|
|
(82 intermediate revisions by 16 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Technical data page}} |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | The [[5-limit]] parent comma for the '''würschmidt family''' (würschmidt is sometimes spelled '''wuerschmidt''') is [[393216/390625]], known as Würschmidt's comma, and named after José Würschmidt. The [[generator]] is a classic major third, and to get to the interval class of fifths requires eight of these. In fact, (5/4)<sup>8</sup> × 393216/390625 = 6. |
| : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-12-16 22:53:19 UTC</tt>.<br>
| |
| : The original revision id was <tt>287008370</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]]
| |
| =Wuerschmidt=
| |
| The [[5-limit]] parent comma for the wuerschmidt family is 393216/390625, known as Wuerschmidt's comma, and named after José Würschmidt, Its [[monzo]] is |17 1 -8>, and flipping that yields <<8 1 17|| for the wedgie. This tells us the [[generator]] is a major third, and that to get to the interval class of fifths will require eight of these. In fact, (5/4)^8 * 393216/390625 = 6. 10\31, 11\34 or 21\65 are possible generators and other tunings include 96edo, 99edo and 164edo. Another tuning solution is to sharpen the major third by 1/8th of a Wuerschmift comma, which is to say by 1.43 cents, and thereby achieve pure fifths; this is the [[minimax tuning]]. Wuerschmidt is well-supplied with MOS scales, with 10, 13, 16, 19, 22, 25, 28, 31 and 34 note [[MOS]] all possibilities. | |
|
| |
|
| [[POTE tuning|POTE generator]]: 387.799 | | Similar to [[meantone]], würschmidt implies that 3/2 will be tempered flat and/or 5/4 will be tempered sharp, and therefore 6/5 will be tempered flat. Unlike meantone, it is far more accurate. Combining würschmidt with meantone gives [[31edo]] as the first practical tuning with a generator of 10\31, but increasingly good 5-limit edo generators are [[34edo|11\34]] and especially [[65edo|21\65]], which notably is the point where it is combined with [[schismic]]/[[nestoria]] and [[gravity]]/[[larry]]. Other edo tunings include [[96edo]], [[99edo]] and [[164edo]]. |
|
| |
|
| Map: [<1 7 3|, <0 -8 -1|]
| | Another tuning solution is to sharpen the major third by 1/8 of a Würschmidt comma, which is to say by 1.43 cents, and thereby achieve pure fifths; this is the [[minimax tuning]]. |
|
| |
|
| EDOs: [[31edo|31]], [[34edo|34]], [[65edo|65]], [[99edo|99]], [[164edo|164]], [[721edo|721c]], [[885edo|885c]]
| | [[Mos scale]]s may not be the best approach for würschmidt since they are even more extreme than those of [[magic]]. [[Proper]] scales do not appear until 28, 31 or even 34 notes, depending on the specific tuning. |
|
| |
|
| ==Seven limit children== | | == Würschmidt == |
| The second comma of the [[Normal lists|normal comma list]] defines which 7-limit family member we are looking at. Wurschmidt adds |12 3 -6 -1>, worschmidt adds 65625/65536 = |-16 1 5 1>, whirrschmidt adds 4375/4374 = |-1 -7 4 1> and hemiwuerschmidt adds 6144/6125 = |11 1 -3 -2>.
| | {{Main| Würschmidt }} |
|
| |
|
| =Wurschmidt=
| | [[Subgroup]]: 2.3.5 |
| Wurschmidt, aside from the commas listed above, also tempers out 225/224. [[31edo]] or [[127edo]] can be used as tunings. Wurschmidt has <<8 1 18 -17 6 39|| for a wedgie. It extends naturally to an 11-limit version <<8 1 18 20 ,,,|| which also tempers out 99/98, 176/175 and 243/242. [[127edo]] is again an excellent tuning for 11-limit wurschmidt, as well as for minerva, the 11-limit rank three temperament tempering out 99/98 and 176/175.
| |
|
| |
|
| Commas: 225/224, 8748/8575
| | [[Comma list]]: 393216/390625 |
|
| |
|
| [[POTE tuning|POTE generator]]: 387.383
| | {{Mapping|legend=1| 1 -1 2 | 0 8 1 }} |
|
| |
|
| Map: [<1 7 3 15|, <0 -8 -1 -18|]
| | : mapping generators: ~2, ~5/4 |
| EDOs: [[31edo|31]], [[96edo|96]], [[127edo|127]], [[285edo|28bd]], [[412edo|412bd]]
| |
| Badness: 0.0508
| |
|
| |
|
| ==11-limit== | | [[Optimal tuning]]s: |
| Commas: 99/98, 176/175, 243/242
| | * [[CTE]]: ~2 = 1\1, ~5/4 = 387.734 |
| | * [[POTE]]: ~2 = 1\1, ~5/4 = 387.799 |
|
| |
|
| POTE generator: ~5/4 = 387.447
| | {{Optimal ET sequence|legend=1| 3, …, 28, 31, 34, 65, 99, 164, 721c, 885c, 1049cc, 1213ccc }} |
|
| |
|
| Map: [<1 7 3 15 17|, <0 -8 -1 -18 -20|]
| | [[Badness]] (Smith): 0.040603 |
| EDOs: 31, 65d, 96, 127, 223d
| |
| Badness: 0.0244
| |
|
| |
|
| =Worschmidt= | | === Overview to extensions === |
| Worschmidt tempers out 126/125 rather than 225/224, and can use [[31edo]], [[34edo]], or [[127edo]] as a tuning. If 127 is used, note that the val is <127 201 295 356| and not <127 201 295 357| as with wurschmidt. The wedgie now is <<8 1 -13 -17 -43 -33|. In practice, of course, both mappings could be used ambiguously, which might be an interesting avenue for someone to explore.
| | ==== 7-limit extensions ==== |
| | The 7-limit extensions can be obtained by adding another comma. Septimal würschmidt adds [[225/224]], worschmidt adds [[126/125]], whirrschmidt adds [[4375/4374]]. These all use the same generator as 5-limit würschmidt. |
|
| |
|
| Commas: 126/125, 33075/32768
| | Hemiwürschmidt adds [[3136/3125]] and splits the generator in two. This temperament is the best extension available for würschmidt despite its complexity. The details can be found in [[Hemimean clan #Hemiwürschmidt|Hemimean clan]]. |
|
| |
|
| [[POTE tuning|POTE generator]]: 387.392 | | ==== Subgroup extensions ==== |
| | Given that würschmidt naturally produces a neutral third at the interval 4 generators up, an obvious extension to prime 11 exists by equating this to [[11/9]], that is by tempering out [[5632/5625]] in addition to [[243/242]]; furthermore, like practically any 5-limit temperament with this accuracy level of [[3/2]] available, extensions to prime 19 exist by tempering out either [[513/512]] or [[1216/1215]] (which meet at 65edo and [[nestoria]]). |
|
| |
|
| Map: [<1 7 3 -6|, <0 -8 -1 13|]
| | However, as discussed in the main article, the "free" higher prime for würschmidt outside the 5-limit is in fact 23, via tempering out S24 = [[576/575]] and S46<sup>2</sup> × S47 = [[12167/12150]]. Therefore, the below discusses the 2.3.5.23 and 2.3.5.11.23 extensions. |
| EDOs: [[31edo|31]], [[65edo|65]], [[96edo|96d]], [[127edo|127d]]
| |
| Badness: 0.0646
| |
|
| |
|
| ==11-limit== | | === 2.3.5.23 subgroup === |
| Commas: 126/125, 243/242, 385/384
| | Subgroup: 2.3.5.23 |
|
| |
|
| POTE generator: ~5/4 = 387.407
| | Comma list: 576/575, 12167/12150 |
|
| |
|
| Map: [<1 7 3 -6 17|, <0 -8 -1 13 -20|]
| | Sval mapping: {{mapping| 1 -1 2 0 | 0 8 1 14 }} |
| EDOs: 31, 65, 96d, 127d
| |
| Badness: 0.0334
| |
|
| |
|
| =Whirrschmidt= | | Optimal tunings: |
| [[99edo]] is such a good tuning for whirrschimdt that we hardly need look any farther. Unfortunately, the temperament while accurate is complex, with <<8 1 52 -17 60 118|| for a wedgie.
| | * CTE: ~2 = 1\1, ~5/4 = 387.734 |
| | * POTE: ~2 = 1\1, ~5/4 = 387.805 |
|
| |
|
| Commas: 4375/4374, 393216/390625
| | Optimal ET sequence: {{optimal ET sequence| 3, …, 28i, 31, 34, 65, 99, 164 }} |
|
| |
|
| [[POTE tuning|POTE generator]]: 387.881
| | Badness (Smith): 0.00530 |
|
| |
|
| Map: [<1 7 3 38|, <0 -8 -1 -52|]
| | ==== 2.3.5.11.23 subgroup ==== |
| | Subgroup: 2.3.5.11.23 |
|
| |
|
| EDOs: [[31edo|31]], [[34edo|34]], [[41edo|41]], [[46edo|46]], [[53edo|53]], [[68edo|68]], [[87edo|87]], [[99edo|99]]
| | Comma list: 243/242, 276/275, 529/528 |
|
| |
|
| =Hemiwuerschmidt=
| | Sval mapping: {{mapping| 1 -1 2 -3 0 | 0 8 1 20 14 }} |
| Hemiwuerschmidt, which splits the major third in two and uses that for a generator, is the most important of these temperaments even with the rather large complexity for the fifth. It tempers out 3136/3125, 6144/6125 and 2401/2400. [[68edo]], [[99edo]] and [[130edo]] can all be used as tunings, but 130 is not only the most accurate, it shows how hemiwuerschmidt extends to a higher limit temperament, <<16 2 5 40 -39 -49 -48 28...
| |
|
| |
|
| Commas: 2401/2400, 3136/3125
| | Optimal tuning: |
| | * CTE: ~2 = 1\1, ~5/4 = 387.652 |
| | * POTE: ~2 = 1\1, ~5/4 = 387.690 |
|
| |
|
| [[POTE tuning|POTE generator]]: ~28/25 = 193.898
| | Optimal ET sequence: {{optimal ET sequence| 31, 34, 65 }} |
|
| |
|
| Map: [<1 15 4 7|, <0 -16 -2 -5|]
| | Badness (Smith): 0.00660 |
| <<16 2 5 -34 -37 6||
| |
| EDOs: [[6edo|6]], [[31edo|31]], [[37edo|37]], [[68edo|68]], [[99edo|99]], [[229edo|229]], [[328edo|328]], [[557edo|557c]], [[885edo|885c]]
| |
| Badness: 0.0203 | |
|
| |
|
| ==11-limit== | | == Septimal würschmidt == |
| Commas: 243/242, 441/440, 3136/3125
| | Würschmidt, aside from the commas listed above, also tempers out [[225/224]]. [[31edo]] or [[127edo]] can be used as tunings. It extends naturally to an 11-limit version which also tempers out [[99/98]], [[176/175]] and 243/242. 127edo is again an excellent tuning for 11-limit würschmidt, as well as for [[minerva]], the 11-limit rank-3 temperament tempering out 99/98 and 176/175. |
|
| |
|
| [[POTE tuning|POTE generator]]: ~28/25 = 193.840 | | 2-würschmidt, the temperament with all the same commas as würschmidt but a generator of twice the size, is equivalent to [[skwares]] as a 2.3.7.11 subgroup temperament. |
|
| |
|
| Map: [<1 15 4 7 37|, <0 -16 -2 -5 -40|]
| | The S-expression-based comma list of the 11-limit würschmidt discussed here is {[[176/175|S8/S10]], [[243/242|S9/S11]], [[225/224|S15]]}. Tempering out [[81/80|S9]] or [[121/120|S11]] results in [[31edo]], and in complementary fashion, tempering out [[64/63|S8]] or [[100/99|S10]] results in [[34edo]], but specifically, the 34d [[val]] where we accept 17edo's mapping of ~7. Their val sum, 31 + 34d = 65d, thus observes all of these [[square superparticular]]s by equating them as S8 = S9 = S10 = S11, hence its S-expression-based comma list is {{nowrap| {[[5120/5103|S8/S9]], [[8019/8000|S9/S10]], [[4000/3993|S10/S11]]} }}, which may be expressed in shortened form as {{nowrap| {S8/9/10/11} }}*. As a result, [[65edo]] is especially structurally natural for this temperament, though high damage on the 7 no matter what mapping you use (with the sharp 7 being used for this temperament); even so, it's fairly close to the optimal tuning already if you are fine with a significantly flat ~9/7, which has the advantage of ~14/11 more in tune. However, as 31edo is relatively in-tune already, 65d + 31 = [[96edo]] is also a reasonable choice, as it has the advantage of being [[patent val]] in the 11-limit, though it uses a different (more accurate) mapping for 13. |
| EDOs: 31, 99e, 130, 650ce, 811ce
| | |
| Badness: 0.0211
| | (<nowiki>*</nowiki> The advantage of this form is we can easily see that all of the [[semiparticular]] commas expected are implied as well as any other commas expressible as the difference between two square superparticular commas by reading them off as ratios like 8/10 (S8/S10) and 9/11 (S9/S11).) |
| <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: -25px; width: 1px;">around 775.489 which is approximately</span>
| | |
| =Relationships to other temperaments=
| | [[Subgroup]]: 2.3.5.7 |
| 2-Wuerschmidt, the temperament with all the same commas as Wuerschmidt but a generator of twice the size, is equivalent to [[skwares]] as a 2.3.7.11 temperament.</pre></div>
| | |
| <h4>Original HTML content:</h4>
| | [[Comma list]]: 225/224, 8748/8575 |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Würschmidt family</title></head><body><!-- ws:start:WikiTextTocRule:20:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:20 --><!-- ws:start:WikiTextTocRule:21: --><a href="#Wuerschmidt">Wuerschmidt</a><!-- ws:end:WikiTextTocRule:21 --><!-- ws:start:WikiTextTocRule:22: --><!-- ws:end:WikiTextTocRule:22 --><!-- ws:start:WikiTextTocRule:23: --> | <a href="#Wurschmidt">Wurschmidt</a><!-- ws:end:WikiTextTocRule:23 --><!-- ws:start:WikiTextTocRule:24: --><!-- ws:end:WikiTextTocRule:24 --><!-- ws:start:WikiTextTocRule:25: --> | <a href="#Worschmidt">Worschmidt</a><!-- ws:end:WikiTextTocRule:25 --><!-- ws:start:WikiTextTocRule:26: --><!-- ws:end:WikiTextTocRule:26 --><!-- ws:start:WikiTextTocRule:27: --> | <a href="#Whirrschmidt">Whirrschmidt</a><!-- ws:end:WikiTextTocRule:27 --><!-- ws:start:WikiTextTocRule:28: --> | <a href="#Hemiwuerschmidt">Hemiwuerschmidt</a><!-- ws:end:WikiTextTocRule:28 --><!-- ws:start:WikiTextTocRule:29: --><!-- ws:end:WikiTextTocRule:29 --><!-- ws:start:WikiTextTocRule:30: --> | <a href="#Relationships to other temperaments">Relationships to other temperaments</a><!-- ws:end:WikiTextTocRule:30 --><!-- ws:start:WikiTextTocRule:31: -->
| | |
| <!-- ws:end:WikiTextTocRule:31 --><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Wuerschmidt"></a><!-- ws:end:WikiTextHeadingRule:0 -->Wuerschmidt</h1>
| | {{Mapping|legend=1| 1 -1 2 -3 | 0 8 1 18 }} |
| The <a class="wiki_link" href="/5-limit">5-limit</a> parent comma for the wuerschmidt family is 393216/390625, known as Wuerschmidt's comma, and named after José Würschmidt, Its <a class="wiki_link" href="/monzo">monzo</a> is |17 1 -8&gt;, and flipping that yields &lt;&lt;8 1 17|| for the wedgie. This tells us the <a class="wiki_link" href="/generator">generator</a> is a major third, and that to get to the interval class of fifths will require eight of these. In fact, (5/4)^8 * 393216/390625 = 6. 10\31, 11\34 or 21\65 are possible generators and other tunings include 96edo, 99edo and 164edo. Another tuning solution is to sharpen the major third by 1/8th of a Wuerschmift comma, which is to say by 1.43 cents, and thereby achieve pure fifths; this is the <a class="wiki_link" href="/minimax%20tuning">minimax tuning</a>. Wuerschmidt is well-supplied with MOS scales, with 10, 13, 16, 19, 22, 25, 28, 31 and 34 note <a class="wiki_link" href="/MOS">MOS</a> all possibilities.<br />
| | |
| <br />
| | [[Optimal tuning]]s: |
| <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: 387.799<br />
| | * [[CTE]]: ~2 = 1\1, ~5/4 = 387.379 |
| <br />
| | * [[POTE]]: ~2 = 1\1, ~5/4 = 387.383 |
| Map: [&lt;1 7 3|, &lt;0 -8 -1|]<br />
| | |
| <br />
| | {{Optimal ET sequence|legend=1| 31, 96, 127 }} |
| EDOs: <a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/34edo">34</a>, <a class="wiki_link" href="/65edo">65</a>, <a class="wiki_link" href="/99edo">99</a>, <a class="wiki_link" href="/164edo">164</a>, <a class="wiki_link" href="/721edo">721c</a>, <a class="wiki_link" href="/885edo">885c</a><br />
| | |
| <br />
| | [[Badness]] (Smith): 0.050776 |
| <!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="Wuerschmidt-Seven limit children"></a><!-- ws:end:WikiTextHeadingRule:2 -->Seven limit children</h2>
| | |
| The second comma of the <a class="wiki_link" href="/Normal%20lists">normal comma list</a> defines which 7-limit family member we are looking at. Wurschmidt adds |12 3 -6 -1&gt;, worschmidt adds 65625/65536 = |-16 1 5 1&gt;, whirrschmidt adds 4375/4374 = |-1 -7 4 1&gt; and hemiwuerschmidt adds 6144/6125 = |11 1 -3 -2&gt;.<br />
| | === 11-limit === |
| <br />
| | Subgroup: 2.3.5.7.11 |
| <!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Wurschmidt"></a><!-- ws:end:WikiTextHeadingRule:4 -->Wurschmidt</h1>
| | |
| Wurschmidt, aside from the commas listed above, also tempers out 225/224. <a class="wiki_link" href="/31edo">31edo</a> or <a class="wiki_link" href="/127edo">127edo</a> can be used as tunings. Wurschmidt has &lt;&lt;8 1 18 -17 6 39|| for a wedgie. It extends naturally to an 11-limit version &lt;&lt;8 1 18 20 ,,,|| which also tempers out 99/98, 176/175 and 243/242. <a class="wiki_link" href="/127edo">127edo</a> is again an excellent tuning for 11-limit wurschmidt, as well as for minerva, the 11-limit rank three temperament tempering out 99/98 and 176/175.<br />
| | Comma list: 99/98, 176/175, 243/242 |
| <br />
| | |
| Commas: 225/224, 8748/8575<br />
| | Mapping: {{mapping| 1 -1 2 -3 -3 | 0 8 1 18 20 }} |
| <br />
| | |
| <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: 387.383<br />
| | Optimal tunings: |
| <br />
| | * CTE: ~2 = 1\1, ~5/4 = 387.441 |
| Map: [&lt;1 7 3 15|, &lt;0 -8 -1 -18|]<br />
| | * POTE: ~2 = 1\1, ~5/4 = 387.447 |
| EDOs: <a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/96edo">96</a>, <a class="wiki_link" href="/127edo">127</a>, <a class="wiki_link" href="/285edo">28bd</a>, <a class="wiki_link" href="/412edo">412bd</a><br />
| | |
| Badness: 0.0508<br />
| | Optimal ET sequence: {{optimal ET sequence| 31, 65d, 96, 127 }} |
| <br />
| | |
| <!-- ws:start:WikiTextHeadingRule:6:&lt;h2&gt; --><h2 id="toc3"><a name="Wurschmidt-11-limit"></a><!-- ws:end:WikiTextHeadingRule:6 -->11-limit</h2>
| | Badness (Smith): 0.024413 |
| Commas: 99/98, 176/175, 243/242<br />
| | |
| <br />
| | ==== 13-limit ==== |
| POTE generator: ~5/4 = 387.447<br />
| | Subgroup: 2.3.5.7.11.13 |
| <br />
| | |
| Map: [&lt;1 7 3 15 17|, &lt;0 -8 -1 -18 -20|]<br />
| | Comma list: 99/98, 144/143, 176/175, 275/273 |
| EDOs: 31, 65d, 96, 127, 223d<br />
| | |
| Badness: 0.0244<br />
| | Mapping: {{mapping| 1 -1 2 -3 -3 5 | 0 8 1 18 20 -4 }} |
| <br />
| | |
| <!-- ws:start:WikiTextHeadingRule:8:&lt;h1&gt; --><h1 id="toc4"><a name="Worschmidt"></a><!-- ws:end:WikiTextHeadingRule:8 -->Worschmidt</h1>
| | Optimal tunings: |
| Worschmidt tempers out 126/125 rather than 225/224, and can use <a class="wiki_link" href="/31edo">31edo</a>, <a class="wiki_link" href="/34edo">34edo</a>, or <a class="wiki_link" href="/127edo">127edo</a> as a tuning. If 127 is used, note that the val is &lt;127 201 295 356| and not &lt;127 201 295 357| as with wurschmidt. The wedgie now is &lt;&lt;8 1 -13 -17 -43 -33|. In practice, of course, both mappings could be used ambiguously, which might be an interesting avenue for someone to explore.<br />
| | * CTE: ~2 = 1\1, ~5/4 = 387.469 |
| <br />
| | * POTE: ~2 = 1\1, ~5/4 = 387.626 |
| Commas: 126/125, 33075/32768<br />
| | |
| <br />
| | Optimal ET sequence: {{optimal ET sequence| 31, 65d }} |
| <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: 387.392<br />
| | |
| <br />
| | Badness (Smith): 0.023593 |
| Map: [&lt;1 7 3 -6|, &lt;0 -8 -1 13|]<br />
| | |
| EDOs: <a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/65edo">65</a>, <a class="wiki_link" href="/96edo">96d</a>, <a class="wiki_link" href="/127edo">127d</a><br />
| | ==== Worseschmidt ==== |
| Badness: 0.0646<br />
| | Subgroup: 2.3.5.7.11.13 |
| <br />
| | |
| <!-- ws:start:WikiTextHeadingRule:10:&lt;h2&gt; --><h2 id="toc5"><a name="Worschmidt-11-limit"></a><!-- ws:end:WikiTextHeadingRule:10 -->11-limit</h2>
| | Commas: 66/65, 99/98, 105/104, 243/242 |
| Commas: 126/125, 243/242, 385/384<br />
| | |
| <br />
| | Mapping: {{mapping| 1 -1 2 -3 -3 -5 | 0 8 1 18 20 27 }} |
| POTE generator: ~5/4 = 387.407<br />
| | |
| <br />
| | Optimal tunings: |
| Map: [&lt;1 7 3 -6 17|, &lt;0 -8 -1 13 -20|]<br />
| | * CTE: ~2 = 1\1, ~5/4 = 387.179 |
| EDOs: 31, 65, 96d, 127d<br />
| | * POTE: ~2 = 1\1, ~5/4 = 387.099 |
| Badness: 0.0334<br />
| | |
| <br />
| | Optimal ET sequence: {{optimal ET sequence| 3def, 28def, 31 }} |
| <!-- ws:start:WikiTextHeadingRule:12:&lt;h1&gt; --><h1 id="toc6"><a name="Whirrschmidt"></a><!-- ws:end:WikiTextHeadingRule:12 -->Whirrschmidt</h1>
| | |
| <a class="wiki_link" href="/99edo">99edo</a> is such a good tuning for whirrschimdt that we hardly need look any farther. Unfortunately, the temperament while accurate is complex, with &lt;&lt;8 1 52 -17 60 118|| for a wedgie.<br />
| | Badness (Smith): 0.034382 |
| <br />
| | |
| Commas: 4375/4374, 393216/390625<br />
| | == Worschmidt == |
| <br />
| | Worschmidt tempers out 126/125 rather than 225/224, and can use [[31edo]], [[34edo]], or [[127edo]] as a tuning. If 127 is used, note that the val is {{val| 127 201 295 '''356''' }} (127d) and not {{val| 127 201 295 '''357''' }} as with würschmidt. In practice, of course, both mappings could be used ambiguously, which might be an interesting avenue for someone to explore. |
| <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: 387.881<br />
| | |
| <br />
| | [[Subgroup]]: 2.3.5.7 |
| Map: [&lt;1 7 3 38|, &lt;0 -8 -1 -52|]<br />
| | |
| <br />
| | [[Comma list]]: 126/125, 33075/32768 |
| EDOs: <a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/34edo">34</a>, <a class="wiki_link" href="/41edo">41</a>, <a class="wiki_link" href="/46edo">46</a>, <a class="wiki_link" href="/53edo">53</a>, <a class="wiki_link" href="/68edo">68</a>, <a class="wiki_link" href="/87edo">87</a>, <a class="wiki_link" href="/99edo">99</a><br />
| | |
| <br />
| | {{Mapping|legend=1| 1 -1 2 7 | 0 8 1 -13 }} |
| <!-- ws:start:WikiTextHeadingRule:14:&lt;h1&gt; --><h1 id="toc7"><a name="Hemiwuerschmidt"></a><!-- ws:end:WikiTextHeadingRule:14 -->Hemiwuerschmidt</h1>
| | |
| Hemiwuerschmidt, which splits the major third in two and uses that for a generator, is the most important of these temperaments even with the rather large complexity for the fifth. It tempers out 3136/3125, 6144/6125 and 2401/2400. <a class="wiki_link" href="/68edo">68edo</a>, <a class="wiki_link" href="/99edo">99edo</a> and <a class="wiki_link" href="/130edo">130edo</a> can all be used as tunings, but 130 is not only the most accurate, it shows how hemiwuerschmidt extends to a higher limit temperament, &lt;&lt;16 2 5 40 -39 -49 -48 28...<br />
| | [[Optimal tuning]]s: |
| <br />
| | * [[CTE]]: ~2 = 1\1, ~5/4 = 387.406 |
| Commas: 2401/2400, 3136/3125<br />
| | * [[POTE]]: ~2 = 1\1, ~5/4 = 387.392 |
| <br />
| | |
| <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~28/25 = 193.898<br />
| | {{Optimal ET sequence|legend=1| 31, 96d, 127d }} |
| <br />
| | |
| Map: [&lt;1 15 4 7|, &lt;0 -16 -2 -5|]<br />
| | [[Badness]] (Smith): 0.064614 |
| &lt;&lt;16 2 5 -34 -37 6||<br />
| | |
| EDOs: <a class="wiki_link" href="/6edo">6</a>, <a class="wiki_link" href="/31edo">31</a>, <a class="wiki_link" href="/37edo">37</a>, <a class="wiki_link" href="/68edo">68</a>, <a class="wiki_link" href="/99edo">99</a>, <a class="wiki_link" href="/229edo">229</a>, <a class="wiki_link" href="/328edo">328</a>, <a class="wiki_link" href="/557edo">557c</a>, <a class="wiki_link" href="/885edo">885c</a><br />
| | === 11-limit === |
| Badness: 0.0203<br />
| | Subgroup: 2.3.5.7.11 |
| <br />
| | |
| <!-- ws:start:WikiTextHeadingRule:16:&lt;h2&gt; --><h2 id="toc8"><a name="Hemiwuerschmidt-11-limit"></a><!-- ws:end:WikiTextHeadingRule:16 -->11-limit</h2>
| | Comma list: 126/125, 243/242, 385/384 |
| Commas: 243/242, 441/440, 3136/3125<br />
| | |
| <br />
| | Mapping: {{mapping| 1 -1 2 7 -3 | 0 8 1 -13 20 }} |
| <a class="wiki_link" href="/POTE%20tuning">POTE generator</a>: ~28/25 = 193.840<br />
| | |
| <br />
| | Optimal tunings: |
| Map: [&lt;1 15 4 7 37|, &lt;0 -16 -2 -5 -40|]<br />
| | * CTE: ~2 = 1\1, ~5/4 = 387.472 |
| EDOs: 31, 99e, 130, 650ce, 811ce<br />
| | * POTE: ~2 = 1\1, ~5/4 = 387.407 |
| Badness: 0.0211<br />
| | |
| <span style="display: block; height: 1px; left: -40px; overflow: hidden; position: absolute; top: -25px; width: 1px;">around 775.489 which is approximately</span><br />
| | Optimal ET sequence: {{optimal ET sequence| 31, 65, 96d, 127d }} |
| <!-- ws:start:WikiTextHeadingRule:18:&lt;h1&gt; --><h1 id="toc9"><a name="Relationships to other temperaments"></a><!-- ws:end:WikiTextHeadingRule:18 -->Relationships to other temperaments</h1>
| | |
| 2-Wuerschmidt, the temperament with all the same commas as Wuerschmidt but a generator of twice the size, is equivalent to <a class="wiki_link" href="/skwares">skwares</a> as a 2.3.7.11 temperament.</body></html></pre></div>
| | Badness (Smith): 0.033436 |
| | |
| | == Whirrschmidt == |
| | [[99edo]] is such a good tuning for whirrschimdt that we hardly need look any farther. Unfortunately, the temperament while accurate is complex, with 7 mapped to the 52nd generator step. |
| | |
| | [[Subgroup]]: 2.3.5.7 |
| | |
| | [[Comma list]]: 4375/4374, 393216/390625 |
| | |
| | {{Mapping|legend=1| 1 -1 2 -14 | 0 8 1 52 }} |
| | |
| | [[Optimal tuning]]s: |
| | * [[CTE]]: ~2 = 1\1, ~5/4 = 387.853 |
| | * [[POTE]]: ~2 = 1\1, ~5/4 = 387.881 |
| | |
| | {{Optimal ET sequence|legend=1| 34d, 65, 99 }} |
| | |
| | [[Badness]] (Smith): 0.086334 |
| | |
| | === 11-limit === |
| | Subgroup: 2.3.5.7.11 |
| | |
| | Comma list: 243/242, 896/891, 4375/4356 |
| | |
| | Mapping: {{mapping| 1 -1 2 -14 -3 | 0 8 1 52 20 }} |
| | |
| | Optimal tunings: |
| | * CTE: ~2 = 1\1, ~5/4 = 387.829 |
| | * POTE: ~2 = 1\1, ~5/4 = 387.882 |
| | |
| | Optimal ET sequence: {{optimal ET sequence| 34d, 65, 99e }} |
| | |
| | Badness (Smith): 0.058325 |
| | |
| | [[Category:Temperament families]] |
| | [[Category:Pages with mostly numerical content]] |
| | [[Category:Würschmidt family| ]] <!-- main article --> |
| | [[Category:Würschmidt| ]] <!-- key article --> |
| | [[Category:Rank 2]] |