|
|
(20 intermediate revisions by 9 users not shown) |
Line 1: |
Line 1: |
| This is a collection of [[Rank-2 temperament|rank-2]] [[temperament]]s [[tempering out]] the ragisma, [[4375/4374]] = {{monzo| -1 -7 4 1 }}. The ragisma is the smallest [[7-limit]] [[superparticular ratio]]. | | {{Technical data page}} |
| | This is a collection of [[rank-2 temperament|rank-2]] [[regular temperament|temperaments]] [[tempering out]] the ragisma, [[4375/4374]] ({{monzo| -1 -7 4 1 }}). The ragisma is the smallest [[7-limit]] [[superparticular ratio]]. |
|
| |
|
| Since (10/9)<sup>4</sup> = 4375/4374 × 32/21, the minor tone 10/9 tends to be an interval of relatively low [[complexity]] in temperaments tempering out the ragisma, though when looking at [[microtemperament]]s the word "relatively" should be emphasized. Even so mitonic uses it as a generator, which ennealimmal and enneadecal can do also, and amity reaches it in three generators. We also have 7/6 = 4375/4374 × (27/25)<sup>2</sup>, so 27/25 also tends to relatively low complexity, with the same caveat about "relatively"; however 27/25 is the period for ennealimmal. | | Since {{nowrap|(10/9)<sup>4</sup> {{=}} (4375/4374)⋅(32/21) }}, the minor tone 10/9 tends to be an interval of relatively low [[complexity]] in temperaments tempering out the ragisma, though when looking at [[microtemperament]]s the word "relatively" should be emphasized. Even so mitonic uses it as a generator, which ennealimmal and enneadecal can do also, and amity reaches it in three generators. We also have {{nowrap| 7/6 {{=}} (4375/4374)⋅(27/25)<sup>2</sup> }}, so 27/25 also tends to relatively low complexity, with the same caveat about "relatively"; however 27/25 is the period for ennealimmal. |
|
| |
|
| Microtemperaments considered below are ennealimmal, supermajor, enneadecal, semidimi, brahmagupta, abigail, gamera, orga, chlorine, seniority, monzismic, semidimfourth, acrokleismic, quasithird, deca, keenanose, aluminium, quatracot, moulin, and palladium. Some near-microtemperaments are appended as octoid, parakleismic, counterkleismic, quincy, sfourth, and trideci. Discussed elsewhere are: | | Microtemperaments considered below, sorted by [[badness]], are supermajor, enneadecal, semidimi, brahmagupta, abigail, gamera, crazy, orga, seniority, monzismic, semidimfourth, acrokleismic, quasithird, deca, keenanose, aluminium, quatracot, moulin, and palladium. Some near-microtemperaments are appended as octoid, parakleismic, counterkleismic, quincy, sfourth, and trideci. Discussed elsewhere are: |
| * ''[[Hystrix]]'' (+36/35) → [[Porcupine family #Hystrix|Porcupine family]] | | * ''[[Hystrix]]'' (+36/35) → [[Porcupine family #Hystrix|Porcupine family]] |
| * ''[[Rhinoceros]]'' (+49/48) → [[Unicorn family #Rhinoceros|Unicorn family]] | | * ''[[Rhinoceros]]'' (+49/48) → [[Unicorn family #Rhinoceros|Unicorn family]] |
| * ''[[Crepuscular]]'' (+50/49) → [[Jubilismic clan #Crepuscular|Jubilismic clan]] and [[Fifive family #Crepuscular|Fifive family]] | | * ''[[Crepuscular]]'' (+50/49) → [[Fifive family #Crepuscular|Fifive family]] |
| * ''[[Modus]]'' (+64/63) → [[Tetracot family #Modus|Tetracot family]] | | * ''[[Modus]]'' (+64/63) → [[Tetracot family #Modus|Tetracot family]] |
| * ''[[Flattone]]'' (+81/80) → [[Meantone family #Flattone|Meantone family]] | | * ''[[Flattone]]'' (+81/80) → [[Meantone family #Flattone|Meantone family]] |
| * [[Sensi]] (+126/125 or 245/243) → [[Sensipent family #Sensi|Sensipent family]] and [[Sensamagic clan #Sensi|Sensamagic clan]] | | * [[Sensi]] (+126/125 or 245/243) → [[Sensipent family #Sensi|Sensipent family]] |
| * [[Catakleismic]] (+225/224) → [[Kleismic family #Catakleismic|Kleismic family]] | | * [[Catakleismic]] (+225/224) → [[Kleismic family #Catakleismic|Kleismic family]] |
| * [[Unidec]] (+1029/1024) → [[Gamelismic clan #Unidec|Gamelismic clan]] | | * [[Unidec]] (+1029/1024) → [[Gamelismic clan #Unidec|Gamelismic clan]] |
| * ''[[Quartonic]]'' (+1728/1715 or 4000/3969) → [[Quartonic family]] | | * ''[[Quartonic]]'' (+1728/1715 or 4000/3969) → [[Quartonic family]] |
| * ''[[Srutal]]'' (+2048/2025) → [[Diaschismic family #Srutal|Diaschismic family]] | | * ''[[Srutal]]'' (+2048/2025) → [[Diaschismic family #Srutal|Diaschismic family]] |
| | * [[Ennealimmal]] (+2401/2400) → [[Septiennealimmal clan #Ennealimmal|Septiennealimmal clan]] |
| * ''[[Maja]]'' (+2430/2401 or 3125/3087) → [[Maja family #Septimal maja|Maja family]] | | * ''[[Maja]]'' (+2430/2401 or 3125/3087) → [[Maja family #Septimal maja|Maja family]] |
| * [[Amity]] (+5120/5103) → [[Amity family #Septimal amity|Amity family]] | | * [[Amity]] (+5120/5103) → [[Amity family #Septimal amity|Amity family]] |
Line 22: |
Line 24: |
| * ''[[Vishnu]]'' (+29360128/29296875) → [[Vishnuzmic family #Septimal vishnu|Vishnuzmic family]] | | * ''[[Vishnu]]'' (+29360128/29296875) → [[Vishnuzmic family #Septimal vishnu|Vishnuzmic family]] |
| * ''[[Vulture]]'' (+33554432/33480783) → [[Vulture family #Septimal vulture|Vulture family]] | | * ''[[Vulture]]'' (+33554432/33480783) → [[Vulture family #Septimal vulture|Vulture family]] |
| * ''[[Trillium]]'' (+{{monzo| 40 -22 -1 -1 }}) → [[Tricot family #Trillium|Tricot family]] | | * ''[[Alphatrillium]]'' (+{{monzo| 40 -22 -1 -1 }}) → [[Alphatricot family #Trillium|Alphatricot family]] |
| * ''[[Vacuum]]'' (+{{monzo| -68 18 17 }}) → [[Vavoom family #Vacuum|Vavoom family]] | | * ''[[Vacuum]]'' (+{{monzo| -68 18 17 }}) → [[Vavoom family #Vacuum|Vavoom family]] |
| * ''[[Unlit]]'' (+{{monzo| 41 -20 -4 }}) → [[Undim family #Unlit|Undim family]] | | * ''[[Unlit]]'' (+{{monzo| 41 -20 -4 }}) → [[Undim family #Unlit|Undim family]] |
| | * ''[[Chlorine]]'' (+{{monzo| -52 -17 34}}) → [[17th-octave temperaments #Chlorine|17th-octave temperaments]] |
| * ''[[Quindro]]'' (+{{monzo| 56 -28 -5 }}) → [[Quindromeda family #Quindro|Quindromeda family]] | | * ''[[Quindro]]'' (+{{monzo| 56 -28 -5 }}) → [[Quindromeda family #Quindro|Quindromeda family]] |
| * ''[[Dzelic]]'' (+{{monzo|-223 47 -11 62}}) → [[37th-octave temperaments#Dzelic|37th-octave temperaments]] | | * ''[[Dzelic]]'' (+{{monzo|-223 47 -11 62}}) → [[37th-octave temperaments#Dzelic|37th-octave temperaments]] |
|
| |
|
| == Ennealimmal == | | == Supermajor == |
| {{Main| Ennealimmal }}
| | The generator for supermajor temperament is a supermajor third, 9/7, tuned about 0.002 cents flat. 37 of these give (2<sup>15</sup>)/3, 46 give (2<sup>19</sup>)/5, and 75 give (2<sup>30</sup>)/7. This is clearly quite a complex temperament; it makes up for it, to the extent it does, with extreme accuracy: 1106 or 1277 can be used as tunings, leading to accuracy even greater than that of ennealimmal. The 80-note mos is presumably the place to start, and if that is not enough notes for you, there is always the 171-note mos. |
|
| |
|
| Ennealimmal tempers out the two smallest 7-limit [[superparticular]] commas, 2401/2400 and 4375/4374, leading to a temperament of unusual [[efficiency]]. It also tempers out the [[ennealimma]], {{monzo| 1 -27 18 }}, which leads to the identification of (27/25)<sup>9</sup> with the [[octave]], and gives ennealimmal a [[period]] of 1/9 octave. Its [[pergen]] is (P8/9, P5/2). While 27/25 is a 5-limit interval, a stack of two periods equates to 7/6 because of identification by 4375/4374, and this represents 7/6 with such accuracy (a fifth of a cent flat) that there is no realistic possibility of treating ennealimmal as anything other than 7-limit.
| | [[Subgroup]]: 2.3.5.7 |
|
| |
|
| Aside from 10/9 which has already been mentioned, possible generators include 36/35, 21/20, 6/5, 7/5 and the neutral thirds pair 49/40~60/49, all of which have their own interesting advantages. Possible tunings are 441-, 612-, or 3600edo, though its hardly likely anyone could tell the difference.
| | [[Comma list]]: 4375/4374, 52734375/52706752 |
|
| |
|
| If 1/9 of an octave is too small of a period for you, you could try generator-period pairs of [3, 5], [5/3, 3], [6/5, 4/3], [4/3, 8/5] or [10/9, 4/3] (for example). In particular, people fond of the idea of "[[tritave]]s" as analogous to octaves might consider the 28 or 43 note [[mos]] with generator an approximate 5/3 within 3; for instance as given by 451/970 of a "tritave". Tetrads have a low enough complexity that (for example) there are nine 1-3/2-7/4-5/2 tetrads in the 28 notes to the tritave mos, which is equivalent in average step size to a 17 2/3 to the octave mos.
| | {{Mapping|legend=1| 1 15 19 30 | 0 -37 -46 -75 }} |
|
| |
|
| Ennealimmal extensions discussed elsewhere include [[Compton family #Omicronbeta|omicronbeta]], [[Tritrizo clan #Undecentic|undecentic]], [[Tritrizo clan #Schisennealimmal|schisennealimmal]], and [[Tritrizo clan #Lunennealimmal|lunennealimmal]].
| | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~9/7 = 435.082 |
|
| |
|
| 7-limit ennealimmal's S-expression-based comma list is {[[4375/4374|S25/S27]], [[2401/2400|S49]]}. Interestingly, the [[landscape comma]] is equal to [[2401/2400|S49]]/([[4375/4374|S25/S27]]) while the [[wizma]] is equal to [[2401/2400|S49]]*[[4375/4374|S25/S27]].
| | {{Optimal ET sequence|legend=1| 11, 80, 171, 764, 1106, 1277, 3660, 4937, 6214 }} |
|
| |
|
| ''For the 5-limit temperament, see [[Ennealimma#Ennealimmal]].''
| | [[Badness]]: 0.010836 |
|
| |
|
| [[Subgroup]]: 2.3.5.7
| | === Semisupermajor === |
| | Subgroup: 2.3.5.7.11 |
|
| |
|
| [[Comma list]]: 2401/2400, 4375/4374
| | Comma list: 3025/3024, 4375/4374, 35156250/35153041 |
|
| |
|
| {{Mapping|legend=1| 9 1 1 12 | 0 2 3 2 }} | | Mapping: {{mapping| 2 30 38 60 41 | 0 -37 -46 -75 -47 }} |
|
| |
|
| {{Multival|legend=1| 18 27 18 1 -22 -34 }}
| | Optimal tuning (POTE): ~99/70 = 1\2, ~9/7 = 435.082 |
|
| |
|
| : mapping generators: ~27/25, ~5/3
| | {{Optimal ET sequence|legend=1| 80, 342, 764, 1106, 1448, 2554, 4002f, 6556cf }} |
|
| |
|
| [[Optimal tuning]] ([[POTE]]): ~27/25 = 1\9, ~5/3 = 884.3129 (~36/35 = 49.0205)
| | Badness: 0.012773 |
|
| |
|
| [[Tuning ranges]]: | | == Enneadecal == |
| * 7-odd-limit [[diamond monotone]]: ~36/35 = [26.667, 66.667] (1\45 to 1\18)
| | Enneadecal temperament tempers out the [[enneadeca]], {{monzo| -14 -19 19 }}, and as a consequence has a period of 1/19 octave. This is because the enneadeca is the amount by which nineteen just minor thirds fall short of an octave. If to this we add 4375/4374 we get the 7-limit temperament we are considering here, but note should be taken of the fact that it makes for a reasonable 5-limit microtemperament also, where the generator can be ~25/24, ~27/25, ~10/9, ~5/4 or ~3/2. To this we may add possible 7-limit generators such as ~225/224, ~15/14 or ~9/7. Since enneadecal tempers out [[703125/702464]], the amount by which 81/80 falls short of three stacked 225/224, we can equate the 225/224 generator with (81/80)<sup>1/3</sup>. This is the interval needed to adjust the 1/3-comma meantone flat fifths and major thirds of [[19edo]] up to just ones. [[171edo]] is a good tuning for either the 5- or 7-limit, and [[494edo]] shows how to extend the temperament to the 11- or 13-limit, where it is accurate but very complex. Fans of near-perfect fifths may want to use [[665edo]] for a tuning. |
| * 9-odd-limit diamond monotone: ~36/35 = [44.444, 53.333] (1\27 to 2\45)
| |
| * 7- and 9-odd-limit [[diamond tradeoff]]: ~36/35 = [48.920, 49.179]
| |
| * 7- and 9-odd-limit diamond monotone and tradeoff: ~36/35 = [48.920, 49.179]
| |
|
| |
|
| {{Optimal ET sequence|legend=1| 27, 45, 72, 99, 171, 441, 612 }}
| | ''For the 5-limit temperament, see [[19th-octave temperaments#(5-limit) enneadecal]].'' |
|
| |
|
| [[Badness]]: 0.003610 | | [[Subgroup]]: 2.3.5.7 |
|
| |
|
| === 11-limit ===
| | [[Comma list]]: 4375/4374, 703125/702464 |
| The ennealimmal temperament can be described as 99e & 171e, which tempers out [[5632/5625]] (vishdel comma) and [[19712/19683]] (symbiotic comma).
| |
|
| |
|
| Subgroup: 2.3.5.7.11
| | {{Mapping|legend=1| 19 0 14 -37 | 0 1 1 3 }} |
|
| |
|
| Comma list: 2401/2400, 4375/4374, 5632/5625
| | : mapping generators: ~28/27, ~3 |
|
| |
|
| Mapping: {{mapping| 9 1 1 12 -75 | 0 2 3 2 16 }}
| | [[Optimal tuning]] ([[CTE]]): ~28/27 = 1\19, ~3/2 = 701.9275 (~225/224 = 7.1907) |
|
| |
|
| Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 884.4679 (~36/35 = 48.8654) | | {{Optimal ET sequence|legend=1| 19, …, 152, 171, 665, 836, 1007, 2185, 3192c }} |
|
| |
|
| {{Optimal ET sequence|legend=1| 99e, 171e, 270, 909, 1179, 1449c, 1719c }}
| | [[Badness]]: 0.010954 |
|
| |
|
| Badness: 0.027332
| | === 11-limit === |
| | Subgroup: 2.3.5.7.11 |
|
| |
|
| ==== 13-limit ====
| | Comma list: 540/539, 4375/4374, 16384/16335 |
| Subgroup: 2.3.5.7.11.13
| |
|
| |
|
| Comma list: 1001/1000, 1716/1715, 4096/4095, 4375/4374
| | Mapping: {{mapping| 19 0 14 -37 126 | 0 1 1 3 -2 }} |
|
| |
|
| Mapping: {{mapping| 9 1 1 12 -75 93 | 0 2 3 2 16 -9 }}
| | Optimal tuning (CTE): ~28/27 = 1\19, ~3/2 = 702.1483 (~225/224 = 7.4115) |
|
| |
|
| Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 884.4304 (~36/35 = 48.9030) | | {{Optimal ET sequence|legend=1| 19, 133d, 152, 323e, 475de, 627de }} |
|
| |
|
| {{Optimal ET sequence|legend=1| 99e, 171e, 270 }}
| | Badness: 0.043734 |
|
| |
|
| Badness: 0.029404
| | ==== 13-limit ==== |
| | Subgroup: 2.3.5.7.11.13 |
|
| |
|
| ===== 17-limit =====
| | Comma list: 540/539, 625/624, 729/728, 2205/2197 |
| Subgroup: 2.3.5.7.11.13.17
| |
|
| |
|
| Comma list: 715/714, 1001/1000, 1716/1715, 4096/4095, 4375/4374
| | Mapping: {{mapping| 19 0 14 -37 126 -20 | 0 1 1 3 -2 3 }} |
|
| |
|
| Mapping: {{mapping| 9 1 1 12 -75 93 -3 | 0 2 3 2 16 -9 6 }}
| | Optimal tuning (CTE): ~28/27 = 1\19, ~3/2 = 701.9258 (~225/224 = 7.1890) |
|
| |
|
| Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 884.4304 (~36/35 = 48.9030) | | {{Optimal ET sequence|legend=1| 19, 133df, 152f, 323ef }} |
|
| |
|
| {{Optimal ET sequence|legend=1| 99e, 171e, 270 }}
| | Badness: 0.033545 |
|
| |
|
| ===== 19-limit ===== | | === Hemienneadecal === |
| Subgroup: 2.3.5.7.11.13.17.19 | | Subgroup: 2.3.5.7.11 |
|
| |
|
| Comma list: 715/714, 1001/1000, 1216/1215, 1716/1715, 4096/4095, 4375/4374 | | Comma list: 3025/3024, 4375/4374, 234375/234256 |
|
| |
|
| Mapping: {{mapping| 9 1 1 12 -75 93 -3 -48 | 0 2 3 2 16 -9 6 13 }} | | Mapping: {{mapping| 38 0 28 -74 11 | 0 1 1 3 2 }} |
|
| |
|
| Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 884.4304 (~36/35 = 48.9030)
| | : mapping generators: ~55/54, ~3 |
|
| |
|
| {{Optimal ET sequence|legend=1| 99e, 171e, 270 }}
| | Optimal tuning (CTE): ~55/54 = 1\38, ~3/2 = 701.9351 (~225/224 = 7.1983) |
|
| |
|
| ==== Ennealimmalis ==== | | {{Optimal ET sequence|legend=1| 152, 342, 836, 1178, 2014, 3192ce, 5206ce }} |
| Subgroup: 2.3.5.7.11.13
| |
|
| |
|
| Comma list: 2080/2079, 2401/2400, 4375/4374, 5632/5625
| | Badness: 0.009985 |
|
| |
|
| Mapping: {{mapping| 9 1 1 12 -75 -106 | 0 2 3 2 16 21 }}
| | ==== Hemienneadecalis ==== |
| | Subgroup: 2.3.5.7.11.13 |
| | |
| | Comma list: 1716/1715, 2080/2079, 3025/3024, 234375/234256 |
|
| |
|
| Optimal tuning (CTE): ~27/25 = 1\9, ~5/3 = 884.4560 (~36/35 = 48.8773)
| | Mapping: {{mapping| 38 0 28 -74 11 -281 | 0 1 1 3 2 7 }} |
|
| |
|
| {{Optimal ET sequence|legend=1| 99ef, 171ef, 270, 639, 909, 1179, 2088bce }}
| | Optimal tuning (CTE): ~55/54 = 1\38, ~3/2 = 701.9955 (~225/224 = 7.2587) |
|
| |
|
| Badness: 0.022068
| | {{Optimal ET sequence|legend=1| 152f, 342f, 494 }} |
|
| |
|
| === Ennealimmia ===
| | Badness: 0.020782 |
| The ennealimmia temperament is an alternative extension and can be described as 99 & 171, which tempers out [[131072/130977]] (olympia).
| |
|
| |
|
| Subgroup: 2.3.5.7.11 | | ==== Hemienneadec ==== |
| | Subgroup: 2.3.5.7.11.13 |
|
| |
|
| Comma list: 2401/2400, 4375/4374, 131072/130977 | | Comma list: 3025/3024, 4096/4095, 4375/4374, 31250/31213 |
|
| |
|
| Mapping: {{mapping| 9 1 1 12 124 | 0 2 3 2 -14 }} | | Mapping: {{mapping| 38 0 28 -74 11 502 | 0 1 1 3 2 -6 }} |
|
| |
|
| Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 884.4089 (~36/35 = 48.9244) | | Optimal tuning (CTE): ~55/54 = 1\38, ~3/2 = 701.9812 (~225/224 = 7.2444) |
|
| |
|
| {{Optimal ET sequence|legend=1| 99, 171, 270, 711, 981, 1251, 2232e }} | | {{Optimal ET sequence|legend=1| 152, 342, 494, 1330, 1824, 2318d }} |
|
| |
|
| Badness: 0.026463 | | Badness: 0.030391 |
|
| |
|
| ==== 13-limit ==== | | ==== Semihemienneadecal ==== |
| Subgroup: 2.3.5.7.11.13 | | Subgroup: 2.3.5.7.11.13 |
|
| |
|
| Comma list: 2080/2079, 2401/2400, 4096/4095, 4375/4374 | | Comma list: 3025/3024, 4225/4224, 4375/4374, 78125/78078 |
|
| |
|
| Mapping: {{mapping| 9 1 1 12 124 93 | 0 2 3 2 -14 -9 }} | | Mapping: {{mapping| 38 1 29 -71 13 111 | 0 2 2 6 4 1 }} |
|
| |
|
| Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 884.3997 (~36/35 = 48.9336)
| | : mapping generators: ~55/54 = 1\38, ~55/54, ~429/250 |
|
| |
|
| {{Optimal ET sequence|legend=1| 99, 171, 270, 711, 981, 1692e, 2673e }}
| | Optimal tuning (CTE): ~429/250 = 935.1789 (~144/143 = 12.1895) |
|
| |
|
| Badness: 0.016607
| | {{Optimal ET sequence|legend=1| 190, 304d, 494, 684, 1178, 2850, 4028ce }} |
|
| |
|
| ===== 17-limit =====
| | Badness: 0.014694 |
| Subgroup: 2.3.5.7.11.13.17
| |
|
| |
|
| Comma list: 936/935, 2080/2079, 2401/2400, 4096/4095, 4375/4374
| | === Kalium === |
| | Named after the 19th element, potassium, and after an archaic variant of the element's name to resolve a name conflict. [[19/16]] can be used as a generator. Since it is enfactored in the 17-limit and lower, it makes no sense to name it for the lower subgroups. |
|
| |
|
| Mapping: {{mapping| 9 1 1 12 124 93 -3 | 0 2 3 2 -14 -9 6 }}
| | Subgroup: 2.3.5.7.11.13.17.19 |
|
| |
|
| Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 884.3997 (~36/35 = 48.9336)
| | Comma list: 2500/2499, 3250/3249, 4225/4224, 4375/4374, 11016/11011, 57375/57344 |
|
| |
|
| {{Optimal ET sequence|legend=1| 99, 171, 270 }} | | Mapping: {{mapping| 19 3 17 -28 82 92 159 78 | 0 10 10 30 -6 -8 -30 1 }} |
|
| |
|
| ===== 19-limit ===== | | Optimal tuning (CTE): ~28/27 = 1\19, ~6545/5928 = 171.244 |
| Subgroup: 2.3.5.7.11.13.17.19
| |
|
| |
|
| Comma list: 936/935, 1216/1215, 2080/2079, 2401/2400, 4096/4095, 4375/4374
| | {{Optimal ET sequence|legend=1| 855, 988, 1843 }} |
|
| |
|
| Mapping: {{mapping| 9 1 1 12 124 93 -3 -48 | 0 2 3 2 -14 -9 6 13 }}
| | == Semidimi == |
| | : ''For the 5-limit version of this temperament, see [[High badness temperaments #Semidimi]].'' |
|
| |
|
| Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 884.3997 (~36/35 = 48.9336)
| | The generator of semidimi temperament is a semi-diminished fourth interval tuned between 162/125 and 35/27. It tempers out 5-limit {{monzo| -12 -73 55 }} and 7-limit 3955078125/3954653486, as well as 4375/4374. |
|
| |
|
| {{Optimal ET sequence|legend=1| 99, 171, 270 }}
| | [[Subgroup]]: 2.3.5.7 |
|
| |
|
| === Ennealimnic ===
| | [[Comma list]]: 4375/4374, 3955078125/3954653486 |
| Ennealimnic (72 & 171) equates 11/9 with 27/22, 49/40, and 60/49 as a neutral third interval.
| |
|
| |
|
| Subgroup: 2.3.5.7.11
| | {{Mapping|legend=1| 1 36 48 61 | 0 -55 -73 -93 }} |
|
| |
|
| Comma list: 243/242, 441/440, 4375/4356
| | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~35/27 = 449.1270 |
|
| |
|
| Mapping: {{mapping| 9 1 1 12 -2 | 0 2 3 2 5 }}
| | {{Optimal ET sequence|legend=1| 171, 863, 1034, 1205, 1376, 1547, 1718, 4983, 6701, 8419 }} |
|
| |
|
| Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 883.9386 (~36/35 = 49.3948)
| | [[Badness]]: 0.015075 |
|
| |
|
| Tuning ranges:
| | == Brahmagupta == |
| * 11-odd-limit diamond monotone: ~36/35 = [44.444, 53.333] (1\27 to 2\45)
| | The brahmagupta temperament has a period of 1/7 octave, tempering out the [[akjaysma]], {{monzo| 47 -7 -7 -7 }} = 140737488355328 / 140710042265625. |
| * 11-odd-limit diamond tradeoff: ~36/35 = [48.920, 52.592]
| |
| * 11-odd-limit diamond monotone and tradeoff: ~36/35 = [48.920, 52.592]
| |
|
| |
|
| {{Optimal ET sequence|legend=1| 72, 171, 243 }}
| | Early in the design of the [[Sagittal]] notation system, Secor and Keenan found that an economical JI notation system could be defined, which divided the apotome (Pythagorean sharp or flat) into 21 almost-equal divisions. This required only 10 microtonal accidentals, although a few others were added for convenience in alternative spellings. This is called the Athenian symbol set (which includes the Spartan set). Its symbols are defined to exactly notate many common 11-limit ratios and the 17th harmonic, and to approximate within ±0.4 ¢ many common 13-limit ratios. If the divisions were made exactly equal, this would be the specific tuning of Brahmagupta temperament that has pure octaves and pure fifths, which can also be described as a 17-limit extension having 1/7th octave period (171.4286 ¢) and 1/21st apotome generator (5.4136 ¢). |
|
| |
|
| Badness: 0.020347
| | [[Subgroup]]: 2.3.5.7 |
|
| |
|
| ==== 13-limit ====
| | [[Comma list]]: 4375/4374, 70368744177664/70338939985125 |
| Subgroup: 2.3.5.7.11.13
| |
|
| |
|
| Comma list: 243/242, 364/363, 441/440, 625/624
| | {{Mapping|legend=1| 7 2 -8 53 | 0 3 8 -11 }} |
|
| |
|
| Mapping: {{mapping| 9 1 1 12 -2 -33 | 0 2 3 2 5 10 }}
| | : mapping generators: ~1157625/1048576, ~27/20 |
|
| |
|
| Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 883.9920 (~36/35 = 49.3414) | | [[Optimal tuning]] ([[POTE]]): ~1157625/1048576 = 1\7, ~27/20 = 519.716 |
|
| |
|
| Tuning ranges:
| | {{Optimal ET sequence|legend=1| 7, 217, 224, 441, 1106, 1547 }} |
| * 13- and 15-odd-limit diamond monotone: ~36/35 = [48.485, 50.000] (4\99 to 3\72)
| |
| * 13- and 15-odd-limit diamond tradeoff: ~36/35 = [48.825, 52.592]
| |
| * 13- and 15-odd-limit diamond monotone and tradeoff: ~36/35 = [48.825, 50.000]
| |
|
| |
|
| {{Optimal ET sequence|legend=1| 72, 171, 243 }}
| | [[Badness]]: 0.029122 |
|
| |
|
| Badness: 0.023250
| | === 11-limit === |
| | Subgroup: 2.3.5.7.11 |
|
| |
|
| ===== 17-limit =====
| | Comma list: 4000/3993, 4375/4374, 131072/130977 |
| Subgroup: 2.3.5.7.11.13.17
| |
|
| |
|
| Comma list: 243/242, 364/363, 375/374, 441/440, 595/594
| | Mapping: {{mapping| 7 2 -8 53 3 | 0 3 8 -11 7 }} |
|
| |
|
| Mapping: {{mapping| 9 1 1 12 -2 -33 -3 | 0 2 3 2 5 10 6 }}
| | Optimal tuning (POTE): ~243/220 = 1\7, ~27/20 = 519.704 |
|
| |
|
| Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 883.9981 (~36/35 = 49.3353) | | {{Optimal ET sequence|legend=1| 7, 217, 224, 441, 665, 1771ee }} |
|
| |
|
| Tuning ranges:
| | Badness: 0.052190 |
| * 17-odd-limit diamond monotone: ~36/35 = [48.485, 50.000] (4\99 to 3\72)
| |
| * 17-odd-limit diamond tradeoff: ~36/35 = [46.363, 52.592]
| |
| * 17-odd-limit diamond monotone and tradeoff: ~36/35 = [48.485, 50.000]
| |
|
| |
|
| {{Optimal ET sequence|legend=1| 72, 171, 243 }}
| | === 13-limit === |
| | Subgroup: 2.3.5.7.11.13 |
|
| |
|
| Badness: 0.014602
| | Comma list: 1575/1573, 2080/2079, 4096/4095, 4375/4374 |
|
| |
|
| ===== 19-limit =====
| | Mapping: {{mapping| 7 2 -8 53 3 35 | 0 3 8 -11 7 -3 }} |
| Subgroup: 2.3.5.7.11.13.17.19
| |
|
| |
|
| Comma list: 243/242, 364/363, 375/374, 441/440, 513/512, 595/594
| | Optimal tuning (POTE): ~243/220 = 1\7, ~27/20 = 519.706 |
|
| |
|
| Mapping: {{mapping| 9 1 1 12 -2 -33 -3 78 | 0 2 3 2 5 10 6 -6 }}
| | {{Optimal ET sequence|legend=1| 7, 217, 224, 441, 665, 1771eef }} |
|
| |
|
| {{Optimal ET sequence|legend=1| 72, 171, 243 }}
| | Badness: 0.023132 |
|
| |
|
| ==== Ennealim ==== | | == Abigail == |
| Subgroup: 2.3.5.7.11.13
| | Abigail temperament tempers out the [[pessoalisma]] in addition to the ragisma in the 7-limit. It was named by Gene Ward Smith after the birthday of First Lady Abigail Fillmore.<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_17927.html#17930]: "I propose Abigail as a name, on the grounds 313/1798 is an excellent generator, and Abigail Fillmore, wife of Millard, was born on 3-13-1798 at least as Americans recon things."</ref> |
|
| |
|
| Comma list: 169/168, 243/242, 325/324, 441/440
| | ''For the 5-limit temperament, see [[Very high accuracy temperaments#Abigail]].'' |
|
| |
|
| Mapping: {{mapping| 9 1 1 12 -2 20 | 0 2 3 2 5 2 }}
| | [[Subgroup]]: 2.3.5.7 |
|
| |
|
| Optimal tuning (POTE): ~13/12 = 1\9, ~5/3 = 883.6257 (~36/35 = 49.7076)
| | [[Comma list]]: 4375/4374, 2147483648/2144153025 |
|
| |
|
| {{Optimal ET sequence|legend=1| 27e, 45ef, 72 }} | | {{Mapping|legend=1| 2 7 13 -1 | 0 -11 -24 19 }} |
|
| |
|
| Badness: 0.020697
| | : mapping generators: ~46305/32768, ~27/20 |
|
| |
|
| ===== 17-limit ===== | | [[Optimal tuning]] ([[POTE]]): ~46305/32768 = 1\2, ~6912/6125 = 208.899 |
| Subgroup: 2.3.5.7.11.13.17
| |
|
| |
|
| Comma list: 169/168, 221/220, 243/242, 325/324, 441/440
| | {{Optimal ET sequence|legend=1| 46, 132, 178, 224, 270, 494, 764, 1034, 1798 }} |
|
| |
|
| Mapping: {{mapping| 9 1 1 12 -2 20 -3 | 0 2 3 2 5 2 6 }}
| | [[Badness]]: 0.037000 |
|
| |
|
| Optimal tuning (POTE): ~13/12 = 1\9, ~5/3 = 883.6257 (~36/35 = 49.7076)
| | === 11-limit === |
| | Subgroup: 2.3.5.7.11 |
|
| |
|
| {{Optimal ET sequence|legend=1| 27eg, 45efg, 72 }}
| | Comma list: 3025/3024, 4375/4374, 131072/130977 |
|
| |
|
| ===== 19-limit =====
| | Mapping: {{mapping| 2 7 13 -1 1 | 0 -11 -24 19 17 }} |
| Subgroup: 2.3.5.7.11.13.17.19
| |
|
| |
|
| Comma list: 169/168, 221/220, 243/242, 325/324, 441/440
| | Optimal tuning (POTE): ~99/70 = 1\2, ~1155/1024 = 208.901 |
|
| |
|
| Mapping: {{mapping| 9 1 1 12 -2 20 -3 25 | 0 2 3 2 5 2 6 2 }}
| | {{Optimal ET sequence|legend=1| 46, 132, 178, 224, 270, 494, 764 }} |
|
| |
|
| Optimal tuning (POTE): ~13/12 = 1\9, ~5/3 = 883.6257 (~36/35 = 49.7076)
| | Badness: 0.012860 |
|
| |
|
| {{Optimal ET sequence|legend=1| 27eg, 45efg, 72 }}
| | === 13-limit === |
| | Subgroup: 2.3.5.7.11.13 |
|
| |
|
| === Ennealiminal ===
| | Comma list: 1716/1715, 2080/2079, 3025/3024, 4096/4095 |
| Subgroup: 2.3.5.7.11
| |
|
| |
|
| Comma list: 385/384, 1375/1372, 4375/4374
| | Mapping: {{mapping| 2 7 13 -1 1 -2 | 0 -11 -24 19 17 27 }} |
|
| |
|
| Mapping: {{mapping| 9 1 1 12 51 | 0 2 3 2 -3 }}
| | Optimal tuning (POTE): ~99/70 = 1\2, ~44/39 = 208.903 |
|
| |
|
| Optimal tuning (POTE): ~27/25 = 1\9, ~5/3 = 883.8298 (~36/35 = 49.5036) | | {{Optimal ET sequence|legend=1| 46, 178, 224, 270, 494, 764, 1258 }} |
|
| |
|
| {{Optimal ET sequence|legend=1| 27, 45, 72, 171e, 243e, 315e }}
| | Badness: 0.008856 |
|
| |
|
| Badness: 0.031123
| | == Gamera == |
| | ''For the 5-limit temperament, see [[High badness temperaments#Gamera]]. |
|
| |
|
| ==== 13-limit ====
| | [[Subgroup]]: 2.3.5.7 |
| Subgroup: 2.3.5.7.11.13 | |
|
| |
|
| Comma list: 169/168, 325/324, 385/384, 1375/1372 | | [[Comma list]]: 4375/4374, 589824/588245 |
|
| |
|
| Mapping: {{mapping| 9 1 1 12 51 20 | 0 2 3 2 -3 2 }}
| | {{Mapping|legend=1| 1 6 10 3 | 0 -23 -40 -1 }} |
|
| |
|
| Optimal tuning (POTE): ~13/12 = 1\9, ~5/3 = 883.8476 (~36/35 = 49.4857)
| | : mapping generators: ~2, ~8/7 |
|
| |
|
| {{Optimal ET sequence|legend=1| 27, 45f, 72, 171ef, 243eff }}
| | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~8/7 = 230.336 |
|
| |
|
| Badness: 0.030325
| | {{Optimal ET sequence|legend=1| 26, 73, 99, 224, 323, 422, 745d }} |
|
| |
|
| ===== 17-limit =====
| | [[Badness]]: 0.037648 |
| Subgroup: 2.3.5.7.11.13.17
| |
|
| |
|
| Comma list: 169/168, 221/220, 325/324, 385/384, 1375/1372
| | === Hemigamera === |
| | Subgroup: 2.3.5.7.11 |
|
| |
|
| Mapping: {{mapping| 9 1 1 12 51 20 50 | 0 2 3 2 -3 2 -2 }}
| | Comma list: 3025/3024, 4375/4374, 589824/588245 |
|
| |
|
| Optimal tuning (POTE): ~13/12 = 1\9, ~5/3 = 883.8476 (~36/35 = 49.4857)
| | Mapping: {{mapping| 2 12 20 6 5 | 0 -23 -40 -1 5 }} |
|
| |
|
| {{Optimal ET sequence|legend=1| 27, 45f, 72 }}
| | : mapping generators: ~99/70, ~8/7 |
|
| |
|
| ===== 19-limit ===== | | Optimal tuning (POTE): ~99/70 = 1\2, ~8/7 = 230.3370 |
| Subgroup: 2.3.5.7.11.13.17.19
| |
|
| |
|
| Comma list: 153/152, 169/168, 221/220, 325/324, 385/384, 1375/1372
| | {{Optimal ET sequence|legend=1| 26, 198, 224, 422, 646, 1068d }} |
|
| |
|
| Mapping: {{mapping| 9 1 1 12 51 20 50 25 | 0 2 3 2 -3 2 -2 2 }}
| | Badness: 0.040955 |
|
| |
|
| Optimal tuning (POTE): ~13/12 = 1\9, ~5/3 = 883.8476 (~36/35 = 49.4857)
| | ==== 13-limit ==== |
| | Subgroup: 2.3.5.7.11.13 |
|
| |
|
| {{Optimal ET sequence|legend=1| 27, 45f, 72 }}
| | Comma list: 1716/1715, 2080/2079, 2200/2197, 3025/3024 |
|
| |
|
| === Hemiennealimmal ===
| | Mapping: {{mapping| 2 12 20 6 5 17 | 0 -23 -40 -1 5 -25 }} |
| Hemiennealimmal (72 & 198) has a period of 1/18 octave and tempers out the four smallest superparticular commas of the 11-limit JI, 2401/2400, 3025/3024, 4375/4374, and 9801/9800. Tempering out [[9801/9800]] leads an octave split into two equal parts. Notably, every one of these commas is part of one or more known infinite comma families; see directly below.
| |
|
| |
|
| Its S-expression-based comma list is {([[3025/3024|S22/S24 = S55 = S25/S27 * S99]],) [[4375/4374|S25/S27]], [[2401/2400|S49]], [[9801/9800|S33/S35 = S99]]}.
| | Optimal tuning (POTE): ~99/70 = 1\2, ~8/7 = 230.3373 |
| | |
| | {{Optimal ET sequence|legend=1| 26, 198, 224, 422, 646f, 1068df }} |
|
| |
|
| | Badness: 0.020416 |
| | |
| | === Semigamera === |
| Subgroup: 2.3.5.7.11 | | Subgroup: 2.3.5.7.11 |
|
| |
|
| Comma list: 2401/2400, 3025/3024, 4375/4374 | | Comma list: 4375/4374, 14641/14580, 15488/15435 |
|
| |
|
| Mapping: {{mapping| 18 0 -1 22 48 | 0 2 3 2 1 }} | | Mapping: {{mapping| 1 6 10 3 12 | 0 -46 -80 -2 -89 }} |
|
| |
|
| : mapping generators: ~80/77, ~400/231 | | : mapping generators: ~2, ~77/72 |
|
| |
|
| Optimal tuning (POTE): ~80/77 = 1\18, ~400/231 = 950.9553 | | Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.1642 |
|
| |
|
| Tuning ranges:
| | {{Optimal ET sequence|legend=1| 73, 125, 198, 323, 521 }} |
| * 11-odd-limit diamond monotone: ~99/98 = [13.333, 22.222] (1\90 to 1\54)
| |
| * 11-odd-limit diamond tradeoff: ~99/98 = [17.304, 17.985]
| |
| * 11-odd-limit diamond monotone and tradeoff: ~99/98 = [17.304, 17.985]
| |
|
| |
|
| {{Optimal ET sequence|legend=1| 72, 198, 270, 342, 612, 954, 1566 }}
| | Badness: 0.078 |
| | |
| Badness: 0.006283 | |
|
| |
|
| ==== 13-limit ==== | | ==== 13-limit ==== |
| Subgroup: 2.3.5.7.11.13 | | Subgroup: 2.3.5.7.11.13 |
|
| |
|
| Comma list: 676/675, 1001/1000, 1716/1715, 3025/3024 | | Comma list: 676/675, 1001/1000, 4375/4374, 14641/14580 |
|
| |
|
| Mapping: {{mapping| 18 0 -1 22 48 -19 | 0 2 3 2 1 6 }} | | Mapping: {{mapping| 1 6 10 3 12 18 | 0 -46 -80 -2 -89 -149 }} |
|
| |
|
| Optimal tuning (POTE): ~27/26 = 1\18, ~26/15 = 951.0837 | | Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.1628 |
|
| |
|
| Tuning ranges:
| | {{Optimal ET sequence|legend=1| 73f, 125f, 198, 323, 521 }} |
| * 13-odd-limit diamond monotone: ~99/98 = [16.667, 22.222] (1\72 to 1\54)
| |
| * 15-odd-limit diamond monotone: ~99/98 = [16.667, 19.048] (1\72 to 2\126)
| |
| * 13-odd-limit diamond tradeoff: ~99/98 = [17.304, 18.309]
| |
| * 15-odd-limit diamond tradeoff: ~99/98 = [17.304, 18.926]
| |
| * 13-odd-limit diamond monotone and tradeoff: ~99/98 = [17.304, 18.309]
| |
| * 15-odd-limit diamond monotone and tradeoff: ~99/98 = [17.304, 18.926]
| |
|
| |
|
| {{Optimal ET sequence|legend=1| 72, 198, 270 }}
| | Badness: 0.044 |
|
| |
|
| Badness: 0.012505
| | == Crazy == |
| | : ''For the 5-limit version, see [[Very high accuracy temperaments #Kwazy]].'' |
|
| |
|
| ===== 17-limit =====
| | Crazy tempers out the [[kwazy comma]] in the 5-limit, and adds the ragisma to extend it to the 7-limit. It can be described as the {{nowrap| 118 & 494 }} temperament. [[1106edo]] is an strong tuning. |
| Subgroup: 2.3.5.7.11.13.17
| |
|
| |
|
| Comma list: 676/675, 715/714, 1001/1000, 1716/1715, 3025/3024
| | [[Subgroup]]: 2.3.5.7 |
|
| |
|
| Mapping: {{mapping| 18 0 -1 22 48 -19 -12 | 0 2 3 2 1 6 6 }}
| | [[Comma list]]: 4375/4374, {{monzo| -53 10 16 }} |
|
| |
|
| Optimal tuning (POTE): ~27/26 = 1\18, ~26/15 = 951.0837
| | {{Mapping|legend=1| 2 1 6 -15 | 0 8 -5 76 }} |
|
| |
|
| {{Optimal ET sequence|legend=1| 72, 198g, 270 }}
| | : mapping generators: ~332150625/234881024, ~1125/1024 |
|
| |
|
| ===== 19-limit ===== | | [[Optimal tuning]]s: |
| Subgroup: 2.3.5.7.11.13.17.19
| | * [[CTE]]: ~332150625/234881024 = 600.0000, ~1125/1024 = 162.7475 |
| | * [[error map]]: {{val| 0.0000 +0.0253 -0.0514 -0.0133 }} |
| | * [[CWE]]: ~332150625/234881024 = 600.0000, ~1125/1024 = 162.7474 |
| | * error map: {{val| 0.0000 +0.0244 -0.0508 -0.0218 }} |
|
| |
|
| Comma list: 676/675, 715/714, 1001/1000, 1331/1330, 1716/1715, 3025/3024
| | {{Optimal ET sequence|legend=1| 118, 376, 494, 612, 1106, 1718 }} |
|
| |
|
| Mapping: {{mapping| 18 0 -1 22 48 -19 -12 48 105 | 0 2 3 2 1 6 6 -2 }}
| | [[Badness]] (Smith): 0.0394 |
| | |
| Optimal tuning (POTE): ~27/26 = 1\18, ~26/15 = 951.0837
| |
| | |
| {{Optimal ET sequence|legend=1| 72, 198g, 270 }}
| |
| | |
| ==== Semihemiennealimmal ====
| |
| Subgroup: 2.3.5.7.11.13
| |
| | |
| Comma list: 2401/2400, 3025/3024, 4225/4224, 4375/4374
| |
| | |
| Mapping: {{mapping| 18 0 -1 22 48 88 | 0 4 6 4 2 -3 }}
| |
| | |
| : mapping generators: ~80/77, ~1053/800
| |
| | |
| Optimal tuning (POTE): ~80/77 = 1\18, ~1053/800 = 475.4727
| |
| | |
| {{Optimal ET sequence|legend=1| 126, 144, 270, 684, 954 }}
| |
| | |
| Badness: 0.013104 | |
| | |
| ===== 17-limit =====
| |
| Subgroup: 2.3.5.7.11.13.17
| |
| | |
| Comma list: 2401/2400, 2431/2430, 3025/3024, 4225/4224, 4375/4374
| |
| | |
| Mapping: {{mapping| 18 0 -1 22 48 88 -119 | 0 4 6 4 2 -3 27 }}
| |
| | |
| : mapping generators: ~80/77, ~1053/800
| |
| | |
| Optimal tuning (POTE): ~80/77 = 1\18, ~1053/800 = 475.4727
| |
| | |
| {{Optimal ET sequence|legend=1| 270, 684, 954 }}
| |
| | |
| Badness: 0.013104
| |
| | |
| ===== 19-limit =====
| |
| Subgroup: 2.3.5.7.11.13.17.19
| |
| | |
| Comma list: 2401/2400, 2431/2430, 2926/2925, 3025/3024, 4225/4224, 4375/4374
| |
| | |
| Mapping: {{mapping| 18 0 -1 22 48 88 -119 -2 | 0 4 6 4 2 -3 27 11 }}
| |
| | |
| : mapping generators: ~80/77, ~1053/800
| |
| | |
| Optimal tuning (POTE): ~80/77 = 1\18, ~1053/800 = 475.4727
| |
| | |
| {{Optimal ET sequence|legend=1| 270, 684h, 954h, 1224 }}
| |
| | |
| Badness: 0.013104
| |
| | |
| === Semiennealimmal ===
| |
| Semiennealimmal tempers out [[4000/3993]], and uses a ~140/121 semifourth generator. Notably, however, two generator steps do not reach ~4/3, despite that the name may suggest so. In fact, it splits the generator of ennealimmal into three.
| |
|
| |
|
| | === 11-limit === |
| Subgroup: 2.3.5.7.11 | | Subgroup: 2.3.5.7.11 |
|
| |
|
| Comma list: 2401/2400, 4000/3993, 4375/4374
| | Comma list: 3025/3024, 4375/4374, 2791309312/2790703125 |
| | |
| Mapping: {{mapping| 9 3 4 14 18 | 0 6 9 6 7 }}
| |
| | |
| : mapping generators: ~27/25, ~140/121
| |
| | |
| Optimal tuning (POTE): ~27/25 = 1\9, ~140/121 = 250.3367
| |
| | |
| {{Optimal ET sequence|legend=1| 72, 369, 441 }}
| |
| | |
| Badness: 0.034196
| |
| | |
| ==== 13-limit ====
| |
| Subgroup: 2.3.5.7.11.13
| |
| | |
| Comma list: 1575/1573, 2080/2079, 2401/2400, 4375/4374
| |
| | |
| Mapping: {{mapping| 9 3 4 14 18 -8 | 0 6 9 6 7 22 }}
| |
| | |
| Optimal tuning (POTE): ~27/25 = 1\9, ~140/121 = 250.3375
| |
| | |
| {{Optimal ET sequence|legend=1| 72, 297ef, 369f, 441 }}
| |
| | |
| Badness: 0.026122
| |
| | |
| === Quadraennealimmal ===
| |
| Subgroup: 2.3.5.7.11
| |
| | |
| Comma list: 2401/2400, 4375/4374, 234375/234256
| |
| | |
| Mapping: {{mapping| 9 1 1 12 -7 | 0 8 12 8 23 }}
| |
| | |
| : mapping generators: ~27/25, ~25/22
| |
| | |
| Optimal tuning (POTE): ~27/25 = 1\9, ~25/22 = 221.0717
| |
| | |
| {{Optimal ET sequence|legend=1| 342, 1053, 1395, 1737, 4869dd, 6606cdd }}
| |
| | |
| Badness: 0.021320
| |
| | |
| === Trinealimmal ===
| |
| Subgroup: 2.3.5.7.11
| |
| | |
| Comma list: 2401/2400, 4375/4374, 2097152/2096325
| |
| | |
| Mapping: {{mapping| 27 1 0 34 177 | 0 2 3 2 -4 }}
| |
| | |
| : mapping generators: ~2744/2673, ~2352/1375
| |
| | |
| Optimal tuning (POTE): ~2744/2673 = 1\27, ~2352/1375 = 928.8000
| |
| | |
| {{Optimal ET sequence|legend=1| 27, 243, 270, 783, 1053, 1323 }}
| |
| | |
| Badness: 0.029812
| |
| | |
| === Rhodium ===
| |
| {{Main| Rhodium }}
| |
| Rhodium splits the ennealimmal period in five parts and thereby features a period of 9 × 5 = 45, thus the name is given after the 45th element.
| |
| | |
| Subgroup: 2.3.5.7.11
| |
| | |
| Comma list: 2401/2400, 4375/4374, 117440512/117406179
| |
| | |
| Mapping: {{mapping| 45 1 -1 56 226 | 0 2 3 2 -2 }}
| |
| | |
| : mapping generators: ~3072/3025, ~55/32
| |
| | |
| Optimal tunings:
| |
| * CTE: ~3072/3025 = 1\45, ~55/32 = 937.6658 (~385/384 = 4.3325)
| |
| * CWE: ~3072/3025 = 1\45, ~55/32 = 937.6630 (~385/384 = 4.3397)
| |
| | |
| Optimal ET sequence: {{Optimal ET sequence| 45, 225c, 270, 1125, 1395, 1665, 5265d }}
| |
| | |
| Badness: 0.0381
| |
| | |
| ==== 13-limit ====
| |
| Subgroup: 2.3.5.7.11.13
| |
| | |
| Comma list: 2401/2400, 4225/4224, 4375/4374, 6656/6655
| |
| | |
| Mapping: {{mapping| 45 1 -1 56 226 272 | 0 2 3 2 -2 -3 }}
| |
| | |
| Optimal tunings:
| |
| * CTE: ~66/65 = 1\45, ~55/32 = 937.6569 (~385/384 = 4.3236)
| |
| * CWE: ~66/65 = 1\45, ~55/32 = 937.6515 (~385/384 = 4.3182)
| |
| | |
| Optimal ET sequence: {{Optimal ET sequence| 45, 270, 855, 1125, 1395, 1665, 3060d, 4725df }}
| |
| | |
| Badness: 0.0226
| |
| | |
| == Supermajor ==
| |
| The generator for supermajor temperament is a supermajor third, 9/7, tuned about 0.002 cents flat. 37 of these give (2<sup>15</sup>)/3, 46 give (2<sup>19</sup>)/5, and 75 give (2<sup>30</sup>)/7, leading to a wedgie of {{multival| 37 46 75 -13 15 45 }}. This is clearly quite a complex temperament; it makes up for it, to the extent it does, with extreme accuracy: 1106 or 1277 can be used as tunings, leading to accuracy even greater than that of ennealimmal. The 80-note mos is presumably the place to start, and if that is not enough notes for you, there is always the 171-note mos.
| |
| | |
| [[Subgroup]]: 2.3.5.7
| |
| | |
| [[Comma list]]: 4375/4374, 52734375/52706752
| |
| | |
| {{Mapping|legend=1| 1 15 19 30 | 0 -37 -46 -75 }}
| |
| | |
| {{Multival|legend=1| 37 46 75 -13 15 45 }}
| |
| | |
| [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~9/7 = 435.082
| |
| | |
| {{Optimal ET sequence|legend=1| 11, 80, 171, 764, 1106, 1277, 3660, 4937, 6214 }}
| |
| | |
| [[Badness]]: 0.010836
| |
| | |
| === Semisupermajor ===
| |
| Subgroup: 2.3.5.7.11
| |
| | |
| Comma list: 3025/3024, 4375/4374, 35156250/35153041 | |
| | |
| Mapping: {{mapping| 2 30 38 60 41 | 0 -37 -46 -75 -47 }}
| |
| | |
| Optimal tuning (POTE): ~99/70 = 1\2, ~9/7 = 435.082
| |
| | |
| {{Optimal ET sequence|legend=1| 80, 342, 764, 1106, 1448, 2554, 4002f, 6556cf }}
| |
| | |
| Badness: 0.012773
| |
| | |
| == Enneadecal ==
| |
| Enneadecal temperament tempers out the [[enneadeca]], {{monzo| -14 -19 19 }}, and as a consequence has a period of 1/19 octave. This is because the enneadeca is the amount by which nineteen just minor thirds fall short of an octave. If to this we add 4375/4374 we get the 7-limit temperament we are considering here, but note should be taken of the fact that it makes for a reasonable 5-limit microtemperament also, where the generator can be ~25/24, ~27/25, ~10/9, ~5/4 or ~3/2. To this we may add possible 7-limit generators such as ~225/224, ~15/14 or ~9/7. Since enneadecal tempers out [[703125/702464]], the amount by which 81/80 falls short of three stacked 225/224, we can equate the 225/224 generator with (81/80)<sup>1/3</sup>. This is the interval needed to adjust the 1/3-comma meantone flat fifths and major thirds of [[19edo]] up to just ones. [[171edo]] is a good tuning for either the 5- or 7-limit, and [[494edo]] shows how to extend the temperament to the 11- or 13-limit, where it is accurate but very complex. Fans of near-perfect fifths may want to use [[665edo]] for a tuning.
| |
| | |
| ''For the 5-limit temperament, see [[19th-octave temperaments#(5-limit) enneadecal]].''
| |
| | |
| [[Subgroup]]: 2.3.5.7
| |
| | |
| [[Comma list]]: 4375/4374, 703125/702464
| |
| | |
| {{Mapping|legend=1| 19 0 14 -37 | 0 1 1 3 }}
| |
| | |
| {{Multival|legend=1| 19 19 57 -14 37 79 }}
| |
| | |
| : mapping generators: ~28/27, ~3
| |
| | |
| [[Optimal tuning]] ([[CTE]]): ~28/27 = 1\19, ~3/2 = 701.9275 (~225/224 = 7.1907)
| |
| | |
| {{Optimal ET sequence|legend=1| 19, …, 152, 171, 665, 836, 1007, 2185, 3192c }}
| |
| | |
| [[Badness]]: 0.010954
| |
| | |
| === 11-limit ===
| |
| Subgroup: 2.3.5.7.11
| |
| | |
| Comma list: 540/539, 4375/4374, 16384/16335
| |
| | |
| Mapping: {{mapping| 19 0 14 -37 126 | 0 1 1 3 -2 }}
| |
| | |
| Optimal tuning (CTE): ~28/27 = 1\19, ~3/2 = 702.1483 (~225/224 = 7.4115)
| |
| | |
| {{Optimal ET sequence|legend=1| 19, 133d, 152, 323e, 475de, 627de }}
| |
| | |
| Badness: 0.043734
| |
| | |
| ==== 13-limit ====
| |
| Subgroup: 2.3.5.7.11.13
| |
| | |
| Comma list: 540/539, 625/624, 729/728, 2205/2197
| |
| | |
| Mapping: {{mapping| 19 0 14 -37 126 -20 | 0 1 1 3 -2 3 }}
| |
| | |
| Optimal tuning (CTE): ~28/27 = 1\19, ~3/2 = 701.9258 (~225/224 = 7.1890)
| |
| | |
| {{Optimal ET sequence|legend=1| 19, 133df, 152f, 323ef }}
| |
| | |
| Badness: 0.033545
| |
| | |
| === Hemienneadecal ===
| |
| Subgroup: 2.3.5.7.11
| |
| | |
| Comma list: 3025/3024, 4375/4374, 234375/234256
| |
| | |
| Mapping: {{mapping| 38 0 28 -74 11 | 0 1 1 3 2 }}
| |
| | |
| : mapping generators: ~55/54, ~3
| |
| | |
| Optimal tuning (CTE): ~55/54 = 1\38, ~3/2 = 701.9351 (~225/224 = 7.1983)
| |
| | |
| {{Optimal ET sequence|legend=1| 152, 342, 836, 1178, 2014, 3192ce, 5206ce }}
| |
| | |
| Badness: 0.009985
| |
| | |
| ==== Hemienneadecalis ====
| |
| Subgroup: 2.3.5.7.11.13
| |
| | |
| Comma list: 1716/1715, 2080/2079, 3025/3024, 234375/234256
| |
| | |
| Mapping: {{mapping| 38 0 28 -74 11 -281 | 0 1 1 3 2 7 }}
| |
| | |
| Optimal tuning (CTE): ~55/54 = 1\38, ~3/2 = 701.9955 (~225/224 = 7.2587)
| |
| | |
| {{Optimal ET sequence|legend=1| 152f, 342f, 494 }}
| |
| | |
| Badness: 0.020782
| |
| | |
| ==== Hemienneadec ====
| |
| Subgroup: 2.3.5.7.11.13
| |
| | |
| Comma list: 3025/3024, 4096/4095, 4375/4374, 31250/31213
| |
| | |
| Mapping: {{mapping| 38 0 28 -74 11 502 | 0 1 1 3 2 -6 }}
| |
| | |
| Optimal tuning (CTE): ~55/54 = 1\38, ~3/2 = 701.9812 (~225/224 = 7.2444)
| |
| | |
| {{Optimal ET sequence|legend=1| 152, 342, 494, 1330, 1824, 2318d }}
| |
| | |
| Badness: 0.030391
| |
| | |
| ==== Semihemienneadecal ====
| |
| Subgroup: 2.3.5.7.11.13
| |
| | |
| Comma list: 3025/3024, 4225/4224, 4375/4374, 78125/78078
| |
| | |
| Mapping: {{mapping| 38 1 29 -71 13 111 | 0 2 2 6 4 1 }}
| |
| | |
| : mapping generators: ~55/54 = 1\38, ~55/54, ~429/250
| |
| | |
| Optimal tuning (CTE): ~429/250 = 935.1789 (~144/143 = 12.1895)
| |
| | |
| {{Optimal ET sequence|legend=1| 190, 304d, 494, 684, 1178, 2850, 4028ce }}
| |
| | |
| Badness: 0.014694
| |
| | |
| === Kalium ===
| |
| Named after the 19th element, potassium, and after an archaic variant of the element's name to resolve a name conflict. [[19/16]] can be used as a generator. Since it is enfactored in the 17-limit and lower, it makes no sense to name it for the lower subgroups.
| |
| | |
| Subgroup: 2.3.5.7.11.13.17.19
| |
| | |
| Comma list: 2500/2499, 3250/3249, 4225/4224, 4375/4374, 11016/11011, 57375/57344
| |
| | |
| Mapping: {{mapping| 19 3 17 -28 82 92 159 78 | 0 10 10 30 -6 -8 -30 1 }}
| |
| | |
| Optimal tuning (CTE): ~28/27 = 1\19, ~6545/5928 = 171.244
| |
| | |
| {{Optimal ET sequence|legend=1| 855, 988, 1843 }}
| |
| | |
| == Semidimi ==
| |
| : ''For the 5-limit version of this temperament, see [[High badness temperaments #Semidimi]].''
| |
| | |
| The generator of semidimi temperament is a semi-diminished fourth interval tuned between 162/125 and 35/27. It tempers out 5-limit {{monzo| -12 -73 55 }} and 7-limit 3955078125/3954653486, as well as 4375/4374.
| |
| | |
| [[Subgroup]]: 2.3.5.7
| |
| | |
| [[Comma list]]: 4375/4374, 3955078125/3954653486
| |
| | |
| {{Mapping|legend=1| 1 36 48 61 | 0 -55 -73 -93 }}
| |
| | |
| {{Multival|legend=1| 55 73 93 -12 -7 11 }}
| |
| | |
| [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~35/27 = 449.1270
| |
| | |
| {{Optimal ET sequence|legend=1| 171, 863, 1034, 1205, 1376, 1547, 1718, 4983, 6701, 8419 }}
| |
| | |
| [[Badness]]: 0.015075
| |
| | |
| == Brahmagupta ==
| |
| The brahmagupta temperament has a period of 1/7 octave, tempering out the [[akjaysma]], {{monzo| 47 -7 -7 -7 }} = 140737488355328 / 140710042265625.
| |
| | |
| [[Subgroup]]: 2.3.5.7
| |
| | |
| [[Comma list]]: 4375/4374, 70368744177664/70338939985125
| |
| | |
| {{Mapping|legend=1| 7 2 -8 53 | 0 3 8 -11 }}
| |
| | |
| : mapping generators: ~1157625/1048576, ~27/20
| |
| | |
| {{Multival|legend=1| 21 56 -77 40 -181 -336 }}
| |
| | |
| [[Optimal tuning]] ([[POTE]]): ~1157625/1048576 = 1\7, ~27/20 = 519.716
| |
| | |
| {{Optimal ET sequence|legend=1| 7, 217, 224, 441, 1106, 1547 }}
| |
| | |
| [[Badness]]: 0.029122
| |
| | |
| === 11-limit ===
| |
| Subgroup: 2.3.5.7.11
| |
| | |
| Comma list: 4000/3993, 4375/4374, 131072/130977
| |
| | |
| Mapping: {{mapping| 7 2 -8 53 3 | 0 3 8 -11 7 }}
| |
| | |
| Optimal tuning (POTE): ~243/220 = 1\7, ~27/20 = 519.704
| |
| | |
| {{Optimal ET sequence|legend=1| 7, 217, 224, 441, 665, 1771ee }}
| |
| | |
| Badness: 0.052190
| |
| | |
| === 13-limit ===
| |
| Subgroup: 2.3.5.7.11.13
| |
| | |
| Comma list: 1575/1573, 2080/2079, 4096/4095, 4375/4374
| |
| | |
| Mapping: {{mapping| 7 2 -8 53 3 35 | 0 3 8 -11 7 -3 }}
| |
| | |
| Optimal tuning (POTE): ~243/220 = 1\7, ~27/20 = 519.706
| |
| | |
| {{Optimal ET sequence|legend=1| 7, 217, 224, 441, 665, 1771eef }}
| |
| | |
| Badness: 0.023132
| |
| | |
| == Abigail ==
| |
| Abigail temperament tempers out the [[pessoalisma]] in addition to the ragisma in the 7-limit. It was named by Gene Ward Smith after the birthday of First Lady Abigail Fillmore.<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning-math/topicId_17927.html#17930]: "I propose Abigail as a name, on the grounds 313/1798 is an excellent generator, and Abigail Fillmore, wife of Millard, was born on 3-13-1798 at least as Americans recon things."</ref>
| |
| | |
| ''For the 5-limit temperament, see [[Very high accuracy temperaments#Abigail]].''
| |
| | |
| [[Subgroup]]: 2.3.5.7
| |
| | |
| [[Comma list]]: 4375/4374, 2147483648/2144153025
| |
| | |
| {{Mapping|legend=1| 2 7 13 -1 | 0 -11 -24 19 }}
| |
| | |
| : mapping generators: ~46305/32768, ~27/20
| |
| | |
| {{Multival|legend=1| 22 48 -38 25 -122 -223 }}
| |
| | |
| [[Optimal tuning]] ([[POTE]]): ~46305/32768 = 1\2, ~6912/6125 = 208.899
| |
| | |
| {{Optimal ET sequence|legend=1| 46, 132, 178, 224, 270, 494, 764, 1034, 1798 }}
| |
| | |
| [[Badness]]: 0.037000
| |
| | |
| === 11-limit ===
| |
| Subgroup: 2.3.5.7.11
| |
| | |
| Comma list: 3025/3024, 4375/4374, 131072/130977
| |
| | |
| Mapping: {{mapping| 2 7 13 -1 1 | 0 -11 -24 19 17 }}
| |
| | |
| Optimal tuning (POTE): ~99/70 = 1\2, ~1155/1024 = 208.901
| |
| | |
| {{Optimal ET sequence|legend=1| 46, 132, 178, 224, 270, 494, 764 }}
| |
| | |
| Badness: 0.012860
| |
| | |
| === 13-limit ===
| |
| Subgroup: 2.3.5.7.11.13
| |
| | |
| Comma list: 1716/1715, 2080/2079, 3025/3024, 4096/4095
| |
| | |
| Mapping: {{mapping| 2 7 13 -1 1 -2 | 0 -11 -24 19 17 27 }}
| |
| | |
| Optimal tuning (POTE): ~99/70 = 1\2, ~44/39 = 208.903
| |
| | |
| {{Optimal ET sequence|legend=1| 46, 178, 224, 270, 494, 764, 1258 }}
| |
| | |
| Badness: 0.008856
| |
| | |
| == Gamera ==
| |
| [[Subgroup]]: 2.3.5.7
| |
| | |
| [[Comma list]]: 4375/4374, 589824/588245
| |
| | |
| {{Mapping|legend=1| 1 6 10 3 | 0 -23 -40 -1 }}
| |
| | |
| : mapping generators: ~2, ~8/7
| |
| | |
| {{Multival|legend=1| 23 40 1 10 -63 -110 }}
| |
| | |
| [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~8/7 = 230.336
| |
| | |
| {{Optimal ET sequence|legend=1| 26, 73, 99, 224, 323, 422, 745d }}
| |
| | |
| [[Badness]]: 0.037648
| |
| | |
| === Hemigamera ===
| |
| Subgroup: 2.3.5.7.11
| |
| | |
| Comma list: 3025/3024, 4375/4374, 589824/588245
| |
| | |
| Mapping: {{mapping| 2 12 20 6 5 | 0 -23 -40 -1 5 }}
| |
| | |
| : mapping generators: ~99/70, ~8/7
| |
| | |
| Optimal tuning (POTE): ~99/70 = 1\2, ~8/7 = 230.3370
| |
| | |
| {{Optimal ET sequence|legend=1| 26, 198, 224, 422, 646, 1068d }}
| |
| | |
| Badness: 0.040955
| |
| | |
| ==== 13-limit ====
| |
| Subgroup: 2.3.5.7.11.13
| |
| | |
| Comma list: 1716/1715, 2080/2079, 2200/2197, 3025/3024
| |
| | |
| Mapping: {{mapping| 2 12 20 6 5 17 | 0 -23 -40 -1 5 -25 }}
| |
| | |
| Optimal tuning (POTE): ~99/70 = 1\2, ~8/7 = 230.3373
| |
| | |
| {{Optimal ET sequence|legend=1| 26, 198, 224, 422, 646f, 1068df }}
| |
| | |
| Badness: 0.020416
| |
| | |
| === Semigamera ===
| |
| Subgroup: 2.3.5.7.11
| |
| | |
| Comma list: 4375/4374, 14641/14580, 15488/15435
| |
| | |
| Mapping: {{mapping| 1 6 10 3 12 | 0 -46 -80 -2 -89 }}
| |
| | |
| : mapping generators: ~2, ~77/72
| |
|
| |
|
| Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.1642
| | Mapping: {{mapping| 2 1 6 -15 -8 | 0 8 -5 76 55 }} |
|
| |
|
| {{Optimal ET sequence|legend=1| 73, 125, 198, 323, 521 }}
| | Optimal tunings: |
| | * CTE: ~99/70 = 162.7485, ~1125/1024 = 162.7485 |
| | * CWE: ~99/70 = 162.7485, ~1125/1024 = 162.7481 |
|
| |
|
| Badness: 0.078
| | {{Optimal ET sequence|legend=0| 118, 376, 494, 612, 1106, 2824, 3930e }} |
|
| |
|
| ==== 13-limit ====
| | Badness (Smith): 0.0170 |
| Subgroup: 2.3.5.7.11.13
| |
| | |
| Comma list: 676/675, 1001/1000, 4375/4374, 14641/14580
| |
| | |
| Mapping: {{mapping| 1 6 10 3 12 18 | 0 -46 -80 -2 -89 -149 }}
| |
| | |
| Optimal tuning (POTE): ~2 = 1\1, ~77/72 = 115.1628
| |
| | |
| {{Optimal ET sequence|legend=1| 73f, 125f, 198, 323, 521 }}
| |
| | |
| Badness: 0.044
| |
|
| |
|
| == Orga == | | == Orga == |
Line 871: |
Line 399: |
|
| |
|
| : mapping generators: ~7411887/5242880, ~1310720/1058841 | | : mapping generators: ~7411887/5242880, ~1310720/1058841 |
|
| |
| {{Multival|legend=1| 58 102 -2 27 -166 -291 }}
| |
|
| |
|
| [[Optimal tuning]] ([[POTE]]): ~7411887/5242880 = 1\2, ~8/7 = 231.104 | | [[Optimal tuning]] ([[POTE]]): ~7411887/5242880 = 1\2, ~8/7 = 231.104 |
Line 905: |
Line 431: |
|
| |
|
| Badness: 0.021762 | | Badness: 0.021762 |
|
| |
| == Chlorine ==
| |
| The name of chlorine temperament comes from Chlorine, the 17th element.
| |
|
| |
| Chlorine temperament has a period of 1/17 octave. It tempers out the [[septendecima]], {{monzo| -52 -17 34 }}, by which 17 chromatic semitones (25/24) exceed an octave. This temperament can be described as 289 & 323 temperament, which tempers out {{monzo| -49 4 22 -3 }} as well as the ragisma. Not only the semitwelfth, but also the ~5/4 can be used as a generator.
| |
|
| |
| [[Subgroup]]: 2.3.5
| |
|
| |
| [[Comma list]]: {{monzo| -52 -17 34 }}
| |
|
| |
| {{Mapping|legend=1| 17 0 26 | 0 2 1 }}
| |
|
| |
| : mapping generators: ~25/24, ~{{monzo| 26 9 -17 }}
| |
|
| |
| [[Optimal tuning]] ([[POTE]]): ~{{monzo| 26 9 -17 }} = 950.9746
| |
|
| |
| {{Optimal ET sequence|legend=1| 34, 153, 187, 221, 255, 289, 323, 612, 3349, 3961, 4573, 5185, 5797 }}
| |
|
| |
| [[Badness]]: 0.077072
| |
|
| |
| === 7-limit ===
| |
| [[Subgroup]]: 2.3.5.7
| |
|
| |
| [[Comma list]]: 4375/4374, {{monzo| -49 4 22 -3 }}
| |
|
| |
| {{Mapping|legend=1| 17 0 26 -87 | 0 2 1 10 }}
| |
|
| |
| {{Multival|legend=1| 34 17 170 -52 174 347 }}
| |
|
| |
| [[Optimal tuning]] ([[POTE]]): ~{{monzo| 24 -5 -9 2 }} = 950.9995
| |
|
| |
| {{Optimal ET sequence|legend=1| 289, 323, 612, 935, 1547 }}
| |
|
| |
| [[Badness]]: 0.041658
| |
|
| |
| === 11-limit ===
| |
| Subgroup: 2.3.5.7.11
| |
|
| |
| Comma list: 4375/4374, 41503/41472, 1879453125/1879048192
| |
|
| |
| Mapping: {{mapping| 17 0 26 -87 207 | 0 2 1 10 -11 }}
| |
|
| |
| Optimal tuning (POTE): ~{{monzo| 24 -5 -9 2 }} = 950.9749
| |
|
| |
| {{Optimal ET sequence|legend=1| 289, 323, 612 }}
| |
|
| |
| Badness: 0.063706
| |
|
| |
|
| == Seniority == | | == Seniority == |
Line 963: |
Line 442: |
|
| |
|
| {{Mapping|legend=1| 1 11 19 2 | 0 -35 -62 3 }} | | {{Mapping|legend=1| 1 11 19 2 | 0 -35 -62 3 }} |
|
| |
| {{Multival|legend=1| 35 62 -3 17 -103 -181 }}
| |
|
| |
|
| [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3087/2560 = 322.804 | | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3087/2560 = 322.804 |
Line 1,023: |
Line 500: |
|
| |
|
| {{Mapping|legend=1| 1 2 10 -25 | 0 -2 -37 134 }} | | {{Mapping|legend=1| 1 2 10 -25 | 0 -2 -37 134 }} |
|
| |
| {{Multival|legend=1| 2 37 -134 54 -218 -415 }}
| |
|
| |
|
| [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~{{monzo| -27 11 3 1 }} = 249.0207 | | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~{{monzo| -27 11 3 1 }} = 249.0207 |
Line 1,068: |
Line 543: |
|
| |
|
| [[Mapping]]: {{mapping| 1 21 28 36 | 0 -31 -41 -53 }} | | [[Mapping]]: {{mapping| 1 21 28 36 | 0 -31 -41 -53 }} |
|
| |
| {{Multival|legend=1| 31 41 53 -7 -3 8 }}
| |
|
| |
|
| [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~35/27 = 448.456 | | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~35/27 = 448.456 |
Line 1,111: |
Line 584: |
|
| |
|
| : mapping generators: ~2, ~6/5 | | : mapping generators: ~2, ~6/5 |
|
| |
| {{Multival|legend=1| 32 33 92 -22 56 121 }}
| |
|
| |
|
| [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 315.557 | | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 315.557 |
Line 1,195: |
Line 666: |
|
| |
|
| {{Mapping|legend=1| 4 0 -11 48 | 0 5 16 -29 }} | | {{Mapping|legend=1| 4 0 -11 48 | 0 5 16 -29 }} |
|
| |
| {{Multival|legend=1| 20 64 -116 55 -240 -449 }}
| |
|
| |
|
| [[Optimal tuning]] ([[POTE]]): ~65536/55125 = 1\4, ~5103/4096 = 380.388 | | [[Optimal tuning]] ([[POTE]]): ~65536/55125 = 1\4, ~5103/4096 = 380.388 |
Line 1,242: |
Line 711: |
|
| |
|
| : mapping generators: ~15/14, ~6/5 | | : mapping generators: ~15/14, ~6/5 |
|
| |
| {{Multival|legend=1| 50 60 110 -21 34 87 }}
| |
|
| |
|
| [[Optimal tuning]] ([[POTE]]): ~15/14 = 1\10, ~6/5 = 315.577 | | [[Optimal tuning]] ([[POTE]]): ~15/14 = 1\10, ~6/5 = 315.577 |
Line 1,251: |
Line 718: |
| [[Badness]]: 0.080637 | | [[Badness]]: 0.080637 |
|
| |
|
| Badness (Dirichlet): 2.041 | | Badness (Sintel): 2.041 |
|
| |
|
| === 11-limit === | | === 11-limit === |
Line 1,266: |
Line 733: |
| Badness: 0.024329 | | Badness: 0.024329 |
|
| |
|
| Badness (Dirichlet): 0.804 | | Badness (Sintel): 0.804 |
|
| |
|
| === 13-limit === | | === 13-limit === |
Line 1,281: |
Line 748: |
| Badness: 0.016810 | | Badness: 0.016810 |
|
| |
|
| Badness (Dirichlet): 0.695 | | Badness (Sintel): 0.695 |
|
| |
|
| === no-17's 19-limit === | | === no-17's 19-limit === |
Line 1,294: |
Line 761: |
| {{Optimal ET sequence|legend=1| 80, 190, 270, 730, 1000 }} | | {{Optimal ET sequence|legend=1| 80, 190, 270, 730, 1000 }} |
|
| |
|
| Badness (Dirichlet): 0.556 | | Badness (Sintel): 0.556 |
|
| |
|
| == Keenanose == | | == Keenanose == |
Line 1,396: |
Line 863: |
|
| |
|
| == Countritonic == | | == Countritonic == |
| : ''For the 5-limit version of this temperament, see [[Schismic-Mercator equivalence continuum #Countritonic]] and [[High badness temperaments #Countritonic]] | | : ''For the 5-limit version of this temperament, see [[Schismic–Mercator equivalence continuum #Countritonic]].'' |
|
| |
|
| Countritonic (''co-un-tritonic'') can be described as the 53 & 422 temperament, generated by an octave-reduced 91st harmonic or subharmonic in the 13-limit. | | Countritonic (''co-un-tritonic'') can be described as the 53 & 422 temperament, generated by an octave-reduced 91st harmonic or subharmonic in the 13-limit. |
Line 1,450: |
Line 917: |
|
| |
|
| : mapping generators: ~2278125/1605632, ~448/405 | | : mapping generators: ~2278125/1605632, ~448/405 |
|
| |
| {{Multival|legend=1| 26 16 118 -35 114 229 }}
| |
|
| |
|
| [[Optimal tuning]] ([[POTE]]): ~2278125/1605632 = 1\2, ~448/405 = 176.805 | | [[Optimal tuning]] ([[POTE]]): ~2278125/1605632 = 1\2, ~448/405 = 176.805 |
Line 1,542: |
Line 1,007: |
|
| |
|
| : mapping generators: ~83349/81920, ~3 | | : mapping generators: ~83349/81920, ~3 |
|
| |
| {{Multival|legend=1| 46 92 -46 39 -202 -365 }}
| |
|
| |
|
| [[Optimal tuning]] ([[POTE]]): ~83349/81920 = 1\46, ~3/2 = 701.6074 | | [[Optimal tuning]] ([[POTE]]): ~83349/81920 = 1\46, ~3/2 = 701.6074 |
Line 1,591: |
Line 1,054: |
|
| |
|
| == Oviminor == | | == Oviminor == |
| {{See also| Syntonic-kleismic equivalence continuum }} | | {{See also| Syntonic–kleismic equivalence continuum }} |
|
| |
|
| Oviminor is named after the facts that it takes 184 minor thirds of 6/5 to reach 4/3, the Roman consul was Eggius in the year 184 AD, and the Latin word for egg is ovum, and with prefix ovi-. It sets a new record of complexity for a chain of nineteen 6/5's past [[egads]], though it is less accurate. | | Oviminor is named after the facts that it takes 184 minor thirds of 6/5 to reach 4/3, the Roman consul was Eggius in the year 184 AD, and the Latin word for egg is ovum, and with prefix ovi-. It sets a new record of complexity for a chain of nineteen 6/5's past [[egads]], though it is less accurate. |
Line 1,610: |
Line 1,073: |
|
| |
|
| == Octoid == | | == Octoid == |
| {{ See also | 8th-octave temperaments }}
| | ''For the 5-limit temperament, see [[8th-octave temperaments#Octoid (5-limit)]].'' |
|
| |
|
| The octoid temperament has a period of 1/8 octave and tempers out 4375/4374 ([[4375/4374|ragisma]]) and 16875/16807 ([[16875/16807|mirkwai]]). In the 11-limit, it tempers out 540/539, 1375/1372, and 6250/6237. In this temperament, one period gives both 12/11 and 49/45, two gives 25/21, three gives 35/27, and four gives both 99/70 and 140/99. | | The octoid temperament has a period of 1/8 octave and tempers out 4375/4374 ([[4375/4374|ragisma]]) and 16875/16807 ([[16875/16807|mirkwai]]). In the 11-limit, it tempers out 540/539, 1375/1372, and 6250/6237. In this temperament, one period gives both 12/11 and 49/45, two gives 25/21, three gives 35/27, and four gives both 99/70 and 140/99. |
Line 1,619: |
Line 1,082: |
|
| |
|
| {{Mapping|legend=1| 8 1 3 3 | 0 3 4 5 }} | | {{Mapping|legend=1| 8 1 3 3 | 0 3 4 5 }} |
|
| |
| {{Multival|legend=1| 24 32 40 -5 -4 3 }}
| |
|
| |
|
| : mapping generators: ~49/45, ~7/5 | | : mapping generators: ~49/45, ~7/5 |
Line 1,802: |
Line 1,263: |
| {{Main| Parakleismic }} | | {{Main| Parakleismic }} |
|
| |
|
| In the 5-limit, parakleismic is an undoubted microtemperament, tempering out the parakleisma, {{monzo| 8 14 -13 }}, with the [[118edo]] tuning giving errors well under a cent. It has a generator a very slightly (half a cent or less) flat 6/5, 13 of which give 32/3, and 14 give 64/5. However while 118 no longer has better than a cent of accuracy in the 7- or 11-limit, it is a decent temperament there nonetheless, and this allows an extension, with the 7-limit wedgie being {{multival| 13 14 35 -8 19 42 }} and adding 3136/3125 and 4375/4374, and the 11-limit wedgie {{multival| 13 14 35 -36 -8 19 -102 42 -132 -222 }} adding 385/384. For the 7-limit [[99edo]] may be preferred, but in the 11-limit it is best to stick with 118. | | In the 5-limit, parakleismic is an undoubted microtemperament, tempering out the parakleisma, {{monzo| 8 14 -13 }}, with the [[118edo]] tuning giving errors well under a cent. It has a generator a very slightly (half a cent or less) flat 6/5, 13 of which give 32/3, and 14 give 64/5. However while 118 no longer has better than a cent of accuracy in the 7- or 11-limit, it is a decent temperament there nonetheless, and this allows an extension adding 3136/3125 and 4375/4374, and 11-limit adding 385/384. For the 7-limit [[99edo]] may be preferred, but in the 11-limit it is best to stick with 118. |
|
| |
|
| [[Subgroup]]: 2.3.5 | | [[Subgroup]]: 2.3.5 |
Line 1,825: |
Line 1,286: |
| {{Mapping|legend=1| 1 5 6 12 | 0 -13 -14 -35 }} | | {{Mapping|legend=1| 1 5 6 12 | 0 -13 -14 -35 }} |
|
| |
|
| {{Multival|legend=1| 13 14 35 -8 19 42 }}
| |
|
| |
|
| [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 315.181 | | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 315.181 |
Line 1,996: |
Line 1,456: |
|
| |
|
| : mapping generators: ~2, ~5/3 | | : mapping generators: ~2, ~5/3 |
|
| |
| {{Multival|legend=1| 25 24 79 -20 55 116 }}
| |
|
| |
|
| [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 316.060 | | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~6/5 = 316.060 |
Line 2,063: |
Line 1,521: |
|
| |
|
| {{Mapping|legend=1| 1 2 3 3 | 0 -30 -49 -14 }} | | {{Mapping|legend=1| 1 2 3 3 | 0 -30 -49 -14 }} |
|
| |
| {{Multival|legend=1| 30 49 14 8 -62 -105 }}
| |
|
| |
|
| [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~1728/1715 = 16.613 | | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~1728/1715 = 16.613 |
Line 2,132: |
Line 1,588: |
|
| |
|
| {{Mapping|legend=1| 1 2 3 3 | 0 -19 -31 -9 }} | | {{Mapping|legend=1| 1 2 3 3 | 0 -19 -31 -9 }} |
|
| |
| {{Multival|legend=1| 19 31 9 5 -39 -66 }}
| |
|
| |
|
| [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~49/48 = 26.287 | | [[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~49/48 = 26.287 |
Line 2,254: |
Line 1,708: |
|
| |
|
| [[Category:Temperament collections]] | | [[Category:Temperament collections]] |
| | [[Category:Pages with mostly numerical content]] |
| [[Category:Ragismic microtemperaments| ]] <!-- main article --> | | [[Category:Ragismic microtemperaments| ]] <!-- main article --> |
| [[Category:Ragismic| ]] <!-- key article --> | | [[Category:Ragismic| ]] <!-- key article --> |