List of superparticular intervals: Difference between revisions
Dummy index (talk | contribs) |
complete 37-limit comma list Tags: Mobile edit Mobile web edit |
||
Line 1: | Line 1: | ||
This is a list of [[superparticular]] [[interval]]s ordered by [[prime limit]]. It reaches to the 127-limit and is complete up to the [[ | This is a list of [[superparticular]] [[interval]]s ordered by [[prime limit]]. It reaches to the 127-limit and is complete up to the [[37-limit]]. | ||
[[Wikipedia: Størmer's theorem|Størmer's theorem]] states that, in each limit, there are only a finite number of superparticular ratios. Many of the sections below are complete. For example, there is no 3-limit superparticular ratio other than [[2/1]], [[3/2]], [[4/3]], and [[9/8]]. {{OEIS| A002071 }} gives the number of superparticular ratios in each prime limit, {{OEIS| A145604 }} shows the increment from limit to limit, and {{OEIS| A117581 }} gives the largest numerator for each prime limit (with some exceptions, such as the 23-limit, where the largest value is smaller than that of a smaller prime limit, in this case the 19-limit). | [[Wikipedia: Størmer's theorem|Størmer's theorem]] states that, in each limit, there are only a finite number of superparticular ratios. Many of the sections below are complete. For example, there is no 3-limit superparticular ratio other than [[2/1]], [[3/2]], [[4/3]], and [[9/8]]. {{OEIS| A002071 }} gives the number of superparticular ratios in each prime limit, {{OEIS| A145604 }} shows the increment from limit to limit, and {{OEIS| A117581 }} gives the largest numerator for each prime limit (with some exceptions, such as the 23-limit, where the largest value is smaller than that of a smaller prime limit, in this case the 19-limit). | ||
Line 3,489: | Line 3,489: | ||
|} | |} | ||
=== 37-limit | === 37-limit === | ||
{| class="wikitable center-6" style="width:100%" | {| class="wikitable center-6" style="width:100%" | ||
! width="10%" | [[Ratio]] | ! width="10%" | [[Ratio]] | ||
Line 4,510: | Line 4,510: | ||
| (3<sup>3</sup>×11<sup>2</sup>×17×19)/(2<sup>3</sup>×5×23×31×37) | | (3<sup>3</sup>×11<sup>2</sup>×17×19)/(2<sup>3</sup>×5×23×31×37) | ||
| 2.3.5.11.17.19.23.31.37 {{monzo| -3 3 -1 2 1 1 -1 -1 -1 }} | | 2.3.5.11.17.19.23.31.37 {{monzo| -3 3 -1 2 1 1 -1 -1 -1 }} | ||
| | |||
| | |||
|- | |||
| 1341250/1341249 | |||
| 0.0012908 | |||
| (2×5<sup>4</sup>×29×37)/(3×7×13×17<sup>3</sup>) | |||
| 2.3.5.7.13.17.29.37 {{monzo| 1 -1 4 -1 -1 -3 1 1 }} | |||
| | |||
| | |||
|- | |||
| 1510785/1510784 | |||
| 0.0011459 | |||
| (3<sup>3</sup>×5×19<sup>2</sup>×31)/(2<sup>7</sup>×11×29×37) | |||
| 2.3.5.11.19.29.31.37 {{monzo| -7 3 1 -1 2 -1 1 -1 }} | |||
| | | | ||
| | | | ||
|- | |- | ||
| 1763125/1763124 | | 1763125/1763124 | ||
| | | 0.00098191 | ||
| (5<sup>4</sup>×7×13×31)/(2<sup>2</sup>×3×11×19<sup>2</sup>×37) | | (5<sup>4</sup>×7×13×31)/(2<sup>2</sup>×3×11×19<sup>2</sup>×37) | ||
| 2.3.5.7.11.13.19.31.37 {{monzo| -2 -1 4 1 -1 1 -2 1 -1 }} | | 2.3.5.7.11.13.19.31.37 {{monzo| -2 -1 4 1 -1 1 -2 1 -1 }} | ||
| | | | ||
| | | | ||
|- | |||
| 1771561/1771560 | |||
| 0.00097724 | |||
| 11<sup>6</sup>/(2<sup>3</sup>×3<sup>2</sup>×5×7×19×37) | |||
| 2.3.5.7.11.19.37 {{monzo| -3 -2 -1 -1 6 -1 -1 }} | |||
| | |||
| S1331 | |||
|- | |||
| 2085136/2085135 | |||
| 0.00083027 | |||
| (2×19)<sup>4</sup>/(3×5×13×17<sup>2</sup>×37) | |||
| 2.3.5.13.17.19.37 {{monzo| 4 -1 -1 -1 -2 4 -1 }} | |||
| | |||
| S1444 | |||
|- | |||
| 2417876/2417875 | |||
| 0.00071601 | |||
| (2<sup>2</sup>×17×31<sup>2</sup>×37)/(5<sup>3</sup>×23×29<sup>2</sup>) | |||
| 2.5.17.23.29.31.37 {{monzo| 2 -3 1 -1 -2 2 1 }} | |||
| | |||
| | |||
|- | |||
| 2560845/2560844 | |||
| 0.00067604 | |||
| (3×5×7×29<sup>3</sup>)/(2<sup>2</sup>×11<sup>3</sup>×13×37) | |||
| 2.3.5.7.11.13.29.37 {{monzo| -2 1 1 1 -3 -1 3 -1 }} | |||
| | |||
| | |||
|- | |||
| 2598400/2598399 | |||
| 0.00066627 | |||
| (2<sup>9</sup>×5<sup>2</sup>×7×29)/(3<sup>5</sup>×17<sup>2</sup>×37) | |||
| 2.3.5.7.17.29.37 {{monzo| 9 -5 2 1 -2 1 -1 }} | |||
| | |||
| | |||
|- | |||
| 2772225/2772224 | |||
| 0.00062449 | |||
| (3<sup>2</sup>×5×37)<sup>2</sup>/(2<sup>8</sup>×7<sup>2</sup>×13×17) | |||
| 2.3.5.7.13.17.37 {{monzo| -8 4 2 -2 -1 -1 2 }} | |||
| | |||
| S1665 | |||
|- | |||
| 2893401/2893400 | |||
| 0.00059834 | |||
| (3<sup>5</sup>×7)<sup>2</sup>/(2<sup>3</sup>×5<sup>2</sup>×17×23×37) | |||
| 2.3.5.7.17.23.37 {{monzo| -3 10 -2 2 -1 -1 -1 }} | |||
| | |||
| S1701 | |||
|- | |||
| 3930400/3930399 | |||
| 0.00044047 | |||
| (2<sup>5</sup>×5<sup>2</sup>×17<sup>3</sup>)/(3<sup>2</sup>×11×29×37<sup>2</sup>) | |||
| 2.3.5.11.17.29.37 {{monzo| 5 -2 2 -1 3 -1 -2 }} | |||
| | |||
| | |||
|- | |||
| 4765600/4765599 | |||
| 0.00036328 | |||
| (2<sup>5</sup>×5<sup>2</sup>×7×23×37)/(3<sup>2</sup>×19×29×31<sup>2</sup>) | |||
| 2.3.5.7.19.23.29.31.37 {{monzo| 5 -2 2 1 -1 1 -1 -2 1 }} | |||
| | |||
| | |||
|- | |||
| 5538975/5538974 | |||
| 0.00031255 | |||
| (3×(5×13)<sup>2</sup>×19×23)/(2×7×(17×37)<sup>2</sup>) | |||
| 2.3.5.7.13.17.19.23.37 {{monzo| -1 1 2 -1 2 -2 1 1 -2 }} | |||
| | |||
| | |||
|- | |||
| 6615675/6615674 | |||
| 0.00026169 | |||
| (3<sup>7</sup>×(5×11)<sup>2</sup>)/(2×(13×23)<sup>2</sup>×37) | |||
| 2.3.5.11.13.23.37 {{monzo| -1 7 2 2 -2 -2 -1 }} | |||
| | |||
| | |||
|- | |||
| 6770556/6770555 | |||
| 0.00025570 | |||
| ((2×3)<sup>2</sup>×13×17×23×37)/(5×(11×19)<sup>2</sup>×31) | |||
| 2.3.5.11.13.17.19.23.31.37 {{monzo| 2 2 -1 -2 1 1 -2 1 -1 1 }} | |||
| | |||
| | |||
|- | |||
| 7105000/7104999 | |||
| 0.00024366 | |||
| (2<sup>3</sup>×5<sup>4</sup>×7<sup>2</sup>×29)/(3×(11×23)<sup>2</sup>×37) | |||
| 2.3.5.7.11.23.29.37 {{monzo| 3 -1 4 2 -2 -2 1 -1 }} | |||
| | |||
| | |||
|- | |||
| 7475000/7474999 | |||
| 0.00023160 | |||
| (2<sup>3</sup>×5<sup>5</sup>×13×23)/(7<sup>3</sup>×19×31×37) | |||
| 2.5.7.13.19.23.31.37 {{monzo| 3 5 -3 1 -1 1 -1 -1 }} | |||
| | |||
| | |||
|- | |||
| 7491169/7491168 | |||
| 0.00023110 | |||
| (7×17×23)<sup>2</sup>/(2<sup>5</sup>×3<sup>2</sup>×19×37<sup>2</sup>) | |||
| 2.3.7.17.19.23.37 {{monzo| -5 -2 2 2 -1 2 -2 }} | |||
| | |||
| S2737 | |||
|- | |||
| <font style="font-size:0.88em">13147876/13147875</font> | |||
| 0.00013167 | |||
| (2×7<sup>2</sup>×37)<sup>2</sup>/(3<sup>2</sup>×5<sup>3</sup>×13×29×31) | |||
| 2.3.5.7.13.29.31.37 {{monzo| 2 -2 -3 4 -1 -1 -1 2 }} | |||
| | |||
| S3626 | |||
|- | |||
| <font style="font-size:0.88em">14080573/14080572</font> | |||
| 0.00012295 | |||
| (13<sup>4</sup>×17×29)/((2×3)<sup>2</sup>×11×31<sup>2</sup>×37) | |||
| 2.3.11.13.17.29.31.37 {{monzo| -2 -2 -1 4 1 1 -2 -1 }} | |||
| | |||
| | |||
|- | |||
| <font style="font-size:0.88em">21386001/21386000</font> | |||
| 8.0952×10<sup>-5</sup> | |||
| (3×7<sup>2</sup>×13×19<sup>2</sup>×31)/(2<sup>4</sup>×5<sup>3</sup>×17<sup>2</sup>×37) | |||
| 2.3.5.7.13.17.19.31.37 {{monzo| -4 1 -3 2 1 -2 2 1 -1 }} | |||
| | |||
| | |||
|- | |||
| <font style="font-size:0.88em">27994681/27994680</font> | |||
| 6.1842×10<sup>-5</sup> | |||
| (11×13×37)<sup>2</sup>/((2×3)<sup>3</sup>×5×(7×23)<sup>2</sup>) | |||
| 2.3.5.7.11.13.23.37 {{monzo| -3 -3 -1 -2 2 2 -2 2 }} | |||
| | |||
| S5291 | |||
|- | |- | ||
| <font style="font-size:0.88em">50481025/50481024</font> | | <font style="font-size:0.88em">50481025/50481024</font> | ||
Line 4,526: | Line 4,673: | ||
| | | | ||
| S7105 | | S7105 | ||
|- | |||
| <font style="font-size:0.88em">71843751/71843750</font> | |||
| 2.4097×10<sup>-5</sup> | |||
| (3<sup>2</sup>×7<sup>3</sup>×17×37<sup>2</sup>)/(2×5<sup>6</sup>×11<sup>2</sup>×19) | |||
| 2.3.5.7.11.17.19.37 {{monzo| -1 2 -6 3 -2 1 -1 2 }} | |||
| | |||
| | |||
|- | |||
| <font style="font-size:0.79em">308915776/308915775</font> | |||
| 5.6042×10<sup>-6</sup> | |||
| (2×13)<sup>6</sup>/(3<sup>4</sup>×5<sup>2</sup>×7×19×31×37) | |||
| 2.3.5.7.13.19.31.37 {{monzo| 6 -4 -2 -1 6 -1 -1 -1 }} | |||
| | |||
| S17576 | |||
|- | |||
| <font style="font-size:0.72em">3463200000/3463199999</font> | |||
| 4.9989×10<sup>-7</sup> | |||
| (2<sup>8</sup>×3<sup>2</sup>×5<sup>5</sup>×13×37)/(7<sup>5</sup>×17<sup>2</sup>×23×31) | |||
| 2.3.5.7.13.17.23.31.37 {{monzo| 8 2 5 -5 1 -2 -1 -1 1 }} | |||
| | |||
| | |||
|} | |} | ||