Sensamagic clan: Difference between revisions
Wikispaces>genewardsmith **Imported revision 213346606 - Original comment: ** |
m Text replacement - "Category:Temperament clans" to "Category:Temperament clans Category:Pages with mostly numerical content" Tags: Mobile edit Mobile web edit |
||
(129 intermediate revisions by 19 users not shown) | |||
Line 1: | Line 1: | ||
{{Technical data page}} | |||
The '''sensamagic clan''' tempers out the sensamagic comma, [[245/243]], a triprime [[comma]] with no factors of 2, {{val| 0 -5 1 2 }} to be exact. Tempering out 245/243 alone in the full 7-limit leads to a [[Planar temperament|rank-3 temperament]], [[sensamagic]], for which [[283edo]] is the [[optimal patent val]]. | |||
= | == BPS == | ||
{{Main| BPS }} | |||
[[ | BPS, for ''Bohlen–Pierce–Stearns'', is the 3.5.7-subgroup temperament tempering out 245/243. This subgroup temperament was formerly called the ''lambda'' temperament, which was named after the [[4L 5s (tritave-equivalent)|lambda scale]]. | ||
[[Subgroup]]: 3.5.7 | |||
[[Comma list]]: 245/243 | |||
= | {{Mapping|legend=2| 1 1 2 | 0 -2 1 }} | ||
: sval mapping generators: ~3, ~9/7 | |||
[[Optimal tuning]] ([[POTE]]): ~3 = 1901.9550, ~9/7 = 440.4881 | |||
[[Optimal ET sequence]]: [[4edt|b4]], [[9edt|b9]], [[13edt|b13]], [[56edt|b56]], [[69edt|b69]], [[82edt|b82]], [[95edt|b95]] | |||
=== Overview to extensions === | |||
The full 7-limit extensions' relation to BPS is clearer if the mapping is normalized in terms of 3.5.7.2. In fact, the strong extensions are sensi, cohemiripple, hedgehog, and fourfives. | |||
These temperaments are distributed into different family pages. | |||
* [[Sensi]] (+126/125) → [[Sensipent family #Sensi|Sensipent family]] | |||
* ''[[Hedgehog]]'' (+50/49) → [[Porcupine family #Hedgehog|Porcupine family]] | |||
* ''[[Cohemiripple]]'' (+1323/1250) → [[Ripple family #Cohemiripple|Ripple family]] | |||
* ''[[Fourfives]]'' (+235298/234375) → [[Fifive family #Fourfives|Fifive family]] | |||
The others are weak extensions. Father tempers out [[16/15]], splitting the generator in two. Godzilla tempers out [[49/48]] with a hemitwelfth period. Sidi tempers out [[25/24]], splitting the generator in two with a hemitwelfth period. Clyde tempers out [[3136/3125]] with a 1/6-twelfth period. Superpyth tempers out [[64/63]], splitting the generator in six. Magic tempers out [[225/224]] with a 1/5-twelfth period. Octacot tempers out [[2401/2400]], splitting the generator in five. Hemiaug tempers out [[128/125]]. Pentacloud tempers out [[16807/16384]]. These split the generator in seven. Bamity tempers out [[64827/64000]], splitting the generator in nine. Rodan tempers out [[1029/1024]], splitting the generator in ten. Shrutar tempers out [[2048/2025]], splitting the generator in eleven. Finally, escaped tempers out [[65625/65536]], splitting the generator in sixteen. | |||
Discussed elsewhere are | |||
* [[Father]] (+16/15 or 28/27) → [[Father family #Father|Father family]] | |||
* [[Godzilla]] (+49/48 or 81/80) → [[Semaphoresmic clan #Godzilla|Semaphoresmic clan]] | |||
* ''[[Sidi]]'' (+25/24) → [[Dicot family #Sidi|Dicot family]] | |||
* ''[[Clyde]]'' (+3136/3125) → [[Kleismic family #Clyde|Kleismic family]] | |||
* [[Superpyth]] (+64/63) → [[Archytas clan #Superpyth|Archytas clan]] | |||
* [[Magic]] (+225/224) → [[Magic family #Septimal magic|Magic family]] | |||
* ''[[Octacot]]'' (+2401/2400) → [[Tetracot family #Octacot|Tetracot family]] | |||
* ''[[Hemiaug]]'' (+128/125) → [[Augmented family #Hemiaug|Augmented family]] | |||
* ''[[Pentacloud]]'' (+16807/16384) → [[Quintile family #Pentacloud|Quintile family]] | |||
* ''[[Bamity]]'' (+64827/64000) → [[Amity family #Bamity|Amity family]] | |||
* [[Rodan]] (+1029/1024) → [[Gamelismic clan #Rodan|Gamelismic clan]] | |||
* ''[[Shrutar]]'' (+2048/2025) → [[Diaschismic family #Shrutar|Diaschismic family]] | |||
* ''[[Escaped]]'' (+65625/65536) → [[Escapade family #Escaped|Escapade family]] | |||
For ''no-twos'' extensions, see [[No-twos subgroup temperaments #BPS]]. | |||
Considered below are bohpier, salsa, pycnic, superthird, magus and leapweek. | |||
== Bohpier == | |||
{{Main| Bohpier }} | |||
Badness: 0. | : ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Bohpier]].'' | ||
Bohpier is named after its interesting [[relationship between Bohlen–Pierce and octave-ful temperaments|relationship with the non-octave Bohlen–Pierce equal temperament]]. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 245/243, 3125/3087 | |||
{{Mapping|legend=1| 1 0 0 0 | 0 13 19 23 }} | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~27/25 = 146.474 | |||
[[Minimax tuning]]: | |||
* [[7-odd-limit]]: ~27/25 = {{monzo| 0 0 1/19 }} | |||
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5 | |||
* [[9-odd-limit]]: ~27/25 = {{monzo| 0 1/13 }} | |||
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.3 | |||
{{Optimal ET sequence|legend=1| 41, 131, 172, 213c }} | |||
[[Badness]]: 0.068237 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 100/99, 245/243, 1344/1331 | |||
Mapping: {{mapping| 1 0 0 0 2 | 0 13 19 23 12 }} | |||
Optimal tuning (POTE): ~2 = 1200.000, ~12/11 = 146.545 | |||
Minimax tuning: | |||
* 11-odd-limit: ~12/11 = {{monzo| 1/7 1/7 0 0 -1/14 }} | |||
: unchanged-interval (eigenmonzo) basis: 2.11/9 | |||
{{Optimal ET sequence|legend=0| 41, 90e, 131e }} | |||
Badness: 0.033949 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 100/99, 144/143, 196/195, 275/273 | |||
Mapping: {{mapping| 1 0 0 0 2 2 | 0 13 19 23 12 14 }} | |||
Optimal tuning (POTE): ~2 = 1200.000, ~12/11 = 146.603 | |||
Minimax tuning: | |||
* 13- and 15-odd-limit: ~12/11 = {{monzo| 0 0 1/19 }} | |||
: Unchanged-interval (eigenmonzo) basis: 2.5 | |||
{{Optimal ET sequence|legend=0| 41, 90ef, 131ef, 221bdeff }} | |||
Badness: 0.024864 | |||
=== Triboh === | |||
Triboh is named after the "[[39edt|Triple Bohlen–Pierce scale]]", which divides each step of the [[13edt|equal-tempered]] [[Bohlen–Pierce]] scale into three equal parts. | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 245/243, 1331/1323, 3125/3087 | |||
Mapping: {{mapping| 1 0 0 0 0 | 0 39 57 69 85 }} | |||
Optimal tuning (POTE): ~2 = 1200.000, ~77/75 = 48.828 | |||
{{Optimal ET sequence|legend=0| 49, 123ce, 172 }} | |||
Badness: 0.162592 | |||
==== 13-limit ==== | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 245/243, 275/273, 847/845, 1331/1323 | |||
Mapping: {{mapping| 1 0 0 0 0 0 | 0 39 57 69 85 91 }} | |||
Optimal tuning (POTE): ~2 = 1200.000, ~77/75 = 48.822 | |||
{{Optimal ET sequence|legend=0| 49f, 123ce, 172f, 295ce, 467bccef }} | |||
Badness: 0.082158 | |||
== Salsa == | |||
{{See also| Schismatic family }} | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 245/243, 32805/32768 | |||
{{Mapping|legend=1| 1 1 7 -1 | 0 2 -16 13 }} | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~128/105 = 351.049 | |||
{{Optimal ET sequence|legend=1| 17, 24, 41, 106d, 147d, 188cd, 335cd }} | |||
[[Badness]]: 0.080152 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 243/242, 245/242, 385/384 | |||
Mapping: {{mapping| 1 1 7 -1 2 | 0 2 -16 13 5 }} | |||
Optimal tuning (POTE): ~2 = 1200.000, ~11/9 = 351.014 | |||
{{Optimal ET sequence|legend=0| 17, 24, 41, 106d, 147d }} | |||
Badness: 0.039444 | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 105/104, 144/143, 243/242, 245/242 | |||
Mapping: {{mapping| 1 1 7 -1 2 4 | 0 2 -16 13 5 -1 }} | |||
Optimal tuning (POTE): ~2 = 1200.000, ~11/9 = 351.025 | |||
{{Optimal ET sequence|legend=0| 17, 24, 41, 106df, 147df }} | |||
Badness: 0.030793 | |||
== Pycnic == | |||
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Stump]].'' | |||
The fifth of pycnic in size is a meantone fifth, but four of them are not used to reach 5. This has the effect of making the Pythagorean major third, nominally 81/64, very close to 5/4 in tuning, being a cent sharp of it in the POTE tuning for instance. Pycnic has [[mos]] of size 9, 11, 13, 15, 17… which contain these alternative thirds, leading to two kinds of major triads, an official one and a nominally Pythagorean one which is actually in better tune. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 245/243, 525/512 | |||
{{Mapping|legend=1| 1 3 -1 8 | 0 -3 7 -11 }} | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~45/32 = 567.720 | |||
{{Optimal ET sequence|legend=1| 17, 19, 55c, 74cd, 93cdd }} | |||
[[Badness]]: 0.073735 | |||
== Superthird == | |||
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Shibboleth]].'' | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 245/243, 78125/76832 | |||
{{Mapping|legend=1| 1 -5 -5 -10 | 0 18 20 35 }} | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~9/7 = 439.076 | |||
{{Optimal ET sequence|legend=1| 11cd, 30d, 41, 317bcc, 358bcc, 399bcc }} | |||
[[Badness]]: 0.139379 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 100/99, 245/243, 78125/76832 | |||
Mapping: {{mapping| 1 -5 -5 -10 2 | 0 18 20 35 4 }} | |||
Optimal tuning (POTE): ~2 = 1200.000, ~9/7 = 439.152 | |||
{{Optimal ET sequence|legend=0| 11cd, 30d, 41, 153be, 194be, 235bcee }} | |||
Badness: 0.070917 | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 100/99, 144/143, 196/195, 1375/1352 | |||
Mapping: {{mapping| 1 -5 -5 -10 2 -8 | 0 18 20 35 4 32 }} | |||
Optimal tuning (POTE): ~2 = 1200.000, ~9/7 = 439.119 | |||
{{Optimal ET sequence|legend=0| 11cdf, 30df, 41 }} | |||
Badness: 0.052835 | |||
== Superenneadecal == | |||
Superenneadecal is a cousin of [[enneadecal]] but sharper fifth is used to temper 245/243. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 245/243, 395136/390625 | |||
{{Mapping|legend=1| 19 0 14 -7 | 0 1 1 2 }} | |||
[[Optimal tuning]] ([[POTE]]): ~392/375 = 63.158, ~3/2 = 704.166 | |||
{{Optimal ET sequence|legend=1| 19, 76bcd, 95, 114, 133, 247b, 380bcd }} | |||
[[Badness]]: 0.132311 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 245/243, 2560/2541, 3773/3750 | |||
Mapping: {{mapping| 19 0 14 -7 96 | 0 1 1 2 -1 }} | |||
Optimal tuning (POTE): ~33/32 = 63.158, ~3/2 = 705.667 | |||
{{Optimal ET sequence|legend=0| 19, 76bcd, 95, 114e }} | |||
Badness: 0.101496 | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 196/195, 245/243, 832/825, 1001/1000 | |||
Mapping: {{mapping| 19 0 14 -7 96 10 | 0 1 1 2 -1 2 }} | |||
Optimal tuning (POTE): ~33/32 = 63.158, ~3/2 = 705.801 | |||
{{Optimal ET sequence|legend=0| 19, 76bcdf, 95, 114e }} | |||
Badness: 0.053197 | |||
== Magus == | |||
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Magus]].'' | |||
Magus temperament tempers out [[50331648/48828125]] (salegu) in the 5-limit. This temperament can be described as {{nowrap| 46 & 49 }} temperament, which tempers out the sensamagic and 28672/28125 (sazoquingu). The alternative extension [[starling temperaments #Amigo|amigo]] ({{nowrap|43 & 46}}) tempers out the same 5-limit comma as the magus, but with the [[126/125|starling comma]] (126/125) rather than the sensamagic tempered out. | |||
Magus has a generator of a sharp ~5/4 (so that ~[[25/16]] is twice as sharp so that it makes sense to equate with [[11/7]] by tempering [[176/175]]), so that three reaches [[128/125]] short of the octave (where 128/125 is tuned narrow); this is significant because magus reaches [[3/2]] as ([[25/16]])/([[128/125]])<sup>3</sup>, that is, {{nowrap|2 + 3 × 3 {{=}} 11}} generators. Therefore, it implies that [[25/24]] is split into three [[128/125]]'s. Therefore, in the 5-limit, magus can be thought of as a higher-complexity and sharper analogue of [[würschmidt]] (which reaches [[3/2]] as (25/16)/(128/125)<sup>2</sup> implying 25/24 is split into two 128/125's thus having a guaranteed neutral third), which itself is a higher-complexity and sharper analogue of [[magic]] (which equates 25/24 with 128/125 by flattening 5). For more details on these connections see [[Würschmidt comma]]. | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 245/243, 28672/28125 | |||
{{Mapping|legend=1| 1 -2 2 -6 | 0 11 1 27 }} | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~5/4 = 391.465 | |||
{{Optimal ET sequence|legend=1| 46, 95, 141bc, 187bc, 328bbcc }} | |||
[[Badness]]: 0.108417 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 176/175, 245/243, 1331/1323 | |||
Mapping: {{mapping| 1 -2 2 -6 -6 | 0 11 1 27 29 }} | |||
Optimal tuning (POTE): ~2 = 1200.000, ~5/4 = 391.503 | |||
{{Optimal ET sequence|legend=0| 46, 95, 141bc }} | |||
Badness: 0.045108 | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 91/90, 176/175, 245/243, 1331/1323 | |||
Mapping: {{mapping| 1 -2 2 -6 -6 5 | 0 11 1 27 29 -4 }} | |||
Optimal tuning (POTE): ~2 = 1200.000, ~5/4 = 391.366 | |||
{{Optimal ET sequence|legend=0| 46, 233bcff, 279bccff }} | |||
Badness: 0.043024 | |||
== Leapweek == | |||
: ''Not to be confused with scales produced by leap week calendars such as [[Symmetry454]].'' | |||
[[Subgroup]]: 2.3.5.7 | |||
[[Comma list]]: 245/243, 2097152/2066715 | |||
{{Mapping|legend=1| 1 0 42 -21 | 0 1 -25 15 }} | |||
: mapping generators: ~2, ~3 | |||
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~3/2 = 704.536 | |||
{{Optimal ET sequence|legend=1| 17, 29c, 46, 109, 155, 264b, 419b }} | |||
[[Badness]]: 0.140577 | |||
=== 11-limit === | |||
Subgroup: 2.3.5.7.11 | |||
Comma list: 245/243, 385/384, 1331/1323 | |||
Mapping: {{mapping| 1 0 42 -21 -14 | 0 1 -25 15 11 }} | |||
Optimal tuning (POTE): ~2 = 1200.000, ~3/2 = 704.554 | |||
{{Optimal ET sequence|legend=0| 17, 29c, 46, 109, 264b, 373b, 637bbe }} | |||
Badness: 0.050679 | |||
=== 13-limit === | |||
Subgroup: 2.3.5.7.11.13 | |||
Comma list: 169/168, 245/243, 352/351, 364/363 | |||
Mapping: {{mapping| 1 0 42 -21 -14 -9 | 0 1 -25 15 11 8 }} | |||
Optimal tuning (POTE): ~2 = 1200.000, ~3/2 = 704.571 | |||
{{Optimal ET sequence|legend=0| 17, 29c, 46, 63, 109 }} | |||
Badness: 0.032727 | |||
==== 17-limit ==== | |||
Subgroup: 2.3.5.7.11.13.17 | |||
Comma list: 154/153, 169/168, 245/243, 256/255, 273/272 | |||
Mapping: {{mapping| 1 0 42 -21 -14 -9 -34 | 0 1 -25 15 11 8 24 }} | |||
Optimal tuning (POTE): ~2 = 1200.000, ~3/2 = 704.540 | |||
{{Optimal ET sequence|legend=0| 17g, 29cg, 46, 109, 155f, 264bfg }} | |||
Badness: 0.026243 | |||
==== Leapweeker ==== | |||
Subgroup: 2.3.5.7.11.13.17 | |||
Comma list: 136/135, 169/168, 221/220, 245/243, 364/363 | |||
Mapping: {{mapping| 1 0 42 -21 -14 -9 39 | 0 1 -25 15 11 8 -22 }} | |||
Optimal tuning (POTE): ~2 = 1200.000, ~3/2 = 704.537 | |||
{{Optimal ET sequence|legend=0| 17, 29c, 46, 109g, 155fg, 264bfgg }} | |||
Badness: 0.026774 | |||
[[Category:Temperament clans]] | |||
[[Category:Pages with mostly numerical content]] | |||
[[Category:Sensamagic clan| ]] <!-- main article --> | |||
[[Category:Rank 2]] | |||
[[Category:Listen]] |