Sensamagic clan: Difference between revisions

ArrowHead294 (talk | contribs)
mNo edit summary
Tags: Mobile edit Mobile web edit
 
(10 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Technical data page}}
The '''sensamagic clan''' tempers out the sensamagic comma, [[245/243]], a triprime [[comma]] with no factors of 2, {{val| 0 -5 1 2 }} to be exact. Tempering out 245/243 alone in the full 7-limit leads to a [[Planar temperament|rank-3 temperament]], [[sensamagic]], for which [[283edo]] is the [[optimal patent val]].
The '''sensamagic clan''' tempers out the sensamagic comma, [[245/243]], a triprime [[comma]] with no factors of 2, {{val| 0 -5 1 2 }} to be exact. Tempering out 245/243 alone in the full 7-limit leads to a [[Planar temperament|rank-3 temperament]], [[sensamagic]], for which [[283edo]] is the [[optimal patent val]].


== BPS ==
== BPS ==
{{Main|Bohlen–Pierce–Stearns}}
{{Main| BPS }}
''BPS'', for ''Bohlen–Pierce–Stearns'', is the 3.5.7 subgroup temperament tempering out 245/243. This subgroup temperament was formerly called the ''lambda'' temperament, which was named after the [[4L 5s (tritave-equivalent)|lambda scale]].
 
BPS, for ''Bohlen–Pierce–Stearns'', is the 3.5.7-subgroup temperament tempering out 245/243. This subgroup temperament was formerly called the ''lambda'' temperament, which was named after the [[4L 5s (tritave-equivalent)|lambda scale]].


[[Subgroup]]: 3.5.7
[[Subgroup]]: 3.5.7
Line 9: Line 11:
[[Comma list]]: 245/243
[[Comma list]]: 245/243


{{mapping|legend=2| 1 1 2 | 0 -2 1 }}
{{Mapping|legend=2| 1 1 2 | 0 -2 1 }}


: sval mapping generators: ~3, ~9/7
: sval mapping generators: ~3, ~9/7


[[Optimal tuning]] ([[POTE]]): ~3 = 1\1edt, ~9/7 = 440.4881
[[Optimal tuning]] ([[POTE]]): ~3 = 1901.9550, ~9/7 = 440.4881


[[Optimal ET sequence]]: [[4edt|b4]], [[9edt|b9]], [[13edt|b13]], [[56edt|b56]], [[69edt|b69]], [[82edt|b82]], [[95edt|b95]]
[[Optimal ET sequence]]: [[4edt|b4]], [[9edt|b9]], [[13edt|b13]], [[56edt|b56]], [[69edt|b69]], [[82edt|b82]], [[95edt|b95]]
Line 21: Line 23:


These temperaments are distributed into different family pages.
These temperaments are distributed into different family pages.
* [[Sensi]] (+126/125) → [[Sensipent family#Sensi|Sensipent family]]
* [[Sensi]] (+126/125) → [[Sensipent family #Sensi|Sensipent family]]
* ''[[Hedgehog]]'' (+50/49) → [[Porcupine family#Hedgehog|Porcupine family]]
* ''[[Hedgehog]]'' (+50/49) → [[Porcupine family #Hedgehog|Porcupine family]]
* ''[[Cohemiripple]]'' (+1323/1250) → [[Ripple family#Cohemiripple|Ripple family]]
* ''[[Cohemiripple]]'' (+1323/1250) → [[Ripple family #Cohemiripple|Ripple family]]
* ''[[Fourfives]]'' (+235298/234375) → [[Fifive family#Fourfives|Fifive family]]
* ''[[Fourfives]]'' (+235298/234375) → [[Fifive family #Fourfives|Fifive family]]


The others are weak extensions. Father tempers out [[16/15]], splitting the generator in two. Godzilla tempers out [[49/48]] with a hemitwelfth period. Sidi tempers out [[25/24]], splitting the generator in two with a hemitwelfth period. Clyde tempers out [[3136/3125]] with a 1/6-twelfth period. Superpyth tempers out [[64/63]], splitting the generator in six. Magic tempers out [[225/224]] with a 1/5-twelfth period. Octacot tempers out [[2401/2400]], splitting the generator in five. Hemiaug tempers out [[128/125]]. Pental tempers out [[16807/16384]]. These split the generator in seven. Bamity tempers out [[64827/64000]], splitting the generator in nine. Rodan tempers out [[1029/1024]], splitting the generator in ten. Shrutar tempers out [[2048/2025]], splitting the generator in eleven. Finally, escaped tempers out [[65625/65536]], splitting the generator in sixteen.  
The others are weak extensions. Father tempers out [[16/15]], splitting the generator in two. Godzilla tempers out [[49/48]] with a hemitwelfth period. Sidi tempers out [[25/24]], splitting the generator in two with a hemitwelfth period. Clyde tempers out [[3136/3125]] with a 1/6-twelfth period. Superpyth tempers out [[64/63]], splitting the generator in six. Magic tempers out [[225/224]] with a 1/5-twelfth period. Octacot tempers out [[2401/2400]], splitting the generator in five. Hemiaug tempers out [[128/125]]. Pentacloud tempers out [[16807/16384]]. These split the generator in seven. Bamity tempers out [[64827/64000]], splitting the generator in nine. Rodan tempers out [[1029/1024]], splitting the generator in ten. Shrutar tempers out [[2048/2025]], splitting the generator in eleven. Finally, escaped tempers out [[65625/65536]], splitting the generator in sixteen.  


Discussed elsewhere are
Discussed elsewhere are
* [[Father]] (+16/15 or 28/27) → [[Father family #Father|Father family]]
* [[Father]] (+16/15 or 28/27) → [[Father family #Father|Father family]]
* [[Godzilla]] (+49/48 or 81/80) → [[Meantone family #Godzilla|Meantone family]]
* [[Godzilla]] (+49/48 or 81/80) → [[Semaphoresmic clan #Godzilla|Semaphoresmic clan]]
* ''[[Sidi]]'' (+25/24) → [[Dicot family #Sidi|Dicot family]]
* ''[[Sidi]]'' (+25/24) → [[Dicot family #Sidi|Dicot family]]
* ''[[Clyde]]'' (+3136/3125) → [[Kleismic family #Clyde|Kleismic family]]
* ''[[Clyde]]'' (+3136/3125) → [[Kleismic family #Clyde|Kleismic family]]
Line 37: Line 39:
* ''[[Octacot]]'' (+2401/2400) → [[Tetracot family #Octacot|Tetracot family]]
* ''[[Octacot]]'' (+2401/2400) → [[Tetracot family #Octacot|Tetracot family]]
* ''[[Hemiaug]]'' (+128/125) → [[Augmented family #Hemiaug|Augmented family]]
* ''[[Hemiaug]]'' (+128/125) → [[Augmented family #Hemiaug|Augmented family]]
* ''[[Pental (temperament)|Pental]]'' (+16807/16384) → [[Pental family #Septimal pental|Pental family]]
* ''[[Pentacloud]]'' (+16807/16384) → [[Quintile family #Pentacloud|Quintile family]]
* ''[[Bamity]]'' (+64827/64000) → [[Amity family #Bamity|Amity family]]
* ''[[Bamity]]'' (+64827/64000) → [[Amity family #Bamity|Amity family]]
* [[Rodan]] (+1029/1024) → [[Gamelismic clan #Rodan|Gamelismic clan]]
* [[Rodan]] (+1029/1024) → [[Gamelismic clan #Rodan|Gamelismic clan]]
Line 43: Line 45:
* ''[[Escaped]]'' (+65625/65536) → [[Escapade family #Escaped|Escapade family]]
* ''[[Escaped]]'' (+65625/65536) → [[Escapade family #Escaped|Escapade family]]


For ''no-twos'' extensions, see [[No-twos subgroup temperaments#BPS]].
For ''no-twos'' extensions, see [[No-twos subgroup temperaments #BPS]].


Considered below are bohpier, salsa, pycnic, superthird, magus and leapweek.
Considered below are bohpier, salsa, pycnic, superthird, magus and leapweek.


== Bohpier ==
== Bohpier ==
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Bohpier]].''
{{Main| Bohpier }}
{{Main| Bohpier }}
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Bohpier]].''


'''[[Bohpier]]''' is named after its [[Relationship between Bohlen-Pierce and octave-ful temperaments|interesting relationship with the non-octave Bohlen–Pierce equal temperament]].
Bohpier is named after its interesting [[relationship between Bohlen–Pierce and octave-ful temperaments|relationship with the non-octave Bohlen–Pierce equal temperament]].


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 59: Line 61:
{{Mapping|legend=1| 1 0 0 0 | 0 13 19 23 }}
{{Mapping|legend=1| 1 0 0 0 | 0 13 19 23 }}


{{Multival|legend=1| 13 19 23 0 0 0 }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~27/25 = 146.474
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~27/25 = 146.474


[[Minimax tuning]]:  
[[Minimax tuning]]:  
* [[7-odd-limit]]: ~27/25 = {{monzo| 0 0 1/19 }}
* [[7-odd-limit]]: ~27/25 = {{monzo| 0 0 1/19 }}
: [[Eigenmonzo basis|Eigenmonzo (unchanged-interval) basis]]: 2.5
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.5
* [[9-odd-limit]]: ~27/25 = {{monzo| 0 1/13 }}
* [[9-odd-limit]]: ~27/25 = {{monzo| 0 1/13 }}
: [[Eigenmonzo basis|Eigenmonzo (unchanged-interval) basis]]: 2.3
: [[eigenmonzo basis|unchanged-interval (eigenmonzo) basis]]: 2.3


{{Optimal ET sequence|legend=1| 41, 131, 172, 213c }}
{{Optimal ET sequence|legend=1| 41, 131, 172, 213c }}
Line 80: Line 80:
Mapping: {{mapping| 1 0 0 0 2 | 0 13 19 23 12 }}
Mapping: {{mapping| 1 0 0 0 2 | 0 13 19 23 12 }}


Optimal tuning (POTE): ~2 = 1\1, ~12/11 = 146.545
Optimal tuning (POTE): ~2 = 1200.000, ~12/11 = 146.545


Minimax tuning:  
Minimax tuning:  
* 11-odd-limit: ~12/11 = {{monzo| 1/7 1/7 0 0 -1/14 }}
* 11-odd-limit: ~12/11 = {{monzo| 1/7 1/7 0 0 -1/14 }}
: Eigenmonzo basis (unchanged-interval basis): 2.11/9
: unchanged-interval (eigenmonzo) basis: 2.11/9


{{Optimal ET sequence|legend=1| 41, 90e, 131e }}
{{Optimal ET sequence|legend=0| 41, 90e, 131e }}


Badness: 0.033949
Badness: 0.033949
Line 97: Line 97:
Mapping: {{mapping| 1 0 0 0 2 2 | 0 13 19 23 12 14 }}
Mapping: {{mapping| 1 0 0 0 2 2 | 0 13 19 23 12 14 }}


Optimal tuning (POTE): ~2 = 1\1, ~12/11 = 146.603
Optimal tuning (POTE): ~2 = 1200.000, ~12/11 = 146.603


Minimax tuning:  
Minimax tuning:  
* 13- and 15-odd-limit: ~12/11 = {{monzo| 0 0 1/19 }}
* 13- and 15-odd-limit: ~12/11 = {{monzo| 0 0 1/19 }}
: Eigenmonzo (unchanged-interval) basis: 2.5
: Unchanged-interval (eigenmonzo) basis: 2.5


{{Optimal ET sequence|legend=1| 41, 90ef, 131ef, 221bdeff }}
{{Optimal ET sequence|legend=0| 41, 90ef, 131ef, 221bdeff }}


Badness: 0.024864
Badness: 0.024864
; Music
by [[Chris Vaisvil]]:
* [http://micro.soonlabel.com/bophier/bophier-1.mp3 bophier-1.mp3]
* [http://micro.soonlabel.com/bophier/bophier-12equal-six-octaves.mp3 bophier-12equal-six-octaves.mp3]


=== Triboh ===
=== Triboh ===
'''Triboh''' is named after "[[39edt|Triple Bohlen–Pierce scale]]", which divides each step of the [[13edt|equal-tempered]] [[Bohlen–Pierce]] scale into three equal parts.  
Triboh is named after the "[[39edt|Triple Bohlen–Pierce scale]]", which divides each step of the [[13edt|equal-tempered]] [[Bohlen–Pierce]] scale into three equal parts.  


Subgroup: 2.3.5.7.11
Subgroup: 2.3.5.7.11
Line 121: Line 116:
Mapping: {{mapping| 1 0 0 0 0 | 0 39 57 69 85 }}
Mapping: {{mapping| 1 0 0 0 0 | 0 39 57 69 85 }}


Optimal tuning (POTE): ~2 = 1\1, ~77/75 = 48.828
Optimal tuning (POTE): ~2 = 1200.000, ~77/75 = 48.828


{{Optimal ET sequence|legend=1| 49, 123ce, 172 }}
{{Optimal ET sequence|legend=0| 49, 123ce, 172 }}


Badness: 0.162592
Badness: 0.162592
Line 134: Line 129:
Mapping: {{mapping| 1 0 0 0 0 0 | 0 39 57 69 85 91 }}
Mapping: {{mapping| 1 0 0 0 0 0 | 0 39 57 69 85 91 }}


Optimal tuning (POTE): ~2 = 1\1, ~77/75 = 48.822
Optimal tuning (POTE): ~2 = 1200.000, ~77/75 = 48.822


{{Optimal ET sequence|legend=1| 49f, 123ce, 172f, 295ce, 467bccef }}
{{Optimal ET sequence|legend=0| 49f, 123ce, 172f, 295ce, 467bccef }}


Badness: 0.082158
Badness: 0.082158
Line 149: Line 144:
{{Mapping|legend=1| 1 1 7 -1 | 0 2 -16 13 }}
{{Mapping|legend=1| 1 1 7 -1 | 0 2 -16 13 }}


{{Multival|legend=1| 2 -16 13 -30 15 75 }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~128/105 = 351.049
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~128/105 = 351.049


{{Optimal ET sequence|legend=1| 17, 24, 41, 106d, 147d, 188cd, 335cd }}
{{Optimal ET sequence|legend=1| 17, 24, 41, 106d, 147d, 188cd, 335cd }}
Line 164: Line 157:
Mapping: {{mapping| 1 1 7 -1 2 | 0 2 -16 13 5 }}
Mapping: {{mapping| 1 1 7 -1 2 | 0 2 -16 13 5 }}


Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 351.014
Optimal tuning (POTE): ~2 = 1200.000, ~11/9 = 351.014


{{Optimal ET sequence|legend=1| 17, 24, 41, 106d, 147d }}
{{Optimal ET sequence|legend=0| 17, 24, 41, 106d, 147d }}


Badness: 0.039444
Badness: 0.039444
Line 177: Line 170:
Mapping: {{mapping| 1 1 7 -1 2 4 | 0 2 -16 13 5 -1 }}
Mapping: {{mapping| 1 1 7 -1 2 4 | 0 2 -16 13 5 -1 }}


Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 351.025
Optimal tuning (POTE): ~2 = 1200.000, ~11/9 = 351.025


{{Optimal ET sequence|legend=1| 17, 24, 41, 106df, 147df }}
{{Optimal ET sequence|legend=0| 17, 24, 41, 106df, 147df }}


Badness: 0.030793
Badness: 0.030793


== Pycnic ==
== Pycnic ==
{{See also| High badness temperaments #Stump }}
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Stump]].''


The fifth of pycnic in size is a meantone fifth, but four of them are not used to reach 5. This has the effect of making the Pythagorean major third, nominally 81/64, very close to 5/4 in tuning, being a cent sharp of it in the POTE tuning for instance. Pycnic has [[mos]] of size 9, 11, 13, 15, 17… which contain these alternative thirds, leading to two kinds of major triads, an official one and a nominally Pythagorean one which is actually in better tune.
The fifth of pycnic in size is a meantone fifth, but four of them are not used to reach 5. This has the effect of making the Pythagorean major third, nominally 81/64, very close to 5/4 in tuning, being a cent sharp of it in the POTE tuning for instance. Pycnic has [[mos]] of size 9, 11, 13, 15, 17… which contain these alternative thirds, leading to two kinds of major triads, an official one and a nominally Pythagorean one which is actually in better tune.
Line 194: Line 187:
{{Mapping|legend=1| 1 3 -1 8 | 0 -3 7 -11 }}
{{Mapping|legend=1| 1 3 -1 8 | 0 -3 7 -11 }}


{{Multival|legend=1| 3 -7 11 -18 9 45 }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~45/32 = 567.720
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~45/32 = 567.720


{{Optimal ET sequence|legend=1| 17, 19, 55c, 74cd, 93cdd }}
{{Optimal ET sequence|legend=1| 17, 19, 55c, 74cd, 93cdd }}
Line 203: Line 194:


== Superthird ==
== Superthird ==
{{See also| Shibboleth family }}
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Shibboleth]].''


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 211: Line 202:
{{Mapping|legend=1| 1 -5 -5 -10 | 0 18 20 35 }}
{{Mapping|legend=1| 1 -5 -5 -10 | 0 18 20 35 }}


{{Multival|legend=1| 18 20 35 -10 5 25 }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~9/7 = 439.076
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~9/7 = 439.076


{{Optimal ET sequence|legend=1| 11cd, 30d, 41, 317bcc, 358bcc, 399bcc }}
{{Optimal ET sequence|legend=1| 11cd, 30d, 41, 317bcc, 358bcc, 399bcc }}
Line 226: Line 215:
Mapping: {{mapping| 1 -5 -5 -10 2 | 0 18 20 35 4 }}
Mapping: {{mapping| 1 -5 -5 -10 2 | 0 18 20 35 4 }}


Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 439.152
Optimal tuning (POTE): ~2 = 1200.000, ~9/7 = 439.152


{{Optimal ET sequence|legend=1| 11cd, 30d, 41, 153be, 194be, 235bcee }}
{{Optimal ET sequence|legend=0| 11cd, 30d, 41, 153be, 194be, 235bcee }}


Badness: 0.070917
Badness: 0.070917
Line 239: Line 228:
Mapping: {{mapping| 1 -5 -5 -10 2 -8 | 0 18 20 35 4 32 }}
Mapping: {{mapping| 1 -5 -5 -10 2 -8 | 0 18 20 35 4 32 }}


Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 439.119
Optimal tuning (POTE): ~2 = 1200.000, ~9/7 = 439.119


{{Optimal ET sequence|legend=1| 11cdf, 30df, 41 }}
{{Optimal ET sequence|legend=0| 11cdf, 30df, 41 }}


Badness: 0.052835
Badness: 0.052835
Line 254: Line 243:
{{Mapping|legend=1| 19 0 14 -7 | 0 1 1 2 }}
{{Mapping|legend=1| 19 0 14 -7 | 0 1 1 2 }}


[[Optimal tuning]] ([[POTE]]): ~392/375 = 1\19, ~3/2 = 704.166
[[Optimal tuning]] ([[POTE]]): ~392/375 = 63.158, ~3/2 = 704.166


{{Optimal ET sequence|legend=1| 19, 76bcd, 95, 114, 133, 247b, 380bcd }}
{{Optimal ET sequence|legend=1| 19, 76bcd, 95, 114, 133, 247b, 380bcd }}
Line 267: Line 256:
Mapping: {{mapping| 19 0 14 -7 96 | 0 1 1 2 -1 }}
Mapping: {{mapping| 19 0 14 -7 96 | 0 1 1 2 -1 }}


Optimal tuning (POTE): ~33/32 = 1\19, ~3/2 = 705.667
Optimal tuning (POTE): ~33/32 = 63.158, ~3/2 = 705.667


{{Optimal ET sequence|legend=1| 19, 76bcd, 95, 114e }}
{{Optimal ET sequence|legend=0| 19, 76bcd, 95, 114e }}


Badness: 0.101496
Badness: 0.101496
Line 280: Line 269:
Mapping: {{mapping| 19 0 14 -7 96 10 | 0 1 1 2 -1 2 }}
Mapping: {{mapping| 19 0 14 -7 96 10 | 0 1 1 2 -1 2 }}


Optimal tuning (POTE): ~33/32 = 1\19, ~3/2 = 705.801
Optimal tuning (POTE): ~33/32 = 63.158, ~3/2 = 705.801


{{Optimal ET sequence|legend=1| 19, 76bcdf, 95, 114e }}
{{Optimal ET sequence|legend=0| 19, 76bcdf, 95, 114e }}


Badness: 0.053197
Badness: 0.053197


== Magus ==
== Magus ==
: ''For the 5-limit version of this temperament, see [[High badness temperaments #Magus]].''
: ''For the 5-limit version, see [[Miscellaneous 5-limit temperaments #Magus]].''


Magus temperament tempers out [[50331648/48828125]] (salegu) in the 5-limit. This temperament can be described as 46 & 49 temperament, which tempers out the sensamagic and 28672/28125 (sazoquingu). The alternative extension [[Starling temperaments #Amigo|amigo]] ({{nowrap|43 & 46}}) tempers out the same 5-limit comma as the magus, but with the [[126/125|starling comma]] (126/125) rather than the sensamagic tempered out.
Magus temperament tempers out [[50331648/48828125]] (salegu) in the 5-limit. This temperament can be described as {{nowrap| 46 & 49 }} temperament, which tempers out the sensamagic and 28672/28125 (sazoquingu). The alternative extension [[starling temperaments #Amigo|amigo]] ({{nowrap|43 & 46}}) tempers out the same 5-limit comma as the magus, but with the [[126/125|starling comma]] (126/125) rather than the sensamagic tempered out.


Magus has a generator of a sharp ~5/4 (so that ~[[25/16]] is twice as sharp so that it makes sense to equate with [[11/7]] by tempering [[176/175]]), so that three reaches [[128/125]] short of the octave (where 128/125 is tuned narrow); this is significant because magus reaches [[3/2]] as ([[25/16]])/([[128/125]])<sup>3</sup>, that is, {{nowrap|2 + 3 × 3 {{=}} 11}} generators. Therefore, it implies that [[25/24]] is split into three [[128/125]]'s. Therefore, in the 5-limit, Magus can be thought of as a higher-complexity and sharper analogue of [[Würschmidt]] (which reaches [[3/2]] as (25/16)/(128/125)<sup>2</sup> implying 25/24 is split into two 128/125's thus having a guaranteed neutral third), which itself is a higher-complexity and sharper analogue of [[Magic]] (which equates 25/24 with 128/125 by flattening 5). For more details on these connections see [[Würschmidt comma]].
Magus has a generator of a sharp ~5/4 (so that ~[[25/16]] is twice as sharp so that it makes sense to equate with [[11/7]] by tempering [[176/175]]), so that three reaches [[128/125]] short of the octave (where 128/125 is tuned narrow); this is significant because magus reaches [[3/2]] as ([[25/16]])/([[128/125]])<sup>3</sup>, that is, {{nowrap|2 + 3 × 3 {{=}} 11}} generators. Therefore, it implies that [[25/24]] is split into three [[128/125]]'s. Therefore, in the 5-limit, magus can be thought of as a higher-complexity and sharper analogue of [[würschmidt]] (which reaches [[3/2]] as (25/16)/(128/125)<sup>2</sup> implying 25/24 is split into two 128/125's thus having a guaranteed neutral third), which itself is a higher-complexity and sharper analogue of [[magic]] (which equates 25/24 with 128/125 by flattening 5). For more details on these connections see [[Würschmidt comma]].


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 299: Line 288:
{{Mapping|legend=1| 1 -2 2 -6 | 0 11 1 27 }}
{{Mapping|legend=1| 1 -2 2 -6 | 0 11 1 27 }}


{{Multival|legend=1| 11 1 27 -24 12 60 }}
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~5/4 = 391.465
 
[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~5/4 = 391.465


{{Optimal ET sequence|legend=1| 46, 95, 141bc, 187bc, 328bbcc }}
{{Optimal ET sequence|legend=1| 46, 95, 141bc, 187bc, 328bbcc }}
Line 314: Line 301:
Mapping: {{mapping| 1 -2 2 -6 -6 | 0 11 1 27 29 }}
Mapping: {{mapping| 1 -2 2 -6 -6 | 0 11 1 27 29 }}


Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 391.503
Optimal tuning (POTE): ~2 = 1200.000, ~5/4 = 391.503


{{Optimal ET sequence|legend=1| 46, 95, 141bc }}
{{Optimal ET sequence|legend=0| 46, 95, 141bc }}


Badness: 0.045108
Badness: 0.045108
Line 327: Line 314:
Mapping: {{mapping| 1 -2 2 -6 -6 5 | 0 11 1 27 29 -4 }}
Mapping: {{mapping| 1 -2 2 -6 -6 5 | 0 11 1 27 29 -4 }}


Optimal tuning (POTE): ~2 = 1\1, ~5/4 = 391.366
Optimal tuning (POTE): ~2 = 1200.000, ~5/4 = 391.366


{{Optimal ET sequence|legend=1| 46, 233bcff, 279bccff }}
{{Optimal ET sequence|legend=0| 46, 233bcff, 279bccff }}


Badness: 0.043024
Badness: 0.043024


== Leapweek ==
== Leapweek ==
:''Not to be confused with scales produced by leap week calendars such as [[Symmetry454]].''
: ''Not to be confused with scales produced by leap week calendars such as [[Symmetry454]].''


[[Subgroup]]: 2.3.5.7
[[Subgroup]]: 2.3.5.7
Line 344: Line 331:
: mapping generators: ~2, ~3
: mapping generators: ~2, ~3


[[Optimal tuning]] ([[POTE]]): ~2 = 1\1, ~3/2 = 704.536
[[Optimal tuning]] ([[POTE]]): ~2 = 1200.000, ~3/2 = 704.536


{{Optimal ET sequence|legend=1| 17, 29c, 46, 109, 155, 264b, 419b }}
{{Optimal ET sequence|legend=1| 17, 29c, 46, 109, 155, 264b, 419b }}
Line 357: Line 344:
Mapping: {{mapping| 1 0 42 -21 -14 | 0 1 -25 15 11 }}
Mapping: {{mapping| 1 0 42 -21 -14 | 0 1 -25 15 11 }}


Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.554
Optimal tuning (POTE): ~2 = 1200.000, ~3/2 = 704.554


{{Optimal ET sequence|legend=1| 17, 29c, 46, 109, 264b, 373b, 637bbe }}
{{Optimal ET sequence|legend=0| 17, 29c, 46, 109, 264b, 373b, 637bbe }}


Badness: 0.050679
Badness: 0.050679
Line 370: Line 357:
Mapping: {{mapping| 1 0 42 -21 -14 -9 | 0 1 -25 15 11 8 }}
Mapping: {{mapping| 1 0 42 -21 -14 -9 | 0 1 -25 15 11 8 }}


Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.571
Optimal tuning (POTE): ~2 = 1200.000, ~3/2 = 704.571


{{Optimal ET sequence|legend=1| 17, 29c, 46, 63, 109 }}
{{Optimal ET sequence|legend=0| 17, 29c, 46, 63, 109 }}


Badness: 0.032727
Badness: 0.032727
Line 383: Line 370:
Mapping: {{mapping| 1 0 42 -21 -14 -9 -34 | 0 1 -25 15 11 8 24 }}
Mapping: {{mapping| 1 0 42 -21 -14 -9 -34 | 0 1 -25 15 11 8 24 }}


Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.540
Optimal tuning (POTE): ~2 = 1200.000, ~3/2 = 704.540


{{Optimal ET sequence|legend=1| 17g, 29cg, 46, 109, 155f, 264bfg }}
{{Optimal ET sequence|legend=0| 17g, 29cg, 46, 109, 155f, 264bfg }}


Badness: 0.026243
Badness: 0.026243
Line 396: Line 383:
Mapping: {{mapping| 1 0 42 -21 -14 -9 39 | 0 1 -25 15 11 8 -22 }}
Mapping: {{mapping| 1 0 42 -21 -14 -9 39 | 0 1 -25 15 11 8 -22 }}


Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 704.537
Optimal tuning (POTE): ~2 = 1200.000, ~3/2 = 704.537


{{Optimal ET sequence|legend=1| 17, 29c, 46, 109g, 155fg, 264bfgg }}
{{Optimal ET sequence|legend=0| 17, 29c, 46, 109g, 155fg, 264bfgg }}


Badness: 0.026774
Badness: 0.026774


[[Category:Temperament clans]]
[[Category:Temperament clans]]
[[Category:Pages with mostly numerical content]]
[[Category:Sensamagic clan| ]] <!-- main article -->
[[Category:Sensamagic clan| ]] <!-- main article -->
[[Category:Rank 2]]
[[Category:Rank 2]]
[[Category:Listen]]
[[Category:Listen]]