|
|
(20 intermediate revisions by 9 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox MOS |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | | Periods = 1 |
| : This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2015-05-23 20:54:42 UTC</tt>.<br>
| | | nLargeSteps = 5 |
| : The original revision id was <tt>551983422</tt>.<br>
| | | nSmallSteps = 8 |
| : The revision comment was: <tt></tt><br>
| | | Equalized = 5 |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| | | Collapsed = 2 |
| <h4>Original Wikitext content:</h4>
| | | Pattern = LsLssLsLssLss |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">This MOS, representing tempered chains of the 21st harmonic, is the chromatic scale of Semisept/A-team and Vulture temperaments. The major problematic of approaching it from a traditional tonality point of view is that, at best, it partially misses syntonic root-third-fifth triads unless you are extremely generous with the definition of the category of a "third". However, it does hit the correct syntonic second and seventh, so that insofar as the major second/minor seventh is a consonance, stacks of it (occasionally mixed with the "minor third/major sixth") are typically the most consonant harmonies of the scale.
| | }} |
| || (2+3)/13 || || || 184 8/13+<span style="font-size: 12.8000001907349px;">276 12/13</span> || | | {{MOS intro}} |
| || (9+13)/57 || || || 189 9/19+273 13/19 ||
| |
| || (7+10)/44 || || || 190 10/11+272 8/11 ||
| |
| || || (19+27)/119 || || 191 71/119+272 32/119 ||
| |
| || || (12+17)/75 || || 192+272 ||
| |
| || || (17+24)/106 || || 192 25/53+271 37/53 ||
| |
| || (5+7)/31 || || || 193 17/31+270 30/31 ||
| |
| || || (18+25)/111 || || 194 22/37+270 10/37 || | |
| || || (13+18)/80 || || 195+270 ||
| |
| || || (8+11)/49 || || 195 45/49+269 19/49 ||
| |
| || || || (19+26)/116 || 196 16/29+268 28/29 || | |
| || || (11+15)/67 || || 197 1/67+268 44/67 ||
| |
| || || (14+19)/85 || || 197 11/17+268 4/17 ||
| |
| || || (17+23)/103 || || 198 6/103+267 99/103 ||
| |
| || || (20+27)/121 || || 198 42/121+267 93/121 ||
| |
| || || (23+31)/139 || || 198 78/139+267 87/139 ||
| |
| || || (26+35)/157 || || 198 114/157+267 81/157 ||
| |
| || || (29+39)/175 || || 198 6/7+267 3/7 ||
| |
| || || (32+43)/193 || || 198 186/193+267 69/193 ||
| |
| || || (35+47)/211 || || 199 11/211+267 63/211 ||
| |
| || (3+4)/18 || || || 200+266 2/3 ||
| |
| || || (19+25)/113 || || 201 87/113+265 50/113 ||
| |
| || || (16+21)/95 || || 202 2/19+265 4/19 ||
| |
| || || (13+17)/77 || || 202 46/77+264 72/77 ||
| |
| || || (10+13)/59 || || 203 23/59+264 24/59 ||
| |
| || || (7+9)/41 || || 204 36/41+263 17/41 ||
| |
| || || || (18+23)/105 || 205 5/7+262 6/7 ||
| |
| || || (11+14)/64 || || 206.25+262.5 || | |
| || || || || 206.653404+262.231064 ||
| |
| || || (15+19)/87 || || 206 26/29+262 2/29 ||
| |
| || || (19+24)/110 || || 207 3/11+261 9/11 ||
| |
| || (4+5)/23 || || || 208 16/23+260 20/23 ||
| |
| || || || || 209.630457+260.246362 ||
| |
| || || (13+16)/74 || || 210 30/37+259 17/37 ||
| |
| || || (9+11)/51 || || 211 13/17+258 14/17 ||
| |
| || || (14+17)/79 || || 212 52/79+258 18/79 ||
| |
| || (5+6)/28 || || || 214 2/7+257 1/7 ||
| |
| || || (16+19)/89 || || 215 65/89+256 16/89 || | |
| || || <span style="font-size: 12.8000001907349px;">(11+13)/61</span> || || 216 24/61+255 45/61 ||
| |
| || || (17+20)/94 || || 217 1/47+255 15/47 ||
| |
| || (6+7)/33 || || || 218 2/11+254 6/11 ||
| |
| || (1+1)/5 || || || 240+240 ||</pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>5L 8s</title></head><body>This MOS, representing tempered chains of the 21st harmonic, is the chromatic scale of Semisept/A-team and Vulture temperaments. The major problematic of approaching it from a traditional tonality point of view is that, at best, it partially misses syntonic root-third-fifth triads unless you are extremely generous with the definition of the category of a &quot;third&quot;. However, it does hit the correct syntonic second and seventh, so that insofar as the major second/minor seventh is a consonance, stacks of it (occasionally mixed with the &quot;minor third/major sixth&quot;) are typically the most consonant harmonies of the scale.<br />
| |
|
| |
|
| | 5L 8s represents the chromatic scales of Semisept, [[A-Team]], and [[Vulture]] temperaments. |
|
| |
|
| <table class="wiki_table">
| | == Scale properties == |
| <tr>
| | {{TAMNAMS use}} |
| <td>(2+3)/13<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>184 8/13+<span style="font-size: 12.8000001907349px;">276 12/13</span><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>(9+13)/57<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>189 9/19+273 13/19<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>(7+10)/44<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>190 10/11+272 8/11<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>(19+27)/119<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>191 71/119+272 32/119<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>(12+17)/75<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>192+272<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>(17+24)/106<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>192 25/53+271 37/53<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>(5+7)/31<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>193 17/31+270 30/31<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>(18+25)/111<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>194 22/37+270 10/37<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>(13+18)/80<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>195+270<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>(8+11)/49<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>195 45/49+269 19/49<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>(19+26)/116<br />
| |
| </td>
| |
| <td>196 16/29+268 28/29<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>(11+15)/67<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>197 1/67+268 44/67<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>(14+19)/85<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>197 11/17+268 4/17<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>(17+23)/103<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>198 6/103+267 99/103<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>(20+27)/121<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>198 42/121+267 93/121<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>(23+31)/139<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>198 78/139+267 87/139<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>(26+35)/157<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>198 114/157+267 81/157<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>(29+39)/175<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>198 6/7+267 3/7<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>(32+43)/193<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>198 186/193+267 69/193<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>(35+47)/211<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>199 11/211+267 63/211<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>(3+4)/18<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>200+266 2/3<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>(19+25)/113<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>201 87/113+265 50/113<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>(16+21)/95<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>202 2/19+265 4/19<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>(13+17)/77<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>202 46/77+264 72/77<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>(10+13)/59<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>203 23/59+264 24/59<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>(7+9)/41<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>204 36/41+263 17/41<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>(18+23)/105<br />
| |
| </td>
| |
| <td>205 5/7+262 6/7<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>(11+14)/64<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>206.25+262.5<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>206.653404+262.231064<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>(15+19)/87<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>206 26/29+262 2/29<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>(19+24)/110<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>207 3/11+261 9/11<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>(4+5)/23<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>208 16/23+260 20/23<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>209.630457+260.246362<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>(13+16)/74<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>210 30/37+259 17/37<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>(9+11)/51<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>211 13/17+258 14/17<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>(14+17)/79<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>212 52/79+258 18/79<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>(5+6)/28<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>214 2/7+257 1/7<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>(16+19)/89<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>215 65/89+256 16/89<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><span style="font-size: 12.8000001907349px;">(11+13)/61</span><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>216 24/61+255 45/61<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>(17+20)/94<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>217 1/47+255 15/47<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>(6+7)/33<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>218 2/11+254 6/11<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>(1+1)/5<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>240+240<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| </body></html></pre></div>
| | === Intervals === |
| | {{MOS intervals}} |
| | |
| | === Generator chain === |
| | {{MOS genchain}} |
| | |
| | === Modes === |
| | {{MOS mode degrees}} |
| | |
| | == Scale tree == |
| | {{MOS tuning spectrum}} |
| | |
| | {{todo|expand}} |
| | |
| | [[Category:Oneirotonic]] |
| | [[Category:13-tone scales]] |