Würschmidt family: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 211898008 - Original comment: **
 
(102 intermediate revisions by 20 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Technical data page}}
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
The [[5-limit]] parent comma for the '''würschmidt family''' (würschmidt is sometimes spelled '''wuerschmidt''') is [[393216/390625]], known as Würschmidt's comma, and named after José Würschmidt. The [[generator]] is a classic major third, and to get to the interval class of fifths requires eight of these. In fact, (5/4)<sup>8</sup> × 393216/390625 = 6.
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-03-18 18:26:22 UTC</tt>.<br>
: The original revision id was <tt>211898008</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]]


=Wuerschmit=
Similar to [[meantone]], würschmidt implies that 3/2 will be tempered flat and/or 5/4 will be tempered sharp, and therefore 6/5 will be tempered flat. Unlike meantone, it is far more accurate. Combining würschmidt with meantone gives [[31edo]] as the first practical tuning with a generator of 10\31, but increasingly good 5-limit edo generators are [[34edo|11\34]] and especially [[65edo|21\65]], which notably is the point where it is combined with [[schismic]]/[[nestoria]] and [[gravity]]/[[larry]]. Other edo tunings include [[96edo]], [[99edo]] and [[164edo]].  
The 5-limit parent comma for the wuerschmidt family is 393216/390625, known as Wuerschmidt's comma. Its monzo is |17 1 -8&gt;, and flipping that yields &lt;&lt;8 1 -17|| for the wedgie. This tells us the generator is a major third, and that to get to the interval class of fifths will require eight of these. In fact, (5/4)^8 * 393216/390625 = 6. 14/53 or 21/65 are excellent generators, though 9/34 also makes sense and using 19edo is possible. Other tunings include 72edo, 87edo, 140edo and 164edo. Another tuning solution is to sharpen the major third by 1/8th of a Wuerschmift comma, which is to say by 1.43 cents, and thereby achieve pure fifths; this is the minimax tuning. Wuerschmidt is well-supplied with MOS scales, with 10, 13, 16, 19, 22, 25, 28 31 and 34 note MOS all possibilities.


[[POTE tuning|POTE generator]]: 387.799
Another tuning solution is to sharpen the major third by 1/8 of a Würschmidt comma, which is to say by 1.43 cents, and thereby achieve pure fifths; this is the [[minimax tuning]].  


Map: [&lt;1 7 3|, &lt;0 -8 -1|]
[[Mos scale]]s may not be the best approach for würschmidt since they are even more extreme than those of [[magic]]. [[Proper]] scales do not appear until 28, 31 or even 34 notes, depending on the specific tuning.


EDOs: 31, 34, 65, 164
== Würschmidt ==
{{Main| Würschmidt }}


==Seven limit children==
[[Subgroup]]: 2.3.5
The second comma of the [[Normal lists|normal comma list]] defines which 7-limit family member we are looking at. Wurschmidt adds |12 3 -6 -1&gt;, worschmidt adds 65625/65536 = |-16 1 5 1&gt;, whirrschmidt adds 4375/4374 = |-1 -7 4 1&gt; and hemiwuerschmidt adds 6144/6125 = |11 1 -3 -2&gt;.


=Wurschmidt=
[[Comma list]]: 393216/390625
Wurschmidt, aside from the commas listed above, also tempers out 225/224. [[31edo]] or [[127edo]] can be used as tunings. Wurschmidt has &lt;&lt;8 1 18 -17 6 39|| for a wedgie. It extends naturally to an 11-limit version &lt;&lt;8 1 18 20 ,,,|| which also tempers out 99/98, 176/175 and 243/242. [[127edo]] is again an excellent tuning for 11-limit wurschmidt, as well as for minerva, the 11-limit rank three temperament tempering out 99/98 and 176/175.


Commas: 225/224, 8748/8575
{{Mapping|legend=1| 1 -1 2 | 0 8 1 }}


[[POTE tuning|POTE generator]]: 387.383
: mapping generators: ~2, ~5/4


Map: [&lt;1 7 3 15|, &lt;0 -8 -1 -18|]
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1\1, ~5/4 = 387.734
* [[POTE]]: ~2 = 1\1, ~5/4 = 387.799


EDOs: 31, 127
{{Optimal ET sequence|legend=1| 3, …, 28, 31, 34, 65, 99, 164, 721c, 885c, 1049cc, 1213ccc }}


=Worschmidt=
[[Badness]] (Smith): 0.040603
Worschmidt tempers out 126/125 rather than 225/224, and can use [[31edo]], [[34edo]], or [[127edo]] as a tuning. If 127 is used, note that the val is &lt;127 201 295 356| and not &lt;127 201 295 357| as with wurschmidt. The wedgie now is &lt;&lt;8 1 -13 -17 -43 -33|. In practice, of course, both mappings could be used ambiguously, which might be an interesting avenue for someone to explore.  


Commas: 126/125, 33075/32768
=== Overview to extensions ===
==== 7-limit extensions ====
The 7-limit extensions can be obtained by adding another comma. Septimal würschmidt adds [[225/224]], worschmidt adds [[126/125]], whirrschmidt adds [[4375/4374]]. These all use the same generator as 5-limit würschmidt.


[[POTE tuning|POTE generator]]: 387.392
Hemiwürschmidt adds [[3136/3125]] and splits the generator in two. This temperament is the best extension available for würschmidt despite its complexity. The details can be found in [[Hemimean clan #Hemiwürschmidt|Hemimean clan]].  


Map: [&lt;1 7 3 -6|, &lt;0 -8 -1 13|]
==== Subgroup extensions ====
Given that würschmidt naturally produces a neutral third at the interval 4 generators up, an obvious extension to prime 11 exists by equating this to [[11/9]], that is by tempering out [[5632/5625]] in addition to [[243/242]]; furthermore, like practically any 5-limit temperament with this accuracy level of [[3/2]] available, extensions to prime 19 exist by tempering out either [[513/512]] or [[1216/1215]] (which meet at 65edo and [[nestoria]]).


EDOs: 31, 127
However, as discussed in the main article, the "free" higher prime for würschmidt outside the 5-limit is in fact 23, via tempering out S24 = [[576/575]] and S46<sup>2</sup> × S47 = [[12167/12150]]. Therefore, the below discusses the 2.3.5.23 and 2.3.5.11.23 extensions.


=Whirrschmidt=
=== 2.3.5.23 subgroup ===
[[99edo]] is such a good tuning for whirrschimdt that we hardly need look any farther. Unfortunately, the temperament while accurate is complex, with &lt;&lt;8 1 52 -17 60 118|| for a wedgie.
Subgroup: 2.3.5.23


Commas: 4375/4374, 393216/390625
Comma list: 576/575, 12167/12150


[[POTE tuning|POTE generator]]: 387.881
Sval mapping: {{mapping| 1 -1 2 0 | 0 8 1 14 }}


Map: [&lt;1 7 3 38|, &lt;0 -8 -1 -52|]
Optimal tunings:  
* CTE: ~2 = 1\1, ~5/4 = 387.734
* POTE: ~2 = 1\1, ~5/4 = 387.805


EDOs: 31, 34, 99
Optimal ET sequence: {{optimal ET sequence| 3, …, 28i, 31, 34, 65, 99, 164 }}


=Hemiwuerschmift=
Badness (Smith): 0.00530
Hemiwuerschmidt, which splits the major third in two and uses that for a generator, is the most important of these temperaments even with the rather large complexity for the fifth. It tempers out 3136/3125, 6144/6125 and 2401/2400. [[68edo]], [[99edo]] and [[130edo]] can all be used as tunings, but 130 is not only the most accurate, it shows how hemiwuerschmidt extends to a higher limit temperament, &lt;&lt;16 2 5 40 -39 -49 -48 28...


Commas: 2401/2400, 3136/3125
==== 2.3.5.11.23 subgroup ====
Subgroup: 2.3.5.11.23


[[POTE tuning|POTE generator]]: 193.898
Comma list: 243/242, 276/275, 529/528


Map: [&lt;1 15 4 7|, &lt;0 -16 -2 -5|]
Sval mapping: {{mapping| 1 -1 2 -3 0 | 0 8 1 20 14 }}


EDOs: 31, 99, 229</pre></div>
Optimal tuning:  
<h4>Original HTML content:</h4>
* CTE: ~2 = 1\1, ~5/4 = 387.652
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Würschmidt family&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:12:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:12 --&gt;&lt;!-- ws:start:WikiTextTocRule:13: --&gt;&lt;a href="#Wuerschmit"&gt;Wuerschmit&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:13 --&gt;&lt;!-- ws:start:WikiTextTocRule:14: --&gt;&lt;!-- ws:end:WikiTextTocRule:14 --&gt;&lt;!-- ws:start:WikiTextTocRule:15: --&gt; | &lt;a href="#Wurschmidt"&gt;Wurschmidt&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:15 --&gt;&lt;!-- ws:start:WikiTextTocRule:16: --&gt; | &lt;a href="#Worschmidt"&gt;Worschmidt&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:16 --&gt;&lt;!-- ws:start:WikiTextTocRule:17: --&gt; | &lt;a href="#Whirrschmidt"&gt;Whirrschmidt&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:17 --&gt;&lt;!-- ws:start:WikiTextTocRule:18: --&gt; | &lt;a href="#Hemiwuerschmift"&gt;Hemiwuerschmift&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:18 --&gt;&lt;!-- ws:start:WikiTextTocRule:19: --&gt;
* POTE: ~2 = 1\1, ~5/4 = 387.690
&lt;!-- ws:end:WikiTextTocRule:19 --&gt;&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Wuerschmit"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Wuerschmit&lt;/h1&gt;
Optimal ET sequence: {{optimal ET sequence| 31, 34, 65 }}
The 5-limit parent comma for the wuerschmidt family is 393216/390625, known as Wuerschmidt's comma. Its monzo is |17 1 -8&amp;gt;, and flipping that yields &amp;lt;&amp;lt;8 1 -17|| for the wedgie. This tells us the generator is a major third, and that to get to the interval class of fifths will require eight of these. In fact, (5/4)^8 * 393216/390625 = 6. 14/53 or 21/65 are excellent generators, though 9/34 also makes sense and using 19edo is possible. Other tunings include 72edo, 87edo, 140edo and 164edo. Another tuning solution is to sharpen the major third by 1/8th of a Wuerschmift comma, which is to say by 1.43 cents, and thereby achieve pure fifths; this is the minimax tuning. Wuerschmidt is well-supplied with MOS scales, with 10, 13, 16, 19, 22, 25, 28 31 and 34 note MOS all possibilities.&lt;br /&gt;
 
&lt;br /&gt;
Badness (Smith): 0.00660
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: 387.799&lt;br /&gt;
 
&lt;br /&gt;
== Septimal würschmidt ==
Map: [&amp;lt;1 7 3|, &amp;lt;0 -8 -1|]&lt;br /&gt;
Würschmidt, aside from the commas listed above, also tempers out [[225/224]]. [[31edo]] or [[127edo]] can be used as tunings. It extends naturally to an 11-limit version which also tempers out [[99/98]], [[176/175]] and 243/242. 127edo is again an excellent tuning for 11-limit würschmidt, as well as for [[minerva]], the 11-limit rank-3 temperament tempering out 99/98 and 176/175.
&lt;br /&gt;
 
EDOs: 31, 34, 65, 164&lt;br /&gt;
2-würschmidt, the temperament with all the same commas as würschmidt but a generator of twice the size, is equivalent to [[skwares]] as a 2.3.7.11 subgroup temperament.
&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="Wuerschmit-Seven limit children"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Seven limit children&lt;/h2&gt;
The S-expression-based comma list of the 11-limit würschmidt discussed here is {[[176/175|S8/S10]], [[243/242|S9/S11]], [[225/224|S15]]}. Tempering out [[81/80|S9]] or [[121/120|S11]] results in [[31edo]], and in complementary fashion, tempering out [[64/63|S8]] or [[100/99|S10]] results in [[34edo]], but specifically, the 34d [[val]] where we accept 17edo's mapping of ~7. Their val sum, 31 + 34d = 65d, thus observes all of these [[square superparticular]]s by equating them as S8 = S9 = S10 = S11, hence its S-expression-based comma list is {{nowrap| {[[5120/5103|S8/S9]], [[8019/8000|S9/S10]], [[4000/3993|S10/S11]]} }}, which may be expressed in shortened form as {{nowrap| {S8/9/10/11} }}*. As a result, [[65edo]] is especially structurally natural for this temperament, though high damage on the 7 no matter what mapping you use (with the sharp 7 being used for this temperament); even so, it's fairly close to the optimal tuning already if you are fine with a significantly flat ~9/7, which has the advantage of ~14/11 more in tune. However, as 31edo is relatively in-tune already, 65d + 31 = [[96edo]] is also a reasonable choice, as it has the advantage of being [[patent val]] in the 11-limit, though it uses a different (more accurate) mapping for 13.
The second comma of the &lt;a class="wiki_link" href="/Normal%20lists"&gt;normal comma list&lt;/a&gt; defines which 7-limit family member we are looking at. Wurschmidt adds |12 3 -6 -1&amp;gt;, worschmidt adds 65625/65536 = |-16 1 5 1&amp;gt;, whirrschmidt adds 4375/4374 = |-1 -7 4 1&amp;gt; and hemiwuerschmidt adds 6144/6125 = |11 1 -3 -2&amp;gt;.&lt;br /&gt;
 
&lt;br /&gt;
(<nowiki>*</nowiki> The advantage of this form is we can easily see that all of the [[semiparticular]] commas expected are implied as well as any other commas expressible as the difference between two square superparticular commas by reading them off as ratios like 8/10 (S8/S10) and 9/11 (S9/S11).)
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Wurschmidt"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Wurschmidt&lt;/h1&gt;
 
Wurschmidt, aside from the commas listed above, also tempers out 225/224. &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt; or &lt;a class="wiki_link" href="/127edo"&gt;127edo&lt;/a&gt; can be used as tunings. Wurschmidt has &amp;lt;&amp;lt;8 1 18 -17 6 39|| for a wedgie. It extends naturally to an 11-limit version &amp;lt;&amp;lt;8 1 18 20 ,,,|| which also tempers out 99/98, 176/175 and 243/242. &lt;a class="wiki_link" href="/127edo"&gt;127edo&lt;/a&gt; is again an excellent tuning for 11-limit wurschmidt, as well as for minerva, the 11-limit rank three temperament tempering out 99/98 and 176/175.&lt;br /&gt;
[[Subgroup]]: 2.3.5.7
&lt;br /&gt;
 
Commas: 225/224, 8748/8575&lt;br /&gt;
[[Comma list]]: 225/224, 8748/8575
&lt;br /&gt;
 
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: 387.383&lt;br /&gt;
{{Mapping|legend=1| 1 -1 2 -3 | 0 8 1 18 }}
&lt;br /&gt;
 
Map: [&amp;lt;1 7 3 15|, &amp;lt;0 -8 -1 -18|]&lt;br /&gt;
[[Optimal tuning]]s:  
&lt;br /&gt;
* [[CTE]]: ~2 = 1\1, ~5/4 = 387.379
EDOs: 31, 127&lt;br /&gt;
* [[POTE]]: ~2 = 1\1, ~5/4 = 387.383
&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Worschmidt"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Worschmidt&lt;/h1&gt;
{{Optimal ET sequence|legend=1| 31, 96, 127 }}
Worschmidt tempers out 126/125 rather than 225/224, and can use &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt;, &lt;a class="wiki_link" href="/34edo"&gt;34edo&lt;/a&gt;, or &lt;a class="wiki_link" href="/127edo"&gt;127edo&lt;/a&gt; as a tuning. If 127 is used, note that the val is &amp;lt;127 201 295 356| and not &amp;lt;127 201 295 357| as with wurschmidt. The wedgie now is &amp;lt;&amp;lt;8 1 -13 -17 -43 -33|. In practice, of course, both mappings could be used ambiguously, which might be an interesting avenue for someone to explore. &lt;br /&gt;
 
&lt;br /&gt;
[[Badness]] (Smith): 0.050776
Commas: 126/125, 33075/32768&lt;br /&gt;
 
&lt;br /&gt;
=== 11-limit ===
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: 387.392&lt;br /&gt;
Subgroup: 2.3.5.7.11
&lt;br /&gt;
 
Map: [&amp;lt;1 7 3 -6|, &amp;lt;0 -8 -1 13|]&lt;br /&gt;
Comma list: 99/98, 176/175, 243/242
&lt;br /&gt;
 
EDOs: 31, 127&lt;br /&gt;
Mapping: {{mapping| 1 -1 2 -3 -3 | 0 8 1 18 20 }}
&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:8:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc4"&gt;&lt;a name="Whirrschmidt"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:8 --&gt;Whirrschmidt&lt;/h1&gt;
Optimal tunings:
&lt;a class="wiki_link" href="/99edo"&gt;99edo&lt;/a&gt; is such a good tuning for whirrschimdt that we hardly need look any farther. Unfortunately, the temperament while accurate is complex, with &amp;lt;&amp;lt;8 1 52 -17 60 118|| for a wedgie.&lt;br /&gt;
* CTE: ~2 = 1\1, ~5/4 = 387.441
&lt;br /&gt;
* POTE: ~2 = 1\1, ~5/4 = 387.447
Commas: 4375/4374, 393216/390625&lt;br /&gt;
 
&lt;br /&gt;
Optimal ET sequence: {{optimal ET sequence| 31, 65d, 96, 127 }}
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: 387.881&lt;br /&gt;
 
&lt;br /&gt;
Badness (Smith): 0.024413
Map: [&amp;lt;1 7 3 38|, &amp;lt;0 -8 -1 -52|]&lt;br /&gt;
 
&lt;br /&gt;
==== 13-limit ====
EDOs: 31, 34, 99&lt;br /&gt;
Subgroup: 2.3.5.7.11.13
&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:10:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc5"&gt;&lt;a name="Hemiwuerschmift"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:10 --&gt;Hemiwuerschmift&lt;/h1&gt;
Comma list: 99/98, 144/143, 176/175, 275/273
Hemiwuerschmidt, which splits the major third in two and uses that for a generator, is the most important of these temperaments even with the rather large complexity for the fifth. It tempers out 3136/3125, 6144/6125 and 2401/2400. &lt;a class="wiki_link" href="/68edo"&gt;68edo&lt;/a&gt;, &lt;a class="wiki_link" href="/99edo"&gt;99edo&lt;/a&gt; and &lt;a class="wiki_link" href="/130edo"&gt;130edo&lt;/a&gt; can all be used as tunings, but 130 is not only the most accurate, it shows how hemiwuerschmidt extends to a higher limit temperament, &amp;lt;&amp;lt;16 2 5 40 -39 -49 -48 28...&lt;br /&gt;
 
&lt;br /&gt;
Mapping: {{mapping| 1 -1 2 -3 -3 5 | 0 8 1 18 20 -4 }}
Commas: 2401/2400, 3136/3125&lt;br /&gt;
 
&lt;br /&gt;
Optimal tunings:
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: 193.898&lt;br /&gt;
* CTE: ~2 = 1\1, ~5/4 = 387.469
&lt;br /&gt;
* POTE: ~2 = 1\1, ~5/4 = 387.626
Map: [&amp;lt;1 15 4 7|, &amp;lt;0 -16 -2 -5|]&lt;br /&gt;
 
&lt;br /&gt;
Optimal ET sequence: {{optimal ET sequence| 31, 65d }}
EDOs: 31, 99, 229&lt;/body&gt;&lt;/html&gt;</pre></div>
 
Badness (Smith): 0.023593
 
==== Worseschmidt ====
Subgroup: 2.3.5.7.11.13
 
Commas: 66/65, 99/98, 105/104, 243/242
 
Mapping: {{mapping| 1 -1 2 -3 -3 -5 | 0 8 1 18 20 27 }}
 
Optimal tunings:
* CTE: ~2 = 1\1, ~5/4 = 387.179
* POTE: ~2 = 1\1, ~5/4 = 387.099
 
Optimal ET sequence: {{optimal ET sequence| 3def, 28def, 31 }}
 
Badness (Smith): 0.034382
 
== Worschmidt ==
Worschmidt tempers out 126/125 rather than 225/224, and can use [[31edo]], [[34edo]], or [[127edo]] as a tuning. If 127 is used, note that the val is {{val| 127 201 295 '''356''' }} (127d) and not {{val| 127 201 295 '''357''' }} as with würschmidt. In practice, of course, both mappings could be used ambiguously, which might be an interesting avenue for someone to explore.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 126/125, 33075/32768
 
{{Mapping|legend=1| 1 -1 2 7 | 0 8 1 -13 }}
 
[[Optimal tuning]]s:
* [[CTE]]: ~2 = 1\1, ~5/4 = 387.406
* [[POTE]]: ~2 = 1\1, ~5/4 = 387.392
 
{{Optimal ET sequence|legend=1| 31, 96d, 127d }}
 
[[Badness]] (Smith): 0.064614
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 126/125, 243/242, 385/384
 
Mapping: {{mapping| 1 -1 2 7 -3 | 0 8 1 -13 20 }}
 
Optimal tunings:
* CTE: ~2 = 1\1, ~5/4 = 387.472
* POTE: ~2 = 1\1, ~5/4 = 387.407
 
Optimal ET sequence: {{optimal ET sequence| 31, 65, 96d, 127d }}
 
Badness (Smith): 0.033436
 
== Whirrschmidt ==
[[99edo]] is such a good tuning for whirrschimdt that we hardly need look any farther. Unfortunately, the temperament while accurate is complex, with 7 mapped to the 52nd generator step.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 4375/4374, 393216/390625
 
{{Mapping|legend=1| 1 -1 2 -14 | 0 8 1 52 }}
 
[[Optimal tuning]]s:  
* [[CTE]]: ~2 = 1\1, ~5/4 = 387.853
* [[POTE]]: ~2 = 1\1, ~5/4 = 387.881
 
{{Optimal ET sequence|legend=1| 34d, 65, 99 }}
 
[[Badness]] (Smith): 0.086334
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 243/242, 896/891, 4375/4356
 
Mapping: {{mapping| 1 -1 2 -14 -3 | 0 8 1 52 20 }}
 
Optimal tunings:
* CTE: ~2 = 1\1, ~5/4 = 387.829
* POTE: ~2 = 1\1, ~5/4 = 387.882
 
Optimal ET sequence: {{optimal ET sequence| 34d, 65, 99e }}
 
Badness (Smith): 0.058325
 
[[Category:Temperament families]]
[[Category:Pages with mostly numerical content]]
[[Category:Würschmidt family| ]] <!-- main article -->
[[Category:Würschmidt| ]] <!-- key article -->
[[Category:Rank 2]]