95ed5: Difference between revisions
m {{todo|expand}} & collapsible |
ArrowHead294 (talk | contribs) mNo edit summary |
||
(6 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ED intro}} | |||
== Theory == | |||
95ed5 is related to [[41edo]], but with the 5th harmonic rather than the [[2/1|octave]] being just. The octave is about 2.51 cents stretched. This tuning has a generally sharp tendency for [[harmonic]]s up to 12. Unlike 41edo, it is only [[consistent]] up to the [[integer limit|12-integer-limit]], with discrepancy for the [[13/1|13th harmonic]]. | |||
=== Harmonics === | |||
{{Harmonics in equal|95|5|1|intervals=integer}} | |||
{{Harmonics in equal|95|5|1|intervals=integer|columns=12|start=12|collapsed=1|title=Approximation of harmonics in 95ed5 (continued)}} | |||
=== Subsets and supersets === | |||
Since 95 factors into primes as {{nowrap| 5 × 19 }}, 95ed5 contains [[5ed5]] and [[19ed5]] as subset ed5's. | |||
== Intervals == | == Intervals == | ||
{| class="wikitable | {| class="wikitable center-1 right-2" | ||
|- | |- | ||
! | ! # | ||
! | ! Cents | ||
! | ! Approximate ratios | ||
|- | |- | ||
| 0 | |||
| 0.0 | |||
| | | [[1/1]] | ||
|- | |- | ||
| 1 | |||
| 29.3 | |||
| [[49/48]], [[50/49]], [[64/63]], [[81/80]] | |||
| | |||
|- | |- | ||
| 2 | |||
| 58.7 | |||
| | | [[25/24]], [[28/27]], [[33/32]], [[36/35]] | ||
|- | |- | ||
| 3 | |||
| | | 88.0 | ||
| | | [[19/18]], [[20/19]], [[21/20]], [[22/21]] | ||
|- | |- | ||
| 4 | |||
| 117.3 | |||
| | | [[14/13]], [[15/14]], [[16/15]] | ||
|- | |- | ||
| 5 | |||
| 146.6 | |||
| | | [[12/11]], [[13/12]] | ||
|- | |- | ||
| 6 | |||
| | | 176.0 | ||
| | | [[10/9]], [[11/10]], [[21/19]] | ||
|- | |- | ||
| 7 | |||
| 205.3 | |||
| [[9/8]] | |||
| | |||
|- | |- | ||
| 8 | |||
| 234.6 | |||
| [[8/7]], [[15/13]] | |||
|- | |- | ||
| 9 | |||
| | | 264.0 | ||
| | | [[7/6]], [[22/19]] | ||
|- | |- | ||
| 10 | |||
| 293.3 | |||
| [[13/11]], [[19/16]], [[32/27]] | |||
| | |||
|- | |- | ||
| 11 | |||
| 322.6 | |||
| | | [[6/5]] | ||
|- | |- | ||
| 12 | |||
| | | 352.0 | ||
| [[11/9]], [[16/13]] | |||
|- | |- | ||
| 13 | |||
| 381.3 | |||
| [[5/4]], [[26/21]] | |||
| | |||
|- | |- | ||
| 14 | |||
| 410.6 | |||
| [[19/15]] | |||
|- | |- | ||
| 15 | |||
| 439.9 | |||
| | | [[9/7]], [[32/25]] | ||
|- | |- | ||
| 16 | |||
| 469.3 | |||
| [[21/16]], [[13/10]] | |||
|- | |- | ||
| 17 | |||
| 498.6 | |||
| [[4/3]] | |||
|- | |- | ||
| 18 | |||
| 527.9 | |||
| [[15/11]], [[19/14]], [[27/20]] | |||
| | |||
|- | |- | ||
| 19 | |||
| 557.3 | |||
| | | [[11/8]], [[18/13]], [[26/19]] | ||
|- | |- | ||
| 20 | |||
| 586.6 | |||
| | | [[7/5]], [[45/32]] | ||
|- | |- | ||
| 21 | |||
| 615.9 | |||
| [[10/7]], [[64/45]] | |||
| | |||
|- | |- | ||
| 22 | |||
| 645.3 | |||
| | | [[13/9]], [[16/11]], [[19/13]] | ||
|- | |- | ||
| 23 | |||
| 674.6 | |||
| | | [[22/15]], [[28/19]], [[40/27]] | ||
|- | |- | ||
| 24 | |||
| 703.9 | |||
| [[3/2]] | |||
| | |||
|- | |- | ||
| 25 | |||
| 733.2 | |||
| | | [[20/13]], [[32/21]] | ||
|- | |- | ||
| 26 | |||
| 762.6 | |||
| [[14/9]], [[25/16]] | |||
| | |||
|- | |- | ||
| 27 | |||
| 791.9 | |||
| [[11/7]], [[19/12]], [[30/19]] | |||
| | |||
|- | |- | ||
| 28 | |||
| 821.2 | |||
| | | [[8/5]], [[21/13]] | ||
|- | |- | ||
| 29 | |||
| 850.6 | |||
| | | [[13/8]], [[18/11]] | ||
|- | |- | ||
| 30 | |||
| 879.9 | |||
| [[5/3]] | |||
| | |||
|- | |- | ||
| 31 | |||
| 909.2 | |||
| | | [[22/13]], [[27/16]], [[32/19]] | ||
|- | |- | ||
| 32 | |||
| 938.5 | |||
| [[12/7]], [[19/11]] | |||
| | |||
|- | |- | ||
| 33 | |||
| 967.9 | |||
| [[7/4]], [[26/15]] | |||
|- | |- | ||
| 34 | |||
| 997.2 | |||
| [[16/9]] | |||
|- | |- | ||
| 35 | |||
| 1026.5 | |||
| [[9/5]] | |||
| | |||
|- | |- | ||
| 36 | |||
| 1055.9 | |||
| | | [[11/6]] | ||
|- | |- | ||
| 37 | |||
| 1085.2 | |||
| | | [[13/7]], [[15/8]] | ||
|- | |- | ||
| 38 | |||
| 1114.5 | |||
| [[19/10]], [[21/11]] | |||
| | |||
|- | |- | ||
| 39 | |||
| 1143.9 | |||
| | | [[27/14]], [[35/18]] | ||
|- | |- | ||
| 40 | |||
| 1173.2 | |||
| | | [[49/25]], [[55/28]], [[63/32]] | ||
|- | |- | ||
| 41 | |||
| 1202.5 | |||
| | | [[2/1]] | ||
|- | |- | ||
| 42 | |||
| 1231.8 | |||
| | | [[45/22]], [[49/24]], [[55/27]], [[81/40]] | ||
|- | |- | ||
| 43 | |||
| 1261.2 | |||
| [[25/12]], [[33/16]] | |||
| | |||
|- | |- | ||
| 44 | |||
| 1290.5 | |||
| [[19/9]], [[21/10]] | |||
| | |||
|- | |- | ||
| 45 | |||
| 1319.8 | |||
| [[15/7]] | |||
|- | |- | ||
| 46 | |||
| 1349.2 | |||
| [[13/6]] | |||
| | |||
|- | |- | ||
| 47 | |||
| 1378.5 | |||
| | | [[11/5]] | ||
|- | |- | ||
| 48 | |||
| 1407.8 | |||
| | | [[9/4]] | ||
|- | |- | ||
| 49 | |||
| 1437.2 | |||
| [[16/7]] | |||
| | |||
|- | |- | ||
| 50 | |||
| 1466.5 | |||
| [[7/3]] | |||
|- | |- | ||
| 51 | |||
| 1495.8 | |||
| [[19/8]] | |||
| | |||
|- | |- | ||
| 52 | |||
| 1525.1 | |||
| [[12/5]] | |||
| | |||
|- | |- | ||
| 53 | |||
| 1554.5 | |||
| [[22/9]], [[27/11]] | |||
|- | |- | ||
| 54 | |||
| 1583.8 | |||
| [[5/2]] | |||
| | |||
|- | |- | ||
| 55 | |||
| 1613.1 | |||
| | | [[28/11]], [[33/13]] | ||
|- | |- | ||
| 56 | |||
| 1642.5 | |||
| | | [[18/7]] | ||
|- | |- | ||
| 57 | |||
| 1671.8 | |||
| [[21/8]] | |||
| | |||
|- | |- | ||
| 58 | |||
| 1701.1 | |||
| | | [[8/3]] | ||
|- | |- | ||
| 59 | |||
| 1730.4 | |||
| | | [[19/7]] | ||
|- | |- | ||
| 60 | |||
| 1759.8 | |||
| [[11/4]] | |||
| | |||
|- | |- | ||
| 61 | |||
| 1789.1 | |||
| [[14/5]] | |||
|- | |- | ||
| 62 | |||
| 1818.4 | |||
| [[20/7]] | |||
|- | |- | ||
| 63 | |||
| 1847.8 | |||
| [[26/9]] | |||
| | |||
|- | |- | ||
| 64 | |||
| 1877.1 | |||
| | | [[44/15]] | ||
|- | |- | ||
| 65 | |||
| 1906.4 | |||
| [[3/1]] | |||
| | |||
|- | |- | ||
| 66 | |||
| 1935.8 | |||
| | | [[40/13]] | ||
|- | |- | ||
| 67 | |||
| 1965.1 | |||
| [[25/8]], [[28/9]] | |||
|- | |- | ||
| 68 | |||
| 1994.4 | |||
| [[19/6]], [[22/7]] | |||
| | |||
|- | |- | ||
| 69 | |||
| 2023.7 | |||
| [[16/5]] | |||
| | |||
|- | |- | ||
| 70 | |||
| 2053.1 | |||
| [[13/4]] | |||
|- | |- | ||
| 71 | |||
| 2082.4 | |||
| [[10/3]] | |||
| | |||
|- | |- | ||
| 72 | |||
| 2111.7 | |||
| | | [[27/8]] | ||
|- | |- | ||
| 73 | |||
| 2141.1 | |||
| | | [[24/7]] | ||
|- | |- | ||
| 74 | |||
| 2170.4 | |||
| [[7/2]] | |||
| | |||
|- | |- | ||
| 75 | |||
| 2199.7 | |||
| | | [[25/7]] | ||
|- | |- | ||
| 76 | |||
| 2229.1 | |||
| | | [[18/5]] | ||
|- | |- | ||
| 77 | |||
| 2258.4 | |||
| [[11/3]] | |||
| | |||
|- | |- | ||
| 78 | |||
| 2287.7 | |||
| [[15/4]] | |||
|- | |- | ||
| 79 | |||
| 2317.0 | |||
| [[19/5]] | |||
|- | |- | ||
| 80 | |||
| 2346.4 | |||
| | | [[27/7]], [[35/9]] | ||
|- | |- | ||
| 81 | |||
| 2375.7 | |||
| | | [[55/14]], [[63/16]] | ||
|- | |- | ||
| 82 | |||
| 2405.0 | |||
| [[4/1]] | |||
| | |||
|- | |- | ||
| 83 | |||
| 2434.4 | |||
| | | [[49/12]], [[81/20]] | ||
|- | |- | ||
| 84 | |||
| 2463.7 | |||
| [[25/6]], [[33/8]] | |||
|- | |- | ||
| 85 | |||
| 2493.0 | |||
| [[21/5]] | |||
| | |||
|- | |- | ||
| 86 | |||
| 2522.3 | |||
| | | [[30/7]] | ||
|- | |- | ||
| 87 | |||
| 2551.7 | |||
| [[13/3]] | |||
|- | |- | ||
| 88 | |||
| 2581.0 | |||
| [[22/5]] | |||
| | |||
|- | |- | ||
| 89 | |||
| 2610.3 | |||
| | | [[9/2]] | ||
|- | |- | ||
| 90 | |||
| 2639.7 | |||
| | | [[16/7]] | ||
|- | |- | ||
| 91 | |||
| | | 2669.0 | ||
| | | [[14/3]] | ||
|- | |- | ||
| 92 | |||
| 2698.3 | |||
| | | [[19/4]] | ||
|- | |- | ||
| 93 | |||
| 2727.7 | |||
| | | [[24/5]] | ||
|- | |- | ||
| 94 | |||
| | | 2757.0 | ||
| [[39/8]] | |||
| | |||
|- | |- | ||
| 95 | |||
| 2786.3 | |||
| | | [[5/1]] | ||
|} | |} | ||
== | == As a generator == | ||
95ed5 can also be thought of as a [[generator]] of the 2.3.5.7.11.19-subgroup temperament which tempers out 1540/1539, 3025/3024, 6875/6859, and 184877/184320, which is a [[cluster temperament]] with 41 clusters of notes in an octave. While the small chroma interval between adjacent notes in each cluster represents 385/384 ~ 441/440 ~ 1479016/1476225 ~ 194579/194400 ~ 204800/204687 ~ 176000/175959 tempered together, the step interval is very versatile, representing 16807/16500 ~ 19551/19200 ~ 18000/17689 ~ 72900/71687 ~ 273375/268912 ~ 295245/290521 ~ 12100/11907 ~ 64/63 all tempered together. This temperament is supported by [[41edo]], [[491edo]] (491e val), and [[532edo]] (532d val) among others. | |||
== | == See also == | ||
* [[24edf]] – relative edf | |||
* [[41edo]] – relative edo | |||
* [[65edt]] – relative edt | |||
* [[106ed6]] – relative ed6 | |||
* [[147ed12]] – relative ed12 | |||
* [[361ed448]] – close to the zeta-optimized tuning for 41edo | |||
[[Category: | [[Category:41edo]] | ||