival|legend=1| 50 60 110 -21 34 87 }}


[[Optimal tuning]] ([[POTE]]): ~15/14 = 1\10, ~6/5 = 315.577
[[Optimal tuning]] ([[POTE]]): ~15/14 = 1\10, ~6/5 = 315.577
Line 703: Line 718:
[[Badness]]: 0.080637
[[Badness]]: 0.080637


Badness (Dirichlet): 2.041
Badness (Sintel): 2.041


=== 11-limit ===
=== 11-limit ===
Line 718: Line 733:
Badness: 0.024329
Badness: 0.024329


Badness (Dirichlet): 0.804
Badness (Sintel): 0.804


=== 13-limit ===
=== 13-limit ===
Line 733: Line 748:
Badness: 0.016810
Badness: 0.016810


Badness (Dirichlet): 0.695
Badness (Sintel): 0.695


=== no-17's 19-limit ===
=== no-17's 19-limit ===
Line 746: Line 761:
{{Optimal ET sequence|legend=1| 80, 190, 270, 730, 1000 }}
{{Optimal ET sequence|legend=1| 80, 190, 270, 730, 1000 }}


Badness (Dirichlet): 0.556
Badness (Sintel): 0.556


== Keenanose ==
== Keenanose ==
Line 848: Line 863:


== Countritonic ==
== Countritonic ==
: ''For the 5-limit version of this temperament, see [[Schismic–Mercator equivalence continuum #Countritonic]] and [[High badness temperaments #Countritonic]]
: ''For the 5-limit version of this temperament, see [[Schismic–Mercator equivalence continuum #Countritonic]].''


Countritonic (''co-un-tritonic'') can be described as the 53 & 422 temperament, generated by an octave-reduced 91st harmonic or subharmonic in the 13-limit.  
Countritonic (''co-un-tritonic'') can be described as the 53 & 422 temperament, generated by an octave-reduced 91st harmonic or subharmonic in the 13-limit.  
Line 902: Line 917:


: mapping generators: ~2278125/1605632, ~448/405
: mapping generators: ~2278125/1605632, ~448/405
{{Multival|legend=1| 26 16 118 -35 114 229 }}


[[Optimal tuning]] ([[POTE]]): ~2278125/1605632 = 1\2, ~448/405 = 176.805
[[Optimal tuning]] ([[POTE]]): ~2278125/1605632 = 1\2, ~448/405 = 176.805
Line 994: Line 1,007:


: mapping generators: ~83349/81920, ~3
: mapping generators: ~83349/81920, ~3
{{Multival|legend=1| 46 92 -46 39 -202 -365 }}


[[Optimal tuning]] ([[POTE]]): ~83349/81920 = 1\46, ~3/2 = 701.6074
[[Optimal tuning]] ([[POTE]]): ~83349/81920 = 1\46, ~3/2 = 701.6074
Line 1,071: Line 1,082:


{{Mapping|legend=1| 8 1 3 3 | 0 3 4 5 }}
{{Mapping|legend=1| 8 1 3 3 | 0 3 4 5 }}
{{Multival|legend=1| 24 32 40 -5 -4 3 }}


: mapping generators: ~49/45, ~7/5
: mapping generators: ~49/45, ~7/5
Line 1,254: Line 1,263:
{{Main| Parakleismic }}
{{Main| Parakleismic }}


In the 5-limit, parakleismic is an undoubted microtemperament, tempering out the parakleisma, {{monzo| 8 14 -13 }}, with the [[118edo]] tuning giving errors well under a cent. It has a generator a very slightly (half a cent or less) flat 6/5, 13 of which give 32/3, and 14 give 64/5. However while 118 no longer has better than a cent of accuracy in the 7- or 11-limit, it is a decent temperament there nonetheless, and this allows an extension, with the 7-limit wedgie being {{multival| 13 14 35 -8 19 42 }} and adding 3136/3125 and 4375/4374, and the 11-limit wedgie {{multival| 13 14 35 -36 -8 19 -102 42 -132 -222 }} adding 385/384. For the 7-limit [[99edo]] may be preferred, but in the 11-limit it is best to stick with 118.
In the 5-limit, parakleismic is an undoubted microtemperament, tempering out the parakleisma, {{monzo| 8 14 -13 }}, with the [[118edo]] tuning giving errors well under a cent. It has a generator a very slightly (half a cent or less) flat 6/5, 13 of which give 32/3, and 14 give 64/5. However while 118 no longer has better than a cent of accuracy in the 7- or 11-limit, it is a decent temperament there nonetheless, and this allows an extension adding 3136/3125 and 4375/4374, and 11-limit adding 385/384. For the 7-limit [[99edo]] may be preferred, but in the 11-limit it is best to stick with 118.


[[Subgroup]]: 2.3.5
[[Subgroup]]: 2.3.5
Line 1,277: Line 1,286:
{{Mapping|legend=1| 1 5 6 12 | 0 -13 -14 -35 }}
{{Mapping|legend=1| 1 5 6 12 | 0 -13 -14 -35 }}


{{Multival|legend=1| 13 14 35 -8 19 42 }}


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 315.181
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 315.181
Line 1,448: Line 1,456:


: mapping generators: ~2, ~5/3
: mapping generators: ~2, ~5/3
{{Multival|legend=1| 25 24 79 -20 55 116 }}


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 316.060
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 316.060
Line 1,515: Line 1,521:


{{Mapping|legend=1| 1 2 3 3 | 0 -30 -49 -14 }}
{{Mapping|legend=1| 1 2 3 3 | 0 -30 -49 -14 }}
{{Multival|legend=1| 30 49 14 8 -62 -105 }}


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~1728/1715 = 16.613
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~1728/1715 = 16.613
Line 1,584: Line 1,588:


{{Mapping|legend=1| 1 2 3 3 | 0 -19 -31 -9 }}
{{Mapping|legend=1| 1 2 3 3 | 0 -19 -31 -9 }}
{{Multival|legend=1| 19 31 9 5 -39 -66 }}


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~49/48 = 26.287
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~49/48 = 26.287
Line 1,706: Line 1,708:


[[Category:Temperament collections]]
[[Category:Temperament collections]]
[[Category:Pages with mostly numerical content]]
[[Category:Ragismic microtemperaments| ]] <!-- main article -->
[[Category:Ragismic microtemperaments| ]] <!-- main article -->
[[Category:Ragismic| ]] <!-- key article -->
[[Category:Ragismic| ]] <!-- key article -->