69edo: Difference between revisions
CompactStar (talk | contribs) Adding interval list auto-generated by a program I wrote |
→Music: Add Bryan Deister's ''Compass - Mili (microtonal cover in 69edo)'' (2025) |
||
(30 intermediate revisions by 13 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ED intro}} | |||
== Theory == | |||
69edo has been called "the love-child of [[23edo]] and [[quarter-comma meantone]]". As a meantone system, it is on the flat side, with a fifth of 695.652{{c}}. Such a fifth is closer to [[2/7-comma meantone]] than 1/4-comma, and is nearly identical to that of "Synch-Meantone", or Wilson's equal beating meantone, wherein the perfect fifth and the major third beat at equal rates. Therefore 69edo can be treated as a closed system of Synch-Meantone for most purposes. | |||
69edo offers two kinds of meantone 12-tone scales. One is the raw meantone scale, which has a 7:4 step ratio, and other is period-3 [[Meantone family#Lithium|lithium]] scale, which has a 6:5 step ratio and stems from a temperament tempering out [[3125/3087]] along with [[81/80]]. It should be noted that while the lithium scale has a meantone fifth, it produces a [[3L 6s|tcherepnin]] scale instead of traditional diatonic. | |||
69edo | |||
In the [[7-limit]] it is a [[mohajira]] system, tempering out [[6144/6125]], but not a septimal meantone system, as [[126/125]] maps to one step. In the 11-limit it tempers out [[99/98]], and supports the {{nowrap|31 & 69}} variant of mohajira, identical to the standard 11-limit mohajira in [[31edo]] but not in 69. | |||
The [[concoctic scale]] for 69edo is 22\69, and the corresponding rank two temperament is {{nowrap|22 & 69}}, defined by tempering out the [-41, 1, 17⟩ comma in the 5-limit. | |||
=== Odd harmonics === | |||
{{Harmonics in equal|69}} | |||
== Intervals == | == Intervals == | ||
{|class="wikitable" | {{Interval table}} | ||
=== Proposed names === | |||
{| class="wikitable mw-collapsible mw-collapsed collapsible center-1 right-3" | |||
|- | |- | ||
! | ! Degree | ||
!Cents | ! Carmen's naming system | ||
! | ! Cents | ||
! Approximate Ratios* | |||
! Error (abs, [[cent|¢]]) | |||
|- | |- | ||
|0 | | 0 | ||
|0. | | Natural Unison, 1 | ||
| | | 0.000 | ||
| [[1/1]] | |||
| 0.000 | |||
|- | |- | ||
|1 | | 1 | ||
|17. | | Ptolemy's comma | ||
| | | 17.391 | ||
| [[100/99]] | |||
| −0.008 | |||
|- | |- | ||
|2 | | 2 | ||
|34. | | Jubilisma, lesser septimal sixth tone | ||
| | | 34.783 | ||
| [[50/49]], [[101/99]] | |||
| −0.193, 0.157 | |||
|- | |- | ||
|3 | | 3 | ||
|52. | | lesser septendecimal quartertone, _____ | ||
| | | 52.174 | ||
| [[34/33]], [[101/98]] | |||
| 0.491, −0.028 | |||
|- | |- | ||
|4 | | 4 | ||
|69. | | _____ | ||
| | | 69.565 | ||
| [[76/73]] | |||
| −0.158 | |||
|- | |- | ||
|5 | | 5 | ||
| | | Small undevicesimal semitone | ||
| | | 86.957 | ||
| [[20/19]] | |||
| −1.844 | |||
|- | |- | ||
|6 | | 6 | ||
|104. | | Large septendecimal semitone | ||
| | | 104.348 | ||
| [[17/16]] | |||
| −0.608 | |||
|- | |- | ||
|7 | | 7 | ||
|121. | | Septimal diatonic semitone | ||
| | | 121.739 | ||
| [[15/14]] | |||
| 2.296 | |||
|- | |- | ||
|8 | | 8 | ||
|139. | | Tridecimal neutral second | ||
| | | 139.130 | ||
| [[13/12]] | |||
| 0.558 | |||
|- | |- | ||
|9 | | 9 | ||
|156. | | Vicesimotertial neutral second | ||
| | | 156.522 | ||
| [[23/21]] | |||
| −0.972 | |||
|- | |- | ||
|10 | | 10 | ||
|173. | | Undevicesimal large neutral second, undevicesimal whole tone | ||
| | | 173.913 | ||
| [[21/19]] | |||
| 0.645 | |||
|- | |- | ||
|11 | | 11 | ||
|191. | | Quasi-meantone | ||
| | | 191.304 | ||
| [[19/17]] | |||
| −1.253 | |||
|- | |- | ||
|12 | | 12 | ||
|208. | | Whole tone | ||
| | | 208.696 | ||
| [[9/8]] | |||
| 4.786 | |||
|- | |- | ||
|13 | | 13 | ||
|226. | | Septimal whole tone | ||
| | | 226.087 | ||
| [[8/7]] | |||
| −5.087 | |||
|- | |- | ||
|14 | | 14 | ||
|243. | | Vicesimotertial semifourth | ||
| | | 243.478 | ||
| [[23/20]] | |||
| 1.518 | |||
|- | |- | ||
|15 | | 15 | ||
|260. | | Subminor third, undetricesimal subminor third | ||
| | | 260.870 | ||
| [[7/6]], [[29/25]] | |||
| −6.001, 3.920 | |||
|- | |- | ||
|16 | | 16 | ||
|278. | | Vicesimotertial subminor third | ||
| | | 278.261 | ||
| [[27/23]] | |||
| 0.670 | |||
|- | |- | ||
|17 | | 17 | ||
|295. | | Pythagorean minor third | ||
| | | 295.652 | ||
| [[32/27]] | |||
| 1.517 | |||
|- | |- | ||
|18 | | 18 | ||
|313. | | Classic minor third | ||
| | | 313.043 | ||
| [[6/5]] | |||
| −2.598 | |||
|- | |- | ||
|19 | | 19 | ||
|330. | | Vicesimotertial supraminor third | ||
| | | 330.435 | ||
| [[23/19]] | |||
| −0.327 | |||
|- | |- | ||
|20 | | 20 | ||
|347. | | Undecimal neutral third | ||
| | | 347.826 | ||
| [[11/9]] | |||
| 0.418 | |||
|- | |- | ||
|21 | | 21 | ||
|365. | | Septendecimal submajor third | ||
| | | 365.217 | ||
| [[21/17]] | |||
| −0.608 | |||
|- | |- | ||
|22 | | 22 | ||
|382. | | Classic major third | ||
| | | 382.609 | ||
| [[5/4]] | |||
| −3.705 | |||
|- | |- | ||
|23 | | 23 | ||
|400. | | Undetricesimal major third, Septendecimal major third | ||
| | | 400.000 | ||
| [[29/23]], [[34/27]] | |||
| −1.303, 0.910 | |||
|- | |- | ||
|24 | | 24 | ||
|417. | | Undecimal major third | ||
| | | 417.391 | ||
| [[14/11]] | |||
| −0.117 | |||
|- | |- | ||
|25 | | 25 | ||
|434. | | Supermajor third | ||
| | | 434.783 | ||
| [[9/7]] | |||
| −0.301 | |||
|- | |- | ||
|26 | | 26 | ||
|452. | | Barbados third | ||
| | | 452.174 | ||
| [[13/10]] | |||
| −2.040 | |||
|- | |- | ||
|27 | | 27 | ||
|469. | | Septimal sub-fourth | ||
| | | 469.565 | ||
| [[21/16]] | |||
| −1.216 | |||
|- | |- | ||
|28 | | 28 | ||
| | | _____ | ||
| | | 486.957 | ||
| [[53/40]] | |||
| −0.234 | |||
|- | |- | ||
|29 | | 29 | ||
|504.3 | | Just perfect fourth | ||
| | | 504.348 | ||
| [[4/3]] | |||
| 6.303 | |||
|- | |- | ||
|30 | | 30 | ||
|521. | | Vicesimotertial acute fourth | ||
| | | 521.739 | ||
| [[23/17]] | |||
| −1.580 | |||
|- | |- | ||
|31 | | 31 | ||
|539. | | Undecimal augmented fourth | ||
| | | 539.130 | ||
| [[15/11]] | |||
| 2.180 | |||
|- | |- | ||
|32 | | 32 | ||
|556. | | Undecimal superfourth, undetricesimal superfourth | ||
| | | 556.522 | ||
| [[11/8]], [[29/21]] | |||
| 5.204, −2.275 | |||
|- | |- | ||
|33 | | 33 | ||
|573. | | Narrow tritone, classic augmented fourth | ||
| | | 573.913 | ||
| [[7/5]], [[25/18]] | |||
| −8.600, 5.196 | |||
|- | |- | ||
|34 | | 34 | ||
|591. | | _____ | ||
| | | 591.304 | ||
| [[31/22]] | |||
| −2.413 | |||
|- | |- | ||
|35 | | 35 | ||
|608.7 | | High tritone, undevicesimal tritone | ||
| | | 608.696 | ||
| [[10/7]], [[27/19]] | |||
| −8.792, 0.344 | |||
|- | |- | ||
|36 | | 36 | ||
|626. | | _____ | ||
| | | 626.087 | ||
| [[33/23]] | |||
| 1.088 | |||
|- | |- | ||
|37 | | 37 | ||
|643. | | Undetricesimal tritone | ||
| | | 643.478 | ||
| [[29/20]] | |||
| 0.215 | |||
|- | |- | ||
|38 | | 38 | ||
|660. | | Undevicesimal diminished fifth, undecimal diminished fifth | ||
| | | 660.870 | ||
| [[19/13]], [[22/15]] | |||
| 3.884, −2.180 | |||
|- | |- | ||
|39 | | 39 | ||
|678. | | Vicesimotertial grave fifth, _____ | ||
| | | 678.261 | ||
| [[34/23]], [[37/25]] | |||
| 1.580, −0.456 | |||
|- | |- | ||
|40 | | 40 | ||
|695. | | Just perfect fifth | ||
| | | 695.652 | ||
| [[3/2]] | |||
| −6.303 | |||
|- | |- | ||
|41 | | 41 | ||
|713. | | _____ | ||
| | | 713.043 | ||
| [[80/53]] | |||
| 0.234 | |||
|- | |- | ||
|42 | | 42 | ||
|730. | | Super-fifth, undetricesimal super-fifth | ||
| | | 730.435 | ||
| [[32/21]], [[29/19]] | |||
| 1.216, −1.630 | |||
|- | |- | ||
|43 | | 43 | ||
|747. | | Septendecimal subminor sixth | ||
| | | 747.826 | ||
| [[17/11]] | |||
| −5.811 | |||
|- | |- | ||
|44 | | 44 | ||
|765. | | Subminor sixth | ||
| | | 765.217 | ||
| [[14/9]] | |||
| 0.301 | |||
|- | |- | ||
|45 | | 45 | ||
|782. | | Undecimal minor sixth | ||
| | | 782.609 | ||
| [[11/7]] | |||
| 0.117 | |||
|- | |- | ||
|46 | | 46 | ||
|800. | | Septendecimal subminor sixth | ||
| | | 800.000 | ||
| [[27/17]] | |||
| −0.910 | |||
|- | |- | ||
|47 | | 47 | ||
|817. | | Classic minor sixth | ||
| | | 817.391 | ||
| [[8/5]] | |||
| 3.705 | |||
|- | |- | ||
|48 | | 48 | ||
|834. | | Septendecimal supraminor sixth | ||
| | | 834.783 | ||
| [[34/21]] | |||
| 0.608 | |||
|- | |- | ||
|49 | | 49 | ||
|852. | | Undecimal neutral sixth | ||
| | | 852.174 | ||
| [[18/11]] | |||
| −0.418 | |||
|- | |- | ||
|50 | | 50 | ||
|869. | | Vicesimotertial submajor sixth | ||
| | | 869.565 | ||
| [[38/23]] | |||
| 0.327 | |||
|- | |- | ||
|51 | | 51 | ||
| | | Classic major sixth | ||
| | | 886.957 | ||
| [[5/3]] | |||
| 2.598 | |||
|- | |- | ||
|52 | | 52 | ||
|904. | | Pythagorean major sixth | ||
| | | 904.348 | ||
| [[27/16]] | |||
| −1.517 | |||
|- | |- | ||
|53 | | 53 | ||
|921. | | Septendecimal major sixth, undetricesimal major sixth | ||
| | | 921.739 | ||
| [[17/10]], [[29/17]] | |||
| 3.097, −2.883 | |||
|- | |- | ||
|54 | | 54 | ||
|939. | | Supermajor sixth, undetricesimal supermajor sixth | ||
| | | 939.130 | ||
| [[12/7]], [[50/29]] | |||
| 6.001, −3.920 | |||
|- | |- | ||
|55 | | 55 | ||
|956. | | Vicesimotertial supermajor sixth | ||
| | | 956.522 | ||
| [[40/23]] | |||
| −1.518 | |||
|- | |- | ||
|56 | | 56 | ||
|973. | | Harmonic seventh | ||
| | | 973.913 | ||
| [[7/4]] | |||
| 5.087 | |||
|- | |- | ||
|57 | | 57 | ||
|991. | | Pythagorean minor seventh | ||
| | | 991.304 | ||
| [[16/9]] | |||
| −4.786 | |||
|- | |- | ||
|58 | | 58 | ||
|1008. | | Quasi-meantone minor seventh | ||
| | | 1008.696 | ||
| [[34/19]] | |||
| 1.253 | |||
|- | |- | ||
|59 | | 59 | ||
|1026. | | Minor neutral undevicesimal seventh | ||
| | | 1026.087 | ||
| [[38/21]] | |||
| −0.645 | |||
|- | |- | ||
|60 | | 60 | ||
|1043. | | Vicesimotertial neutral seventh | ||
| | | 1043.478 | ||
| [[42/23]] | |||
| 0.972 | |||
|- | |- | ||
|61 | | 61 | ||
|1060. | | Tridecimal neutral seventh | ||
| | | 1060.870 | ||
| [[24/13]] | |||
| −0.558 | |||
|- | |- | ||
|62 | | 62 | ||
|1078. | | Septimal diatonic major seventh | ||
| | | 1078.261 | ||
| [[28/15]] | |||
| −2.296 | |||
|- | |- | ||
|63 | | 63 | ||
|1095. | | Small septendecimal major seventh | ||
| | | 1095.652 | ||
| [[32/17]] | |||
| 0.608 | |||
|- | |- | ||
|64 | | 64 | ||
|1113. | | Small undevicesimal semitone | ||
| | | 1113.043 | ||
| [[20/19]] | |||
| 1.844 | |||
|- | |- | ||
|65 | | 65 | ||
|1130. | | _____ | ||
| | | 1130.435 | ||
| [[73/38]] | |||
| 0.158 | |||
|- | |- | ||
|66 | | 66 | ||
|1147. | | Septendecimal supermajor seventh | ||
| | | 1147.826 | ||
| [[33/17]] | |||
| −0.491 | |||
|- | |- | ||
|67 | | 67 | ||
|1165. | | _____ | ||
| | | 1165.217 | ||
| [[49/25]] | |||
| −0.193 | |||
|- | |- | ||
|68 | | 68 | ||
|1182. | | _____ | ||
| | | 1182.609 | ||
| [[99/50]] | |||
| 0.008 | |||
|- | |- | ||
|69 | | 69 | ||
|1200. | | Octave, 8 | ||
| | | 1200.000 | ||
| [[2/1]] | |||
| 0.000 | |||
|} | |} | ||
=== | <nowiki />* Some simpler ratios listed | ||
{{ | |||
== Notation == | |||
=== Ups and downs notation === | |||
69edo can be notated with [[ups and downs]], spoken as up, dup, downsharp, sharp, upsharp etc. and down, dud, upflat etc. Note that dup is equivalent to dudsharp and dud is equivalent to dupflat. | |||
{{Sharpness-sharp4a}} | |||
[[Alternative symbols for ups and downs notation]] uses sharps and flats along with Stein–Zimmerman [[24edo#Notation|quarter-tone]] accidentals, combined with arrows, borrowed from extended [[Helmholtz–Ellis notation]]: | |||
{{Sharpness-sharp4}} | |||
=== Sagittal notation === | |||
This notation uses the same sagittal sequence as EDOs [[62edo#Sagittal notation|62]] and [[76edo#Sagittal notation|76]]. | |||
==== Evo flavor ==== | |||
<imagemap> | |||
File:69-EDO_Evo_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 783 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 170 106 [[1053/1024]] | |||
rect 170 80 290 106 [[33/32]] | |||
default [[File:69-EDO_Evo_Sagittal.svg]] | |||
</imagemap> | |||
==== Revo flavor ==== | |||
<imagemap> | |||
File:69-EDO_Revo_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 751 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 170 106 [[1053/1024]] | |||
rect 170 80 290 106 [[33/32]] | |||
default [[File:69-EDO_Revo_Sagittal.svg]] | |||
</imagemap> | |||
==== Evo-SZ flavor ==== | |||
<imagemap> | |||
File:69-EDO_Evo-SZ_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 759 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 170 106 [[1053/1024]] | |||
rect 170 80 290 106 [[33/32]] | |||
default [[File:69-EDO_Evo-SZ_Sagittal.svg]] | |||
</imagemap> | |||
In the diagrams above, a sagittal symbol followed by an equals sign (=) means that the following comma is the symbol's [[Sagittal notation#Primary comma|primary comma]] (the comma it ''exactly'' represents in JI), while an approximately equals sign (≈) means it is a secondary comma (a comma it ''approximately'' represents in JI). In both cases the symbol exactly represents the tempered version of the comma in this EDO. | |||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" | Subgroup | |- | ||
! rowspan="2" | [[Comma list]] | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" | [[Comma list|Comma List]] | |||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal<br>8ve | ! rowspan="2" | Optimal<br>8ve Stretch (¢) | ||
! colspan="2" | Tuning | ! colspan="2" | Tuning Error | ||
|- | |- | ||
! [[TE error|Absolute]] (¢) | ! [[TE error|Absolute]] (¢) | ||
Line 314: | Line 505: | ||
| 2.3 | | 2.3 | ||
| {{monzo| -109 69 }} | | {{monzo| -109 69 }} | ||
| | | {{mapping| 69 109 }} | ||
| +1.99 | | +1.99 | ||
| 1.99 | | 1.99 | ||
Line 321: | Line 512: | ||
| 2.3.5 | | 2.3.5 | ||
| 81/80, {{monzo| -41 1 17 }} | | 81/80, {{monzo| -41 1 17 }} | ||
| | | {{mapping| 69 109 160 }} | ||
| +1.86 | | +1.86 | ||
| 1.64 | | 1.64 | ||
Line 328: | Line 519: | ||
| 2.3.5.7 | | 2.3.5.7 | ||
| 81/80, 126/125, 4117715/3981312 | | 81/80, 126/125, 4117715/3981312 | ||
| | | {{mapping| 69 109 160 193 }} (69d) | ||
| +2.49 | | +2.49 | ||
| 1.79 | | 1.79 | ||
Line 335: | Line 526: | ||
| 2.3.5.7 | | 2.3.5.7 | ||
| 81/80, 3125/3087, 6144/6125 | | 81/80, 3125/3087, 6144/6125 | ||
| | | {{mapping| 69 109 160 194 }} (69) | ||
| +0.94 | | +0.94 | ||
| 2.13 | | 2.13 | ||
Line 341: | Line 532: | ||
|} | |} | ||
== | === Rank 2 temperaments === | ||
{| class="wikitable | {| class="wikitable center-1 center-2" | ||
|- | |- | ||
! | ! Periods<br>per 8ve | ||
! | ! Generator | ||
! | ! Temperaments | ||
|- | |- | ||
| | | 1 | ||
| 2\69 | |||
| | | [[Gammy]] (69de) | ||
|[[ | |||
|- | |- | ||
|1 | |1 | ||
| | |5\69 | ||
|[[Devichromic chords|Devichromic Octacot]]<ref group="note" name="tempname">Placeholder name, with link to [[Devichromic chords]] article — no general article currently exists for Devichromic temperament, and this particular incarnation of Devichromic temperament is likely to receive a different permanent name.</ref> | |||
|[[ | |||
| | |||
|- | |- | ||
| | | 1 | ||
| | | 19\69 | ||
| [[Rarity]] | |||
|[[ | |||
|- | |- | ||
| | | 1 | ||
| | | 20\69 | ||
| [[Mohaha]] (69e) | |||
|[[ | |||
|- | |- | ||
| | | 1 | ||
| | | 22\69 | ||
| [[Caleb]] (69)<br>[[marveltri]] (69) | |||
|[[ | |||
|- | |- | ||
| | | 1 | ||
| | | 29\69 | ||
| [[Meantone]] (69d) | |||
|[[ | |||
|- | |- | ||
| | | 3 | ||
| | | 5\69 | ||
| [[Augmented family #Ogene|Ogene]] (69bceef) | |||
|[[ | |||
|- | |- | ||
| | | 3 | ||
| | | 6\69 | ||
| [[August]] (7-limit, 69cdd)<br>[[Lithium]] (69) | |||
|[[ | |||
|- | |- | ||
| | | 3 | ||
| 9\69 | |||
| [[Nessafof]] (69e) | |||
| | |||
|[[ | |||
|} | |} | ||
< | <references group="note" /> | ||
== Scales == | == Scales == | ||
* Supermajor[11], [[3L 8s]] – | * Supermajor[11], [[3L 8s]] – 6 6 6 7 6 6 6 7 6 6 7 | ||
* Meantone[7], [[5L 2s]] (gen = 40\69) – 11 11 7 11 11 11 7 | * Meantone[7], [[5L 2s]] (gen = 40\69) – 11 11 7 11 11 11 7 | ||
* Meantone[12], [[7L 5s]] (gen = 40\69) – | * Meantone[12], [[7L 5s]] (gen = 40\69) – 7 4 7 4 7 4 7 7 4 7 4 7 | ||
* | * Lithium[9], [[3L 6s]] – 11 6 6 11 6 6 11 6 6 | ||
* Lithium[12], [[9L 3s]] – 5 6 6 6 5 6 6 6 5 6 6 6 | |||
== Instruments == | |||
A [[Lumatone mapping for 69edo]] is available. | |||
== Music == | == Music == | ||
* [https://www.youtube.com/watch?v=a4vNlDU6Vkw Hypergiant Sakura] | ; [[Bryan Deister]] | ||
* [https://www.youtube.com/watch?v=ZAqPonAHuUM ''microtonal improvisation in 69edo''] (2025) | |||
* [https://www.youtube.com/shorts/4XBELeySMPk ''Compass - Mili (microtonal cover in 69edo)''] (2025) | |||
; [[Eliora]] | |||
* [https://www.youtube.com/watch?v=a4vNlDU6Vkw ''Hypergiant Sakura''] (2021) | |||
; [[Francium]] | |||
* [https://www.youtube.com/watch?v=Z3m4KqpuKPw ''69 hours before''] (2023) | |||
[[Category:Meantone]] | [[Category:Meantone]] | ||
[[Category:Listen]] | |||
{{Todo| review }} | {{Todo| review }} |