Sensamagic clan: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 189813522 - Original comment: **
Tags: Mobile edit Mobile web edit
 
(134 intermediate revisions by 20 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Technical data page}}
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
The '''sensamagic clan''' tempers out the sensamagic comma, [[245/243]], a triprime [[comma]] with no factors of 2, {{val| 0 -5 1 2 }} to be exact. Tempering out 245/243 alone in the full 7-limit leads to a [[Planar temperament|rank-3 temperament]], [[sensamagic]], for which [[283edo]] is the [[optimal patent val]].
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2010-12-23 01:10:00 UTC</tt>.<br>
: The original revision id was <tt>189813522</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The //sensamagic clan// tempers out the sensamagic comma, 245/243, a triprime comma with no factors of 2. There are a number of linear temperaments in the clan (magic, father, sensi, semaphore, superpyth, octacot, rodan, hedgehog, clyde, shrutar, sidi) but they've mostly been discussed elsewhere.


==Bohpier==
== BPS ==
Commas: 245/243, 3125/3087
{{Main| BPS }}


[[POTE tuning|POTE generator]]: 146.474
BPS, for ''Bohlen–Pierce–Stearns'', is the 3.5.7-subgroup temperament tempering out 245/243. This subgroup temperament was formerly called the ''lambda'' temperament, which was named after the [[4L 5s (tritave-equivalent)|lambda scale]].


Map: [&lt;1 0 0 0|, &lt;0 13 19 23|]
[[Subgroup]]: 3.5.7
Wedgie: &lt;&lt;13 19 23 0 0 0||
EDOs: 31


Music
[[Comma list]]: 245/243
By Chris Vaisvil
 
http://micro.soonlabel.com/bophier/bophier-1.mp3
{{Mapping|legend=2| 1 1 2 | 0 -2 1 }}
http://micro.soonlabel.com/bophier/bophier-12equal-six-octaves.mp3
 
</pre></div>
: sval mapping generators: ~3, ~9/7
<h4>Original HTML content:</h4>
 
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Sensamagic clan&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The &lt;em&gt;sensamagic clan&lt;/em&gt; tempers out the sensamagic comma, 245/243, a triprime comma with no factors of 2. There are a number of linear temperaments in the clan (magic, father, sensi, semaphore, superpyth, octacot, rodan, hedgehog, clyde, shrutar, sidi) but they've mostly been discussed elsewhere.&lt;br /&gt;
[[Optimal tuning]] ([[POTE]]): ~3 = 1901.9550, ~9/7 = 440.4881
&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-Bohpier"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Bohpier&lt;/h2&gt;
[[Optimal ET sequence]]: [[4edt|b4]], [[9edt|b9]], [[13edt|b13]], [[56edt|b56]], [[69edt|b69]], [[82edt|b82]], [[95edt|b95]]
Commas: 245/243, 3125/3087&lt;br /&gt;
 
&lt;br /&gt;
=== Overview to extensions ===
&lt;a class="wiki_link" href="/POTE%20tuning"&gt;POTE generator&lt;/a&gt;: 146.474&lt;br /&gt;
The full 7-limit extensions' relation to BPS is clearer if the mapping is normalized in terms of 3.5.7.2. In fact, the strong extensions are sensi, cohemiripple, hedgehog, and fourfives.
&lt;br /&gt;
 
Map: [&amp;lt;1 0 0 0|, &amp;lt;0 13 19 23|]&lt;br /&gt;
These temperaments are distributed into different family pages.
Wedgie: &amp;lt;&amp;lt;13 19 23 0 0 0||&lt;br /&gt;
* [[Sensi]] (+126/125) → [[Sensipent family #Sensi|Sensipent family]]
EDOs: 31&lt;br /&gt;
* ''[[Hedgehog]]'' (+50/49) → [[Porcupine family #Hedgehog|Porcupine family]]
&lt;br /&gt;
* ''[[Cohemiripple]]'' (+1323/1250) → [[Ripple family #Cohemiripple|Ripple family]]
Music&lt;br /&gt;
* ''[[Fourfives]]'' (+235298/234375) → [[Fifive family #Fourfives|Fifive family]]
By Chris Vaisvil&lt;br /&gt;
 
&lt;!-- ws:start:WikiTextUrlRule:16:http://micro.soonlabel.com/bophier/bophier-1.mp3 --&gt;&lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/bophier/bophier-1.mp3" rel="nofollow"&gt;http://micro.soonlabel.com/bophier/bophier-1.mp3&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:16 --&gt;&lt;br /&gt;
The others are weak extensions. Father tempers out [[16/15]], splitting the generator in two. Godzilla tempers out [[49/48]] with a hemitwelfth period. Sidi tempers out [[25/24]], splitting the generator in two with a hemitwelfth period. Clyde tempers out [[3136/3125]] with a 1/6-twelfth period. Superpyth tempers out [[64/63]], splitting the generator in six. Magic tempers out [[225/224]] with a 1/5-twelfth period. Octacot tempers out [[2401/2400]], splitting the generator in five. Hemiaug tempers out [[128/125]]. Pentacloud tempers out [[16807/16384]]. These split the generator in seven. Bamity tempers out [[64827/64000]], splitting the generator in nine. Rodan tempers out [[1029/1024]], splitting the generator in ten. Shrutar tempers out [[2048/2025]], splitting the generator in eleven. Finally, escaped tempers out [[65625/65536]], splitting the generator in sixteen.  
&lt;!-- ws:start:WikiTextUrlRule:17:http://micro.soonlabel.com/bophier/bophier-12equal-six-octaves.mp3 --&gt;&lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/bophier/bophier-12equal-six-octaves.mp3" rel="nofollow"&gt;http://micro.soonlabel.com/bophier/bophier-12equal-six-octaves.mp3&lt;/a&gt;&lt;!-- ws:end:WikiTextUrlRule:17 --&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>
 
Discussed elsewhere are
* [[Father]] (+16/15 or 28/27) → [[Father family #Father|Father family]]
* [[Godzilla]] (+49/48 or 81/80) → [[Semaphoresmic clan #Godzilla|Semaphoresmic clan]]
* ''[[Sidi]]'' (+25/24) → [[Dicot family #Sidi|Dicot family]]
* ''[[Clyde]]'' (+3136/3125) → [[Kleismic family #Clyde|Kleismic family]]
* [[Superpyth]] (+64/63) → [[Archytas clan #Superpyth|Archytas clan]]
* [[Magic]] (+225/224) → [[Magic family #Septimal magic|Magic family]]
* ''[[Octacot]]'' (+2401/2400) → [[Tetracot family #Octacot|Tetracot family]]
* ''[[Hemiaug]]'' (+128/125) → [[Augmented family #Hemiaug|Augmented family]]
* ''[[Pentacloud]]'' (+16807/16384) → [[Quintile family #Pentacloud|Quintile family]]
* ''[[Bamity]]'' (+64827/64000) → [[Amity family #Bamity|Amity family]]
* [[Rodan]] (+1029/1024) → [[Gamelismic clan #Rodan|Gamelismic clan]]
* ''[[Shrutar]]'' (+2048/2025) → [[Diaschismic family #Shrutar|Diaschismic family]]
* ''[[Escaped]]'' (+65625/65536) → [[Escapade family #Escaped|Escapade family]]
 
For ''no-twos'' extensions, see [[No-twos subgroup temperaments #BPS]].
 
Considered below are bohpier, salsa, pycnic, superthird, magus and leapweek.
 
== Bohpier ==
{{Main| Bohpier }}
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Bohpier]].''
 
Bohpier is named after its interesting [[relationship between Bohlen–Pierce and octave-ful temperaments|relationship with the non-octave Bohlen–Pierce equal temperament]].
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 245/243, 3125/3087
 
{{Mapping|legend=1| 1 0 0 0 | 0 13 19 23 }}
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~27/25 = 146.474
 
[[Minimax tuning]]:
* [[7-odd-limit]]: ~27/25 = {{monzo| 0 0 1/19 }}
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5
* [[9-odd-limit]]: ~27/25 = {{monzo| 0 1/13 }}
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.3
 
{{Optimal ET sequence|legend=1| 41, 131, 172, 213c }}
 
[[Badness]]: 0.068237
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 100/99, 245/243, 1344/1331
 
Mapping: {{mapping| 1 0 0 0 2 | 0 13 19 23 12 }}
 
Optimal tuning (POTE): ~2 = 1200.000, ~12/11 = 146.545
 
Minimax tuning:  
* 11-odd-limit: ~12/11 = {{monzo| 1/7 1/7 0 0 -1/14 }}
: unchanged-interval (eigenmonzo) basis: 2.11/9
 
{{Optimal ET sequence|legend=0| 41, 90e, 131e }}
 
Badness: 0.033949
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 100/99, 144/143, 196/195, 275/273
 
Mapping: {{mapping| 1 0 0 0 2 2 | 0 13 19 23 12 14 }}
 
Optimal tuning (POTE): ~2 = 1200.000, ~12/11 = 146.603
 
Minimax tuning:
* 13- and 15-odd-limit: ~12/11 = {{monzo| 0 0 1/19 }}
: Unchanged-interval (eigenmonzo) basis: 2.5
 
{{Optimal ET sequence|legend=0| 41, 90ef, 131ef, 221bdeff }}
 
Badness: 0.024864
 
=== Triboh ===
Triboh is named after the "[[39edt|Triple Bohlen–Pierce scale]]", which divides each step of the [[13edt|equal-tempered]] [[Bohlen–Pierce]] scale into three equal parts.
 
Subgroup: 2.3.5.7.11
 
Comma list: 245/243, 1331/1323, 3125/3087
 
Mapping: {{mapping| 1 0 0 0 0 | 0 39 57 69 85 }}
 
Optimal tuning (POTE): ~2 = 1200.000, ~77/75 = 48.828
 
{{Optimal ET sequence|legend=0| 49, 123ce, 172 }}
 
Badness: 0.162592
 
==== 13-limit ====
Subgroup: 2.3.5.7.11.13
 
Comma list: 245/243, 275/273, 847/845, 1331/1323
 
Mapping: {{mapping| 1 0 0 0 0 0 | 0 39 57 69 85 91 }}
 
Optimal tuning (POTE): ~2 = 1200.000, ~77/75 = 48.822
 
{{Optimal ET sequence|legend=0| 49f, 123ce, 172f, 295ce, 467bccef }}
 
Badness: 0.082158
 
== Salsa ==
{{See also| Schismatic family }}
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 245/243, 32805/32768
 
{{Mapping|legend=1| 1 1 7 -1 | 0 2 -16 13 }}
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~128/105 = 351.049
 
{{Optimal ET sequence|legend=1| 17, 24, 41, 106d, 147d, 188cd, 335cd }}
 
[[Badness]]: 0.080152
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 243/242, 245/242, 385/384
 
Mapping: {{mapping| 1 1 7 -1 2 | 0 2 -16 13 5 }}
 
Optimal tuning (POTE): ~2 = 1200.000, ~11/9 = 351.014
 
{{Optimal ET sequence|legend=0| 17, 24, 41, 106d, 147d }}
 
Badness: 0.039444
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 105/104, 144/143, 243/242, 245/242
 
Mapping: {{mapping| 1 1 7 -1 2 4 | 0 2 -16 13 5 -1 }}
 
Optimal tuning (POTE): ~2 = 1200.000, ~11/9 = 351.025
 
{{Optimal ET sequence|legend=0| 17, 24, 41, 106df, 147df }}
 
Badness: 0.030793
 
== Pycnic ==
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Stump]].''
 
The fifth of pycnic in size is a meantone fifth, but four of them are not used to reach 5. This has the effect of making the Pythagorean major third, nominally 81/64, very close to 5/4 in tuning, being a cent sharp of it in the POTE tuning for instance. Pycnic has [[mos]] of size 9, 11, 13, 15, 17… which contain these alternative thirds, leading to two kinds of major triads, an official one and a nominally Pythagorean one which is actually in better tune.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 245/243, 525/512
 
{{Mapping|legend=1| 1 3 -1 8 | 0 -3 7 -11 }}
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~45/32 = 567.720
 
{{Optimal ET sequence|legend=1| 17, 19, 55c, 74cd, 93cdd }}
 
[[Badness]]: 0.073735
 
== Superthird ==
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Shibboleth]].''
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 245/243, 78125/76832
 
{{Mapping|legend=1| 1 -5 -5 -10 | 0 18 20 35 }}
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~9/7 = 439.076
 
{{Optimal ET sequence|legend=1| 11cd, 30d, 41, 317bcc, 358bcc, 399bcc }}
 
[[Badness]]: 0.139379
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 100/99, 245/243, 78125/76832
 
Mapping: {{mapping| 1 -5 -5 -10 2 | 0 18 20 35 4 }}
 
Optimal tuning (POTE): ~2 = 1200.000, ~9/7 = 439.152
 
{{Optimal ET sequence|legend=0| 11cd, 30d, 41, 153be, 194be, 235bcee }}
 
Badness: 0.070917
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 100/99, 144/143, 196/195, 1375/1352
 
Mapping: {{mapping| 1 -5 -5 -10 2 -8 | 0 18 20 35 4 32 }}
 
Optimal tuning (POTE): ~2 = 1200.000, ~9/7 = 439.119
 
{{Optimal ET sequence|legend=0| 11cdf, 30df, 41 }}
 
Badness: 0.052835
 
== Superenneadecal ==
Superenneadecal is a cousin of [[enneadecal]] but sharper fifth is used to temper 245/243.
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 245/243, 395136/390625
 
{{Mapping|legend=1| 19 0 14 -7 | 0 1 1 2 }}
 
[[Optimal tuning]] ([[POTE]]): ~392/375 = 63.158, ~3/2 = 704.166
 
{{Optimal ET sequence|legend=1| 19, 76bcd, 95, 114, 133, 247b, 380bcd }}
 
[[Badness]]: 0.132311
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 245/243, 2560/2541, 3773/3750
 
Mapping: {{mapping| 19 0 14 -7 96 | 0 1 1 2 -1 }}
 
Optimal tuning (POTE): ~33/32 = 63.158, ~3/2 = 705.667
 
{{Optimal ET sequence|legend=0| 19, 76bcd, 95, 114e }}
 
Badness: 0.101496
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 196/195, 245/243, 832/825, 1001/1000
 
Mapping: {{mapping| 19 0 14 -7 96 10 | 0 1 1 2 -1 2 }}
 
Optimal tuning (POTE): ~33/32 = 63.158, ~3/2 = 705.801
 
{{Optimal ET sequence|legend=0| 19, 76bcdf, 95, 114e }}
 
Badness: 0.053197
 
== Magus ==
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Magus]].''
 
Magus temperament tempers out [[50331648/48828125]] (salegu) in the 5-limit. This temperament can be described as {{nowrap| 46 & 49 }} temperament, which tempers out the sensamagic and 28672/28125 (sazoquingu). The alternative extension [[starling temperaments #Amigo|amigo]] ({{nowrap|43 & 46}}) tempers out the same 5-limit comma as the magus, but with the [[126/125|starling comma]] (126/125) rather than the sensamagic tempered out.
 
Magus has a generator of a sharp ~5/4 (so that ~[[25/16]] is twice as sharp so that it makes sense to equate with [[11/7]] by tempering [[176/175]]), so that three reaches [[128/125]] short of the octave (where 128/125 is tuned narrow); this is significant because magus reaches [[3/2]] as ([[25/16]])/([[128/125]])<sup>3</sup>, that is, {{nowrap|2 + 3 × 3 {{=}} 11}} generators. Therefore, it implies that [[25/24]] is split into three [[128/125]]'s. Therefore, in the 5-limit, magus can be thought of as a higher-complexity and sharper analogue of [[würschmidt]] (which reaches [[3/2]] as (25/16)/(128/125)<sup>2</sup> implying 25/24 is split into two 128/125's thus having a guaranteed neutral third), which itself is a higher-complexity and sharper analogue of [[magic]] (which equates 25/24 with 128/125 by flattening 5). For more details on these connections see [[Würschmidt comma]].
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 245/243, 28672/28125
 
{{Mapping|legend=1| 1 -2 2 -6 | 0 11 1 27 }}
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~5/4 = 391.465
 
{{Optimal ET sequence|legend=1| 46, 95, 141bc, 187bc, 328bbcc }}
 
[[Badness]]: 0.108417
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 176/175, 245/243, 1331/1323
 
Mapping: {{mapping| 1 -2 2 -6 -6 | 0 11 1 27 29 }}
 
Optimal tuning (POTE): ~2 = 1200.000, ~5/4 = 391.503
 
{{Optimal ET sequence|legend=0| 46, 95, 141bc }}
 
Badness: 0.045108
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 91/90, 176/175, 245/243, 1331/1323
 
Mapping: {{mapping| 1 -2 2 -6 -6 5 | 0 11 1 27 29 -4 }}
 
Optimal tuning (POTE): ~2 = 1200.000, ~5/4 = 391.366
 
{{Optimal ET sequence|legend=0| 46, 233bcff, 279bccff }}
 
Badness: 0.043024
 
== Leapweek ==
: ''Not to be confused with scales produced by leap week calendars such as [[Symmetry454]].''
 
[[Subgroup]]: 2.3.5.7
 
[[Comma list]]: 245/243, 2097152/2066715
 
{{Mapping|legend=1| 1 0 42 -21 | 0 1 -25 15 }}
 
: mapping generators: ~2, ~3
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~3/2 = 704.536
 
{{Optimal ET sequence|legend=1| 17, 29c, 46, 109, 155, 264b, 419b }}
 
[[Badness]]: 0.140577
 
=== 11-limit ===
Subgroup: 2.3.5.7.11
 
Comma list: 245/243, 385/384, 1331/1323
 
Mapping: {{mapping| 1 0 42 -21 -14 | 0 1 -25 15 11 }}
 
Optimal tuning (POTE): ~2 = 1200.000, ~3/2 = 704.554
 
{{Optimal ET sequence|legend=0| 17, 29c, 46, 109, 264b, 373b, 637bbe }}
 
Badness: 0.050679
 
=== 13-limit ===
Subgroup: 2.3.5.7.11.13
 
Comma list: 169/168, 245/243, 352/351, 364/363
 
Mapping: {{mapping| 1 0 42 -21 -14 -9 | 0 1 -25 15 11 8 }}
 
Optimal tuning (POTE): ~2 = 1200.000, ~3/2 = 704.571
 
{{Optimal ET sequence|legend=0| 17, 29c, 46, 63, 109 }}
 
Badness: 0.032727
 
==== 17-limit ====
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 154/153, 169/168, 245/243, 256/255, 273/272
 
Mapping: {{mapping| 1 0 42 -21 -14 -9 -34 | 0 1 -25 15 11 8 24 }}
 
Optimal tuning (POTE): ~2 = 1200.000, ~3/2 = 704.540
 
{{Optimal ET sequence|legend=0| 17g, 29cg, 46, 109, 155f, 264bfg }}
 
Badness: 0.026243
 
==== Leapweeker ====
Subgroup: 2.3.5.7.11.13.17
 
Comma list: 136/135, 169/168, 221/220, 245/243, 364/363
 
Mapping: {{mapping| 1 0 42 -21 -14 -9 39 | 0 1 -25 15 11 8 -22 }}
 
Optimal tuning (POTE): ~2 = 1200.000, ~3/2 = 704.537
 
{{Optimal ET sequence|legend=0| 17, 29c, 46, 109g, 155fg, 264bfgg }}
 
Badness: 0.026774
 
[[Category:Temperament clans]]
[[Category:Pages with mostly numerical content]]
[[Category:Sensamagic clan| ]] <!-- main article -->
[[Category:Rank 2]]
[[Category:Listen]]