|
|
(11 intermediate revisions by 5 users not shown) |
Line 1: |
Line 1: |
| The '''division of the 10th harmonic into 40 equal parts''' (40ED10) is related to [[12edo|12EDO]], but with 10/1 instead of 2/1 being just. The step size (99.657843 [[cent]]s) of this [[equal-step tuning]] is very close to 1\12 (one step of 12 EDO).
| | {{Infobox ET}} |
| | {{ED intro}} |
|
| |
|
| It is possible to call this division a form of '''decibel tuning''' or '''kilobyte tuning''', as
| | == Theory == |
| | 40ed10 is related to [[12edo]], but with 10/1 instead of 2/1 being just. The octave is compressed from pure by 4.106{{c}}, a small but significant deviation. |
|
| |
|
| <math>10^{\frac{1}{10}} \approx 2^{\frac{1}{3}} = 1.2589254 \approx 1.2599210</math>;
| | === Harmonics === |
| | {{Harmonics in equal|40|10|1|intervals=integer}} |
| | {{Harmonics in equal|40|10|1intervals=integer|start=12|columns=12|collapsed=1|title=Approximation of harmonics in 40ed10 (continued)}} |
|
| |
|
| which lies in the basis of the definition of decibel. In addition, as a consequence of the previous formula,
| | === Subsets and supersets === |
| | Since 40 factors into 2<sup>3</sup> × 5, 40ed10 has subset ed10's {{EDs|equave=10| 2, 4, 5, 8, 10, and 20 }}. |
| | |
| | === Miscellany === |
| | It is possible to call this division a form of '''kilobyte tuning''', as |
|
| |
|
| <math>2^{10} \approx 10^{3} = 1024 \approx 1000</math>; | | <math>2^{10} \approx 10^{3} = 1024 \approx 1000</math>; |
|
| |
|
| which lies in the basis of using a "decimal" prefix to an otherwise binary unit of information. The octave, which is 12\40 = 3\10, is compressed by about 4.1 cents. | | which lies in the obsolete practice of using a decimal prefix to an otherwise binary unit of information. |
| | |
| == Theory ==
| |
| Since 40ED10 has relations to the proximity of 1024 to 1000, just like 12EDO it tempers out the lesser diesis of [[128/125]]. However in this situation the tempering has a different interpretation, namely that "in favor of 1000".
| |
|
| |
|
| === Interval === | | == Intervals == |
| {| class="wikitable" | | {| class="wikitable center-1 right-2" |
| |- | | |- |
| ! | degree | | ! # |
| ! | cents value | | ! Cents |
| ! | corresponding <br>JI intervals | | ! Approximate ratios |
| ! | comments
| |
| |- | | |- |
| | | 0
| | | 0 |
| | | 0.0000
| | | 0.0 |
| | | '''exact [[1/1]]''' | | | [[1/1]] |
| | |
| |
| |- | | |- |
| | | 1
| | | 1 |
| | | 99.6578
| | | 99.7 |
| | | [[18/17]]
| | | [[18/17]] |
| | |
| |
| |- | | |- |
| | | 2
| | | 2 |
| | | 199.3157
| | | 199.3 |
| | |
| | | [[9/8]] |
| | | | |
| |- | | |- |
| | | 3
| | | 3 |
| | | 298.9735 | | | 299.0 |
| | | [[19/16]]
| | | [[6/5]] |
| | |
| |
| |- | | |- |
| | | 4
| | | 4 |
| | | 398.6314
| | | 398.6 |
| | | | | | [[5/4]] |
| | |
| |
| |- | | |- |
| | | 5
| | | 5 |
| | | 498.2892
| | | 498.3 |
| | | [[4/3]]
| | | [[4/3]] |
| | |
| |
| |- | | |- |
| | | 6
| | | 6 |
| | | 597.9471
| | | 597.9 |
| | | [[24/17]]
| | | [[7/5]] |
| | |
| |
| |- | | |- |
| | | 7
| | | 7 |
| | | 697.6049
| | | 697.6 |
| | |
| | | [[3/2]] |
| | | | |
| |- | | |- |
| | | 8
| | | 8 |
| | | 797.2627
| | | 797.3 |
| | | | | | [[8/5]] |
| | |
| |
| |- | | |- |
| | | 9
| | | 9 |
| | | 896.9206
| | | 896.9 |
| | | | | | [[5/3]] |
| | |
| |
| |- | | |- |
| | | 10
| | | 10 |
| | | 996.5784
| | | 996.6 |
| | | [[16/9]]
| | | [[7/4]] |
| | |
| |
| |- | | |- |
| | | 11
| | | 11 |
| | | 1096.2363
| | | 1096.2 |
| | | [[32/17]]
| | | [[15/8]] |
| | |
| |
| |- | | |- |
| | | 12
| | | 12 |
| | | 1195.8941
| | | 1195.9 |
| | |
| | | [[2/1]] |
| | | compressed [[octave]] | |
| |- | | |- |
| | | 13
| | | 13 |
| | | 1295.5520
| | | 1295.6 |
| | |
| | | [[17/8]] |
| | | | |
| |- | | |- |
| | | 14
| | | 14 |
| | | 1395.2098
| | | 1395.2 |
| | | [[28/25|56/25]]
| | | [[9/4]] |
| | |
| |
| |- | | |- |
| | | 15
| | | 15 |
| | | 1494.8676
| | | 1494.9 |
| | |
| | | [[12/5]] |
| | | | |
| |- | | |- |
| | | 16
| | | 16 |
| | | 1594.5255
| | | 1594.5 |
| | |
| | | [[5/2]] |
| | | | |
| |- | | |- |
| | | 17
| | | 17 |
| | | 1694.1833
| | | 1694.2 |
| | |
| | | [[8/3]] |
| | | | |
| |- | | |- |
| | | 18
| | | 18 |
| | | 1793.8412
| | | 1793.8 |
| | |
| | | [[14/5]] |
| | | | |
| |- | | |- |
| | | 19
| | | 19 |
| | | 1893.4990
| | | 1893.5 |
| | | [[112/75|224/75]]
| | | [[3/1]] |
| | |
| |
| |- | | |- |
| | | 20
| | | 20 |
| | | 1993.1569
| | | 1993.2 |
| | |
| | | [[16/5]] |
| | | | |
| |- | | |- |
| | | 21
| | | 21 |
| | | 2092.8147
| | | 2092.8 |
| | | 375/112 | | | [[10/3]] |
| | |
| |
| |- | | |- |
| | | 22
| | | 22 |
| | | 2192.4725
| | | 2192.5 |
| | |
| | | [[7/2]] |
| | | | |
| |- | | |- |
| | | 23
| | | 23 |
| | | 2292.1304
| | | 2292.1 |
| | |
| | | [[15/4]] |
| | | | |
| |- | | |- |
| | | 24
| | | 24 |
| | | 2391.7882
| | | 2391.8 |
| | |
| | | [[4/1]] |
| | | | |
| |- | | |- |
| | | 25
| | | 25 |
| | | 2491.4461
| | | 2491.4 |
| | |
| | | [[17/4]] |
| | | | |
| |- | | |- |
| | | 26
| | | 26 |
| | | 2591.1039
| | | 2591.1 |
| | | 125/28 | | | [[9/2]] |
| | |
| |
| |- | | |- |
| | | 27
| | | 27 |
| | | 2690.7618
| | | 2690.8 |
| | |
| | | 19/4 |
| | | | |
| |- | | |- |
| | | 28
| | | 28 |
| | | 2790.4196
| | | 2790.4 |
| | |
| | | [[5/1]] |
| | | | |
| |- | | |- |
| | | 29
| | | 29 |
| | | 2890.0774
| | | 2890.1 |
| | | 85/16 | | | [[16/3]] |
| | |
| |
| |- | | |- |
| | | 30
| | | 30 |
| | | 2989.7353
| | | 2989.7 |
| | | [[45/32|45/8]] | | | 17/3 |
| | |
| |
| |- | | |- |
| | | 31
| | | 31 |
| | | 3089.3931
| | | 3089.4 |
| | |
| | | [[6/1]] |
| | | | |
| |- | | |- |
| | | 32
| | | 32 |
| | | 3189.0510
| | | 3189.1 |
| | |
| | | 19/3 |
| | | | |
| |- | | |- |
| | | 33
| | | 33 |
| | | 3288.7088
| | | 3288.7 |
| | |
| | | 20/3 |
| | | | |
| |- | | |- |
| | | 34
| | | 34 |
| | | 3388.3667
| | | 3388.4 |
| | | 85/12 | | | [[7/1]] |
| | |
| |
| |- | | |- |
| | | 35
| | | 35 |
| | | 3488.0245
| | | 3488.0 |
| | | [[15/2]]
| | | [[15/2]] |
| | |
| |
| |- | | |- |
| | | 36
| | | 36 |
| | | 3587.6823
| | | 3587.7 |
| | |
| | | [[8/1]] |
| | | | |
| |- | | |- |
| | | 37
| | | 37 |
| | | 3687.3402
| | | 3687.3 |
| | |
| | | [[17/2]] |
| | | | |
| |- | | |- |
| | | 38
| | | 38 |
| | | 3786.9980 | | | 3787.0 |
| | |
| | | [[9/1]] |
| | | | |
| |- | | |- |
| | | 39
| | | 39 |
| | | 3886.6559
| | | 3886.7 |
| | | 85/9 | | | 19/2 |
| | |
| |
| |- | | |- |
| | | 40
| | | 40 |
| | | 3986.3137
| | | 3986.3 |
| | | '''exact [[10/1]]''' | | | [[10/1]] |
| | |
| |
| |} | | |} |
|
| |
|
| == Regular temperaments == | | == Regular temperaments == |
| 40ED10 can also be thought of as a [[generator]] of the 2.3.5.17.19 [[Subgroup temperaments|subgroup temperament]] which tempers out 4624/4617, 6144/6137, and 6885/6859, which is a [[cluster temperament]] with 12 clusters of notes in an octave (''quintilischis'' temperament). This temperament is supported by {{Val list|12, 253, 265, 277, 289, 301, 313}}, and [[325edo|325]] EDOs.
| | 40ed10 can also be thought of as a [[generator]] of the 2.3.5.17.19 [[subgroup temperaments|subgroup temperament]] which tempers out 4624/4617, 6144/6137, and 6885/6859, which is a [[cluster temperament]] with 12 clusters of notes in an octave (''quintilischis'' temperament). This temperament is supported by {{Optimal ET sequence| 12-, 253-, 265-, 277-, 289-, 301-, 313-, and 325edo }}. |
| | |
| Tempering out 400/399 (equating 20/19 and 21/20) leads ''[[Schismatic family #Quintilipyth|quintilipyth]]'' (12&253), and tempering out 476/475 (equating 19/17 with 28/25) leads ''[[Schismatic family #Quintaschis|quintaschis]]'' (12&289).
| |
| | |
|
| |
|
| ; <font style="font-size: 1.15em">Quintilischis (12&289)</font>
| | Tempering out 400/399 (equating 20/19 and 21/20) leads to [[quintilipyth]] (12 & 253), and tempering out 476/475 (equating 19/17 with 28/25) leads to [[quintaschis]] (12 & 289). |
| '''2.3.5.17.19 subgroup'''<br>
| |
| Comma list: 4624/4617, 6144/6137, 6885/6859<br>
| |
| Gencom: [2 18/17; 4624/4617 6144/6137 6885/6859]<br>
| |
| Gencom mapping: [{{val|1 2 -1 5 4}}, {{val|0 -5 40 -11 3}}]<br>
| |
| POTE generator: ~18/17 = 99.652<br>
| |
| Vals: 12, 253, 265, 277, 289<br>
| |
| RMS error: 0.1636 cents<br><br>
| |
| ; <font style="font-size: 1.15em">[[Schismatic family #Quintilipyth|Quintilipyth]] (12 & 253)</font>
| |
| '''7-limit'''<br>
| |
| Comma list: 32805/32768, 9765625/9680832<br>
| |
| Mapping: [{{val|1 2 -1 -4}}, {{val|0 -5 40 82}}]<br>
| |
| POTE generator: ~625/588 = 99.625<br>
| |
| Vals: 12, 253, 265<br>
| |
| Badness: 0.253966<br><br>
| |
| '''11-limit'''<br>
| |
| Comma list: 1375/1372, 4375/4356, 32805/32768<br>
| |
| Mapping: [{{val|1 2 -1 -4 -7}}, {{val|0 -5 40 82 126}}]<br>
| |
| POTE generator: ~35/33 = 99.616<br>
| |
| Vals: 12, 253, 265, 518c, 783cc<br>
| |
| Badness: 0.113044<br><br>
| |
| '''13-limit'''<br>
| |
| Comma list: 1375/1372, 2080/2079, 4375/4356, 10648/10647<br>
| |
| Mapping: [{{val|1 2 -1 -4 -7 -9}}, {{val|0 -5 40 82 126 153}}]<br>
| |
| POTE generator: ~35/33 = 99.612<br>
| |
| Vals: 12f, 253, 518c, 771cc<br>
| |
| Badness: 0.069127<br><br>
| |
| '''17-limit'''<br>
| |
| Comma list: 375/374, 595/594, 833/832, 1375/1372, 8624/8619<br>
| |
| Mapping: [{{val|1 2 -1 -4 -7 -9 5}}, {{val|0 -5 40 82 126 153 -11}}]<br>
| |
| POTE generator: ~18/17 = 99.612<br>
| |
| Vals: 12f, 253, 518c, 771cc<br>
| |
| Badness: 0.045992<br><br>
| |
| '''19-limit'''<br>
| |
| Comma list: 375/374, 400/399, 495/494, 595/594, 1375/1372, 3978/3971<br>
| |
| Mapping: [{{val|1 2 -1 -4 -7 -9 5 4}}, {{val|0 -5 40 82 126 153 -11 3}}]<br>
| |
| POTE generator: ~18/17 = 99.615<br>
| |
| Vals: 12f, 253, 265, 518ch<br>
| |
| Badness: 0.038155<br><br>
| |
| ; <font style="font-size: 1.15em">[[Schismatic family #Quintaschis|Quintaschis]] (12 & 289)</font>
| |
| '''7-limit'''<br>
| |
| Comma list: 32805/32768, 49009212/48828125<br>
| |
| Mapping: [{{val|1 2 -1 -5}}, {{val|0 -5 40 94}}]<br>
| |
| POTE generator: ~200/189 = 99.664<br>
| |
| Vals: 12, 277d, 289<br>
| |
| Badness: 0.132890<br><br>
| |
| '''11-limit'''<br>
| |
| Comma list: 441/440, 32805/32768, 1953125/1951488<br>
| |
| Mapping: [{{val|1 2 -1 -5 -8}}, {{val|0 -5 40 94 138}}]<br>
| |
| POTE generator: ~35/33 = 99.653<br>
| |
| Vals: 12, 277d, 289<br>
| |
| Badness: 0.111477<br><br>
| |
| '''13-limit'''<br>
| |
| Comma list: 364/363, 441/440, 32805/32768, 109512/109375<br>
| |
| Mapping: [{{val|1 2 -1 -5 -8 -11}}, {{val|0 -5 40 94 138 177}}]<br>
| |
| POTE generator: ~35/33 = 99.658<br>
| |
| Vals: 12f, 277df, 289<br>
| |
| Badness: 0.074218<br><br>
| |
| '''17-limit'''<br>
| |
| Comma list: 364/363, 441/440, 595/594, 3757/3750, 32805/32768<br>
| |
| Mapping: [{{val|1 2 -1 -5 -8 -11 5}}, {{val|0 -5 40 94 138 177 -11}}]<br>
| |
| POTE generator: ~18/17 = 99.656<br>
| |
| Vals: 12f, 277df, 289<br>
| |
| Badness: 0.050571<br><br>
| |
| '''19-limit'''<br>
| |
| Comma list: 364/363, 441/440, 476/475, 595/594, 3757/3750, 6885/6859<br>
| |
| Mapping: [{{val|1 2 -1 -5 -8 -11 5 4}}, {{val|0 -5 40 94 138 177 -11 3}}]<br>
| |
| POTE generator: ~18/17 = 99.659<br>
| |
| Vals: 12f, 277df, 289<br>
| |
| Badness: 0.042120<br><br>
| |
| ; <font style="font-size: 1.15em">[[Schismatic family #Quintaschis|Quintahelenic]] (12 & 301)</font>
| |
| '''11-limit'''<br>
| |
| Comma list: 5632/5625, 8019/8000, 151263/151250<br>
| |
| Mapping: [{{val|1 2 -1 -5 -9}}, {{val|0 -5 40 94 150}}]<br>
| |
| POTE generator: ~200/189 = 99.671<br>
| |
| Vals: 12, 289e, 301, 915, 1216ce<br>
| |
| Badness: 0.082225<br><br>
| |
| '''13-limit'''<br>
| |
| Comma list: 847/845, 1716/1715, 5632/5625, 8019/8000<br>
| |
| Mapping: [{{val|1 2 -1 -5 -9 -11}}, {{val|0 -5 40 94 150 177}}]<br>
| |
| POTE generator: ~200/189 = 99.661<br>
| |
| Vals: 12f, 289e, 301<br>
| |
| Badness: 0.055570<br><br>
| |
| '''17-limit'''<br>
| |
| Comma list: 561/560, 833/832, 847/845, 1701/1700, 3757/3750<br>
| |
| Mapping: [{{val|1 2 -1 -5 -9 -11 5}}, {{val|0 -5 40 94 150 177 -11}}]<br>
| |
| POTE generator: ~18/17 = 99.665<br>
| |
| Vals: 12f, 289e, 301<br>
| |
| Badness: 0.040412<br><br>
| |
| '''19-limit'''<br>
| |
| Comma list: 476/475, 495/494, 561/560, 833/832, 847/845, 1701/1700<br>
| |
| Mapping: [{{val|1 2 -1 -5 -9 -11 5 4}}, {{val|0 -5 40 94 150 177 -11 3}}]<br>
| |
| POTE generator: ~18/17 = 99.668<br>
| |
| Vals: 12f, 289e, 301<br>
| |
| Badness: 0.036840<br><br>
| |
| ; <font style="font-size: 1.15em">[[Schismatic family #Quintaschis|Quintahelenoid]] (12 & 301)</font>
| |
| '''13-limit'''<br>
| |
| Comma list: 729/728, 1001/1000, 4096/4095, 86515/86436<br>
| |
| Mapping: [{{val|1 2 -1 -5 -9 14}}, {{val|0 -5 40 94 150 -124}}]<br>
| |
| POTE generator: ~200/189 = 99.672<br>
| |
| Vals: 12, 301, 614, 915<br>
| |
| Badness: 0.066108<br><br>
| |
| '''17-limit'''<br>
| |
| Comma list: 561/560, 729/728, 1001/1000, 4096/4095, 14161/14157<br>
| |
| Mapping: [{{val|1 2 -1 -5 -9 14 5}}, {{val|0 -5 40 94 150 -124 -11}}]<br>
| |
| POTE generator: ~18/17 = 99.671<br>
| |
| Vals: 12, 301, 915gg, 1216cegg<br>
| |
| Badness: 0.047908<br><br>
| |
| '''19-limit'''<br>
| |
| Comma list: 476/475, 561/560, 729/728, 1001/1000, 4096/4095, 6144/6137<br>
| |
| Mapping: [{{val|1 2 -1 -5 -9 14 5 4}}, {{val|0 -5 40 94 150 -124 -11 3}}]<br>
| |
| POTE generator: ~18/17 = 99.672<br>
| |
| Vals: 12, 301, 614gh, 915gghh<br>
| |
| Badness: 0.039542<br><br>
| |
|
| |
|
| == See also == | | == See also == |
| * [[12edo|12EDO]] - relative EDO | | * [[7edf]] – relative edf |
| * [[19ed3|19ED3]] - relative ED3 | | * [[12edo]] – relative edo |
| * [[28ed5|28ED5]] - relative ED5 | | * [[19edt]] – relative edt |
| * [[31ed6|31ED6]] - relative ED6 | | * [[28ed5]] – relative ed5 |
| * [[34ed7|34ED7]] - relative ED7 | | * [[31ed6]] – relative ed6 |
| * [[42ed11|42ED11]] - relative ED11 | | * [[34ed7]] – relative ed7 |
| * [[18/17s equal temperament|AS18/17]] - relative [[AS|ambitonal sequence]] | | * [[42ed11]] – relative ed11 |
| | * [[76ed80]] – close to the zeta-optimized tuning for 12edo |
| | * [[1ed18/17|AS18/17]] – relative [[AS|ambitonal sequence]] |
|
| |
|
| [[Category:Equal-step tuning]] | | [[Category:12edo]] |
| [[Category:Ed10]] | | [[Category:Sonifications]] |