54edo: Difference between revisions
CompactStar (talk | contribs) No edit summary |
→Instruments: Insert music section after this, starting with Bryan Deister's ''microtonal improvisation in 54edo'' (2025) |
||
(32 intermediate revisions by 8 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ | {{ED intro}} | ||
== Theory == | == Theory == | ||
54edo is suitable for usage | 54edo is suitable for usage as a [[dual-fifth tuning]] system, or alternatively, a [[No-threes subgroup temperaments|no-fifth]] tuning system. Using the sharp fifth, it can be viewed as two [[ring number|rings]] of [[27edo]], which adds better approximations of the [[11/1|11th]] and [[15/1|15th harmonics]]. Using the flat fifth, it generates an ultrasoft [[diatonic scale]]. This scale is so [[soft]], with {{nowrap|L/s {{=}} 8/7}}, that it stops sounding like [[meantone]] or even [[flattone]], but just sounds like a [[circulating temperament]] of [[7edo]]. | ||
It | The [[patent val]] of this edo takes the same fifth as [[27edo]], but the [[mapping]] for harmonic 5 is different. It tempers out [[2048/2025]] in the 5-limit, making it a [[diaschismic]] system. It is the highest edo in which the best mappings of the major 3rd ([[5/4]]) and harmonic 7th ([[7/4]]), 17\54 and 44\54, are exactly 600{{c}} apart, making them suitable for harmonies using tritone substitutions. In other words, this is the last edo tempering out [[50/49]]. This means it extends quite simply to the 7- and 11-limit using the [[pajarous]] mapping and to the 13-limit using the 54f val, falling neatly between the 7- and 13-limit [[Target tuning #Minimax tuning|minimax tunings]]. | ||
The 54cd val makes for an excellent tuning of 7-limit [[hexe]] temperament, while the 54bdf val does higher limit [[muggles]] about as well as it can be tuned. However, even these best temperament interpretations of 54edo are quite high in [[badness]] compared to its immediate neighbours [[53edo|53-]] and [[55edo]], both of which are [[Historical temperaments|historically significant]] for different reasons, leaving it mostly unexplored so far. | |||
=== Odd harmonics === | |||
{{Harmonics in equal|54}} | |||
=== Octave stretch === | |||
=== | 54edo’s approximations of 3/1, 5/1, 7/1, 11/1, 13/1, 17/1, 19/1 and 23/1 are all improved by [[Gallery of arithmetic pitch sequences#APS of mérides|APS4/5méride]], a [[Octave stretch|stretched-octave]] version of 54edo. The trade-off is a slightly worse 2/1. | ||
{| class="wikitable | If one prefers a ''[[Octave shrinking|compressed-octave]]'' tuning instead, [[86edt]], [[126ed5]] and [[152ed7]] are possible choices. They improve upon 54edo’s 3/1, 5/1, 7/1 and 17/1, at the cost of its 2/1, 11/1 and 13/1. | ||
|+Table of intervals | |||
!Degree | [[ed255/128#54ed255/128|54ed255/128]] is another compressed octave option. It improves upon 54edo’s 3/1, 5/1, 11/1, 13/1, 17/1 and 19/1, at slight cost to the 2/1 and 7/1. Its 2/1 is the least accurate of all the tunings mentioned in this section, though still accurate enough that it has low [[harmonic entropy]]. | ||
!Cents | |||
! | There are also some nearby [[Zeta peak index]] (ZPI) tunings which can be used to improve 54edo’s approximation of JI: 262zpi, 263zpi, 264zpi and 265zpi. The main Zeta peak index page details all four tunings. | ||
=== Subsets and supersets === | |||
Since 54 factors into {{factorization|54}}, 54edo has subset edos {{EDOs| 2, 3, 6, 9, 18, and 27 }}. | |||
== Intervals == | |||
Using the sharp fifth as a [[generator]], 54edo requires up to quadruple ups and downs to notate. But using the flat fifth as a generator, it requires up to septuple sharps and flats. Because the flat fifth generates a diatonic scale with a [[chroma]] of 1 step, ups and downs are not needed in notation if the flat fifth is used. | |||
{| class="wikitable" | |||
|+ style="font-size: 105%;" | Table of intervals in 54edo | |||
|- | |||
! rowspan="2" | Degree | |||
! rowspan="2" | Cents | |||
! colspan="2" | [[Ups and downs notation]] | |||
|- | |||
! Flat fifth (31\54) | |||
! Sharp fifth (16\27) | |||
|- | |||
| 0 | |||
| 0.000 | |||
| {{UDnote|fifth=31|step=0}} | |||
| {{UDnote|step=0}} | |||
|- | |||
| 1 | |||
| 22.222 | |||
| {{UDnote|fifth=31|step=1}} | |||
| {{UDnote|step=1}} | |||
|- | |||
| 2 | |||
| 44.444 | |||
| {{UDnote|fifth=31|step=2}} | |||
| {{UDnote|step=2}} | |||
|- | |||
| 3 | |||
| 66.667 | |||
| {{UDnote|fifth=31|step=3}} | |||
| {{UDnote|step=3}} | |||
|- | |||
| 4 | |||
| 88.889 | |||
| {{UDnote|fifth=31|step=4}} | |||
| {{UDnote|step=4}} | |||
|- | |||
| 5 | |||
| 111.111 | |||
| {{UDnote|fifth=31|step=5}} | |||
| {{UDnote|step=5}} | |||
|- | |||
| 6 | |||
| 133.333 | |||
| {{UDnote|fifth=31|step=6}} | |||
| {{UDnote|step=6}} | |||
|- | |||
| 7 | |||
| 155.556 | |||
| {{UDnote|fifth=31|step=7}} | |||
| {{UDnote|step=7}} | |||
|- | |||
| 8 | |||
| 177.778 | |||
| {{UDnote|fifth=31|step=8}} | |||
| {{UDnote|step=8}} | |||
|- | |||
| 9 | |||
| 200.000 | |||
| {{UDnote|fifth=31|step=9}} | |||
| {{UDnote|step=9}} | |||
|- | |||
| 10 | |||
| 222.222 | |||
| {{UDnote|fifth=31|step=10}} | |||
| {{UDnote|step=10}} | |||
|- | |||
| 11 | |||
| 244.444 | |||
| {{UDnote|fifth=31|step=11}} | |||
| {{UDnote|step=11}} | |||
|- | |||
| 12 | |||
| 266.667 | |||
| {{UDnote|fifth=31|step=12}} | |||
| {{UDnote|step=12}} | |||
|- | |||
| 13 | |||
| 288.889 | |||
| {{UDnote|fifth=31|step=13}} | |||
| {{UDnote|step=13}} | |||
|- | |||
| 14 | |||
| 311.111 | |||
| {{UDnote|fifth=31|step=14}} | |||
| {{UDnote|step=14}} | |||
|- | |- | ||
| | | 15 | ||
| | | 333.333 | ||
| | | {{UDnote|fifth=31|step=15}} | ||
| | | {{UDnote|step=15}} | ||
|- | |- | ||
| | | 16 | ||
| | | 355.556 | ||
| | | {{UDnote|fifth=31|step=16}} | ||
| | | {{UDnote|step=16}} | ||
|- | |- | ||
| | | 17 | ||
| | | 377.778 | ||
| | | {{UDnote|fifth=31|step=17}} | ||
| | | {{UDnote|step=17}} | ||
|- | |- | ||
| | | 18 | ||
| | | 400.000 | ||
| | | {{UDnote|fifth=31|step=18}} | ||
| | | {{UDnote|step=18}} | ||
| | |||
| | |||
| | |||
|- | |- | ||
| | | 19 | ||
| | | 422.222 | ||
| | | {{UDnote|fifth=31|step=19}} | ||
| | | {{UDnote|step=19}} | ||
|- | |- | ||
| | | 20 | ||
| | | 444.444 | ||
| | | {{UDnote|fifth=31|step=20}} | ||
| | | {{UDnote|step=20}} | ||
|- | |- | ||
| | | 21 | ||
| | | 466.667 | ||
| | | {{UDnote|fifth=31|step=21}} | ||
| | | {{UDnote|step=21}} | ||
|- | |- | ||
| | | 22 | ||
| | | 488.889 | ||
| | | {{UDnote|fifth=31|step=22}} | ||
| | | {{UDnote|step=22}} | ||
|- | |- | ||
| | | 23 | ||
| | | 511.111 | ||
| | | {{UDnote|fifth=31|step=23}} | ||
| | | {{UDnote|step=23}} | ||
|- | |- | ||
| | | 24 | ||
| | | 533.333 | ||
| | | {{UDnote|fifth=31|step=24}} | ||
| | | {{UDnote|step=24}} | ||
|- | |- | ||
| | | 25 | ||
| | | 555.556 | ||
| | | {{UDnote|fifth=31|step=25}} | ||
| | | {{UDnote|step=25}} | ||
|- | |- | ||
| | | 26 | ||
| | | 577.778 | ||
| | | {{UDnote|fifth=31|step=26}} | ||
| | | {{UDnote|step=26}} | ||
|- | |- | ||
| | | 27 | ||
| | | 600.000 | ||
| | | {{UDnote|fifth=31|step=27}} | ||
| | | {{UDnote|step=27}} | ||
|- | |- | ||
| | | 28 | ||
| | | 622.222 | ||
| | | {{UDnote|fifth=31|step=28}} | ||
| | | {{UDnote|step=28}} | ||
|- | |- | ||
| | | 29 | ||
| | | 644.444 | ||
| | | {{UDnote|fifth=31|step=29}} | ||
| | | {{UDnote|step=29}} | ||
|- | |- | ||
| | | 30 | ||
| | | 666.667 | ||
| | | {{UDnote|fifth=31|step=30}} | ||
| | | {{UDnote|step=30}} | ||
|- | |- | ||
| | | 31 | ||
| | | 688.889 | ||
| | | {{UDnote|fifth=31|step=31}} | ||
| | | {{UDnote|step=31}} | ||
|- | |- | ||
| | | 32 | ||
| | | 711.111 | ||
| | | {{UDnote|fifth=31|step=32}} | ||
| | | {{UDnote|step=32}} | ||
|- | |- | ||
| | | 33 | ||
| | | 733.333 | ||
| | | {{UDnote|fifth=31|step=33}} | ||
| | | {{UDnote|step=33}} | ||
|- | |- | ||
| | | 34 | ||
| | | 755.556 | ||
| | | {{UDnote|fifth=31|step=34}} | ||
| | | {{UDnote|step=34}} | ||
|- | |- | ||
| | | 35 | ||
| | | 777.778 | ||
| | | {{UDnote|fifth=31|step=35}} | ||
| | | {{UDnote|step=35}} | ||
|- | |- | ||
| | | 36 | ||
| | | 800.000 | ||
| | | {{UDnote|fifth=31|step=36}} | ||
| | | {{UDnote|step=36}} | ||
|- | |- | ||
| | | 37 | ||
| | | 822.222 | ||
| | | {{UDnote|fifth=31|step=37}} | ||
| | | {{UDnote|step=37}} | ||
|- | |- | ||
| | | 38 | ||
| | | 844.444 | ||
| | | {{UDnote|fifth=31|step=38}} | ||
| | | {{UDnote|step=38}} | ||
|- | |- | ||
| | | 39 | ||
| | | 866.667 | ||
| | | {{UDnote|fifth=31|step=39}} | ||
| | | {{UDnote|step=39}} | ||
|- | |- | ||
| | | 40 | ||
| | | 888.889 | ||
| | | {{UDnote|fifth=31|step=40}} | ||
| | | {{UDnote|step=40}} | ||
|- | |||
| 41 | |||
| 911.111 | |||
| {{UDnote|fifth=31|step=41}} | |||
| {{UDnote|step=41}} | |||
|- | |||
| 42 | |||
| 933.333 | |||
| {{UDnote|fifth=31|step=42}} | |||
| {{UDnote|step=42}} | |||
|- | |||
| 43 | |||
| 955.556 | |||
| {{UDnote|fifth=31|step=43}} | |||
| {{UDnote|step=43}} | |||
|- | |||
| 44 | |||
| 977.778 | |||
| {{UDnote|fifth=31|step=44}} | |||
| {{UDnote|step=44}} | |||
|- | |||
| 45 | |||
| 1000.000 | |||
| {{UDnote|fifth=31|step=45}} | |||
| {{UDnote|step=45}} | |||
|- | |||
| 46 | |||
| 1022.222 | |||
| {{UDnote|fifth=31|step=46}} | |||
| {{UDnote|step=46}} | |||
|- | |||
| 47 | |||
| 1044.444 | |||
| {{UDnote|fifth=31|step=47}} | |||
| {{UDnote|step=47}} | |||
|- | |||
| 48 | |||
| 1066.667 | |||
| {{UDnote|fifth=31|step=48}} | |||
| {{UDnote|step=48}} | |||
|- | |||
| 49 | |||
| 1088.889 | |||
| {{UDnote|fifth=31|step=49}} | |||
| {{UDnote|step=49}} | |||
|- | |||
| 50 | |||
| 1111.111 | |||
| {{UDnote|fifth=31|step=50}} | |||
| {{UDnote|step=50}} | |||
|- | |||
| 51 | |||
| 1133.333 | |||
| {{UDnote|fifth=31|step=51}} | |||
| {{UDnote|step=51}} | |||
|- | |||
| 52 | |||
| 1155.556 | |||
| {{UDnote|fifth=31|step=52}} | |||
| {{UDnote|step=52}} | |||
|- | |||
| 53 | |||
| 1177.778 | |||
| {{UDnote|fifth=31|step=53}} | |||
| {{UDnote|step=53}} | |||
|- | |||
| 54 | |||
| 1200.000 | |||
| {{UDnote|fifth=31|step=54}} | |||
| {{UDnote|step=54}} | |||
|} | |} | ||
[[ | == Notation == | ||
=== Ups and downs notation === | |||
Using [[Helmholtz–Ellis]] accidentals, 54edo can also be notated using [[ups and downs notation]]: | |||
{{Sharpness-sharp8}} | |||
Here, a sharp raises by eight steps, and a flat lowers by eight steps, so single, double, and triple arrows along with Stein–Zimmerman [[24edo#Notation|quarter-tone]] accidentals can be used to fill in the gap. | |||
=== Sagittal notation === | |||
This notation uses the same sagittal sequence as [[61edo#Sagittal notation|61-EDO]], and is a superset of the notation for [[27edo#Sagittal notation|27-EDO]]. | |||
==== Evo flavor ==== | |||
<imagemap> | |||
File:54-EDO_Evo_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 650 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 140 106 [[513/512]] | |||
rect 140 80 240 106 [[81/80]] | |||
rect 240 80 360 106 [[33/32]] | |||
rect 360 80 480 106 [[27/26]] | |||
default [[File:54-EDO_Evo_Sagittal.svg]] | |||
</imagemap> | |||
==== Revo flavor ==== | |||
<imagemap> | |||
File:54-EDO_Revo_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 650 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 140 106 [[513/512]] | |||
rect 140 80 240 106 [[81/80]] | |||
rect 240 80 360 106 [[33/32]] | |||
rect 360 80 480 106 [[27/26]] | |||
default [[File:54-EDO_Revo_Sagittal.svg]] | |||
</imagemap> | |||
==== Evo-SZ flavor ==== | |||
<imagemap> | |||
File:54-EDO_Evo-SZ_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 300 0 642 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 140 106 [[513/512]] | |||
rect 140 80 240 106 [[81/80]] | |||
rect 240 80 360 106 [[33/32]] | |||
rect 360 80 480 106 [[27/26]] | |||
default [[File:54-EDO_Evo-SZ_Sagittal.svg]] | |||
</imagemap> | |||
In the diagrams above, a sagittal symbol followed by an equals sign (=) means that the following comma is the symbol's [[Sagittal notation#Primary comma|primary comma]] (the comma it ''exactly'' represents in JI), while an approximately equals sign (≈) means it is a secondary comma (a comma it ''approximately'' represents in JI). In both cases the symbol exactly represents the tempered version of the comma in this EDO. | |||
== Scales == | |||
* Approximations of [[gamelan]] scales: | |||
** 5-tone pelog: 5 7 19 4 19 | |||
** 7-tone pelog: 5 7 11 8 4 13 6 | |||
** 5-tone slendro: 11 11 10 11 11 | |||
== Instruments == | |||
; Lumatone | |||
See [[Lumatone mapping for 54edo]] | |||
[[Category:Todo:add rank 2 temperaments table]] | |||
== Music == | |||
; [[Bryan Deister]] | |||
* [https://www.youtube.com/shorts/Bi5-YQUQHek ''microtonal improvisation in 54edo''] (2025) |