Height: Difference between revisions

Wikispaces>guest
**Imported revision 362695182 - Original comment: **
Sintel (talk | contribs)
equivalence section: no need to talk about p-adic valuations here
 
(57 intermediate revisions by 13 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
The '''height''' is a mathematical tool to measure the [[complexity]] of [[JI]] [[interval]]s.
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:guest|guest]] and made on <tt>2012-09-06 21:05:16 UTC</tt>.<br>
: The original revision id was <tt>362695182</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=Definition:=
A **height** is a function on an abelian group which maps elements to real numbers, yielding a type of complexity measurement. Since the (non-zero) rationals form an abelian group under multiplication, we can assign each element a height, and hence a complexity. While there is no concensus on the restrictions of a height, we will attempt to create a definition which is practical for musical purposes.


A height function H(q) on the rationals q should fulfill the following criteria:
== Definition ==
# Given any constant C, there are finitely many elements q such that H(q) &lt;= C.
A '''height''' is a function on members of an algebraically defined object which maps elements to real numbers, yielding a type of complexity measurement (see [[Wikipedia: Height function]]). For example we can assign each element of the positive rational numbers a height, and hence a complexity. While there is no consensus on the restrictions of a height, we will attempt to create a definition for positive rational numbers which is practical for musical purposes.
# There is a unique constant K such that H(q) &gt;= K, for all q.
# H(q) = H(1/q)


Since any rational q can be rewritten as a fraction n/d, we may sub this into the above equation to get H(n/d) = H(d/n). This relation is extremely useful - it tells us that we can switch n and d without any consequences on the outcome of the height.
A height function H(''q'') on the positive rationals ''q'' should fulfill the following criteria:


If we have a function F(x) which is strictly increasing on the positive reals, then F(H(q)) will rank elements in the same order as H(q). We can therefore establish the following equivalence relation:
# Given any constant ''C'', there are finitely many elements ''q'' such that H(''q'') ≤ ''C''.
[[math]]
# H(''q'') is bounded below by H(1), so that H(''q'') ≥ H(1) for all q.
H(q) \equiv F(H(q))
# H(''q'') = H(1) iff ''q'' = 1.
[[math]]
# H(''q'') = H(1/''q'')
# H(''q''<sup>''n''</sup>) ≥ H(''q'') for any non-negative integer ''n''.


=Examples:=  
If we have a function F which is strictly increasing on the positive reals, then F(H(''q'')) will rank elements in the same order as H(''q''). We can therefore establish the following equivalence relation:
|| Name: || H(n/d) || H(q) || H(q) simplified by equivalence relation ||
 
|| [[Benedetti Height|Benedetti height]]
<math>\displaystyle H \left( {q} \right) \equiv F \left( {H} \left( {q} \right) \right)</math>
(or [[Tenney Height]]) || [[math]]
 
nd
Exponentiation and logarithm are such functions commonly used for converting a height between arithmetic and logarithmic scales.
[[math]] || [[math]]
 
2^{T1(q)}
A '''semi-height''' is a function which does not obey criterion #3 above, so that there is a rational number ''q'' ≠ 1 such that H(''q'') = H(1), resulting in an equivalence relation on its elements, under which #1 is modified to a finite number of equivalence classes. An example would be [[octave equivalence]], where two ratios ''q''<sub>1</sub> and ''q''<sub>2</sub> are considered equivalent if they differ only by factors of 2.
[[math]] || [[math]]
We can also consider other equivalences. For example, we can assume tritave equivalence by ignoring factors of 3.
T1(q)
 
[[math]] ||
== Height versus norm ==
|| Weil Height || [[math]]
Height functions are applied to ratios, whereas norms are measurements on interval lattices [[wikipedia: embedding|embedded]] in [[wikipedia: Normed vector space|normed vector spaces]]. Some height functions are essentially norms, and they are numerically equal. For example, the [[Tenney height]] is also the Tenney norm.
max(n,d)
 
[[math]] || [[math]]
However, not all height functions are norms, and not all norms are height functions. The [[Benedetti height]] is not a norm, since it does not satisfy the condition of absolute homogeneity. The [[taxicab distance]] is not a height, since there can be infinitely many intervals below a given bound.
2^{(T1(q)+|log_2(q)|)/2}
 
[[math]] || [[math]]
== Examples of height functions ==
T1(q)+|log_2(q)|
{| class="wikitable"
[[math]] ||
! Name
|| Arithmetic Height || [[math]]
! Type
n+d
! H(''n''/''d'')
[[math]] || [[math]]
! H(''q'')
2^{T1(q)/2} (q+1)/q^{1/2}
! H(''q'') simplified by equivalence relation
[[math]] || [[math]]
|-
T1(q)+2log_2(q+1)-log_2(q)
| [[Benedetti height]] <br> (or [[Tenney height]])
[[math]] ||
| Height
|| [[Kees Height]] || [[math]]
| <math>nd</math>
max(2^{-v_2(n)}n,
| <math>2^{\large{\|q\|_{T1}}}</math>
2^{-v_2(d)}d)
| <math>\|q\|_{T1}</math>
[[math]] || [[math]]
|-
2^{(T1(2^{-v_2(q)}q)+|log_2(q)-v_2(q)|)/2}
| [[Wilson height]]
[[math]] || [[math]]
| Height
T1(2^{-v_2(q)}q)+|log_2(q)-v_2(q)|
| <math>\text{sopfr}(n d)</math>
[[math]] ||
| <math>2^{\large{\text{sopfr}(q)}}</math>
||   ||  ||  ||   ||
| <math>\text{sopfr}(q)</math>
Where T1(q) is the [[xenharmonic/Generalized Tenney Norms and Tp Interval Space#The%20Tenney%20Norm%20(T1%20norm)|tenney norm]] of q in monzo form, and vp(x) is the [[http://en.wikipedia.org/wiki/P-adic_order|p-adic valuation]] of x.
|-
| [[Weil height]]
| Height
| <math>\max \left( {n , d} \right)</math>
| <math>2^{\large{\frac{1}{2}(\|q\|_{T1} + \mid \log_2(\mid q \mid)\mid)}}</math>
| <math>\|q\|_{T1} + \mid \log_2(\mid q \mid)\mid</math>
|-
| Arithmetic height
| Height
| <math>n + d</math>
| <math>\dfrac {\left( {q + 1} \right)} {\sqrt{q}} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}}</math>
| <math>\|q\|_{T1} + 2 \log_2 \left( {q + 1} \right) - \log_2 \left( {q} \right)</math>
|-
| Harmonic semi-height
| Semi-Height
| <math>\dfrac {n d} {n + d}</math>
| <math>\dfrac {\sqrt{q}} {\left( {q + 1} \right)} 2^{\large{\frac{1}{2} {\|q\|_{T1}}}}</math>
| <math>\|q\|_{T1} - 2 \log_2 \left( {q + 1} \right) + \log_2 \left( {q} \right)</math>
|-
| [[Kees semi-height]]
| Semi-Height
| <math>\max \left( {2^{-v_2 \left( {n} \right)} n, 2^{-v_2 \left( {d} \right)} d} \right)</math>
| <math>2^{\large{\left(\frac{1}{2}\left(\|2^{-v_2 \left( {q} \right)} q\|_{T1} + \mid \log_2(q) - v_2(q) \mid \right)\right)}}</math>
| <math>\|{2^{-v_2 \left( {q} \right)} q}\|_{T1} + | \log_2 \left( {q} \right) - v_2 \left( {q} \right) |</math>
|}
 
Where ||''q''||<sub>T1</sub> is the [[Generalized Tenney norms and Tp interval space #The Tenney Norm (T1 norm)|tenney norm]] of ''q'' in monzo form, and v<sub>''p''</sub>(''q'') is the [[Wikipedia: P-adic order|''p''-adic valuation]] of ''q''.
 
The function sopfr (''nd'') is the [https://mathworld.wolfram.com/SumofPrimeFactors.html "sum of prime factors with repetition"] of ''n''·''d''. Equivalently, this is the L<sub>1</sub> norm on monzos, but where each prime is weighted by ''p'' rather than log (''p''). This is called "Wilson's Complexity" in [[John Chalmers]]'s ''Divisions of the Tetrachord''<ref>[http://lumma.org/tuning/chalmers/DivisionsOfTheTetrachord.pdf ''Division of the Tetrachord''], page 55. John Chalmers. </ref>.


Some useful identities:
Some useful identities:
[[math]]
* <math>n = 2^{\large{\frac{1}{2}(\|q\|_{T1} + \log_2(q))}}</math>
n=2^{(T1(q)\pm|log_2(q)|)/2}
* <math>d = 2^{\large{\frac{1}{2}(\|q\|_{T1} - \log_2(q))}}</math>
[[math]]
* <math>n d = 2^{\|q\|_{T1}}</math>
[[math]]
 
d=2^{(T1(q)\mp|log_2(q)|)/2}
Height functions can also be put on the points of [http://planetmath.org/encyclopedia/QuasiProjectiveVariety.html projective varieties]. Since [[abstract regular temperament]]s can be identified with rational points on [[Wikipedia: Grassmannian|Grassmann varieties]], complexity measures of regular temperaments are also height functions.
[[math]]
 
[[math]]
See [[Dave Keenan & Douglas Blumeyer's guide to RTT/Alternative complexities]] for an extensive discussion of heights and semi-heights used in regular temperament theory.
nd=2^{T1(q)}
 
[[math]]</pre></div>
== History ==
<h4>Original HTML content:</h4>
The concept of height was introduced to xenharmonics by [[Gene Ward Smith]] in 2001<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_31418#31488 Yahoo! Tuning Group | ''Super Particular Stepsize'']</ref>; it comes from the mathematical field of number theory (for more information, see [[Wikipedia: Height function]]). It is not to be confused with the musical notion of [[Wikipedia: Pitch (music) #Theories of pitch perception|''pitch height'' (as opposed to ''pitch chroma'')]]<ref>Though it has also been used to refer to the size of an interval in cents. On page 23 of [https://www.plainsound.org/pdfs/JC&ToH.pdf ''John Cage and the Theor of Harmony''], Tenney writes: "The one-dimensional continuum of pitch-height (i.e. 'pitch' as ordinarily defined)", and graphs it ''as opposed to'' his concept of "harmonic distance", which was ironically the first measurement named by Gene Ward Smith as a "height": "Tenney height".</ref>.
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Height&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:16:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Definition:"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:16 --&gt;Definition:&lt;/h1&gt;
 
A &lt;strong&gt;height&lt;/strong&gt; is a function on an abelian group which maps elements to real numbers, yielding a type of complexity measurement. Since the (non-zero) rationals form an abelian group under multiplication, we can assign each element a height, and hence a complexity. While there is no concensus on the restrictions of a height, we will attempt to create a definition which is practical for musical purposes.&lt;br /&gt;
== See also ==
&lt;br /&gt;
* [[Commas by taxicab distance]]
A height function H(q) on the rationals q should fulfill the following criteria:&lt;br /&gt;
* [[Harmonic entropy]]
&lt;ol&gt;&lt;li&gt;Given any constant C, there are finitely many elements q such that H(q) &amp;lt;= C.&lt;/li&gt;&lt;li&gt;There is a unique constant K such that H(q) &amp;gt;= K, for all q.&lt;/li&gt;&lt;li&gt;H(q) = H(1/q)&lt;/li&gt;&lt;/ol&gt;&lt;br /&gt;
 
Since any rational q can be rewritten as a fraction n/d, we may sub this into the above equation to get H(n/d) = H(d/n). This relation is extremely useful - it tells us that we can switch n and d without any consequences on the outcome of the height.&lt;br /&gt;
== References ==
&lt;br /&gt;
If we have a function F(x) which is strictly increasing on the positive reals, then F(H(q)) will rank elements in the same order as H(q). We can therefore establish the following equivalence relation:&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:0:
[[math]]&amp;lt;br/&amp;gt;
H(q) \equiv F(H(q))&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;H(q) \equiv F(H(q))&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:0 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:18:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Examples:"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:18 --&gt;Examples:&lt;/h1&gt;


&lt;table class="wiki_table"&gt;
<references/>
    &lt;tr&gt;
        &lt;td&gt;Name:&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;H(n/d)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;H(q)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;H(q) simplified by equivalence relation&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/Benedetti%20Height"&gt;Benedetti height&lt;/a&gt;&lt;br /&gt;
(or &lt;a class="wiki_link" href="/Tenney%20Height"&gt;Tenney Height&lt;/a&gt;)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:1:
[[math]]&amp;lt;br/&amp;gt;
nd&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;nd&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:1 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:2:
[[math]]&amp;lt;br/&amp;gt;
2^{T1(q)}&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;2^{T1(q)}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:2 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:3:
[[math]]&amp;lt;br/&amp;gt;
T1(q)&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;T1(q)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:3 --&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;Weil Height&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:4:
[[math]]&amp;lt;br/&amp;gt;
max(n,d)&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;max(n,d)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:4 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:5:
[[math]]&amp;lt;br/&amp;gt;
2^{(T1(q)+|log_2(q)|)/2}&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;2^{(T1(q)+|log_2(q)|)/2}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:5 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:6:
[[math]]&amp;lt;br/&amp;gt;
T1(q)+|log_2(q)|&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;T1(q)+|log_2(q)|&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:6 --&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;Arithmetic Height&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:7:
[[math]]&amp;lt;br/&amp;gt;
n+d&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;n+d&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:7 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:8:
[[math]]&amp;lt;br/&amp;gt;
2^{T1(q)/2} (q+1)/q^{1/2}&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;2^{T1(q)/2} (q+1)/q^{1/2}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:8 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:9:
[[math]]&amp;lt;br/&amp;gt;
T1(q)+2log_2(q+1)-log_2(q)&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;T1(q)+2log_2(q+1)-log_2(q)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:9 --&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/Kees%20Height"&gt;Kees Height&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:10:
[[math]]&amp;lt;br/&amp;gt;
max(2^{-v_2(n)}n,&amp;lt;br /&amp;gt;
2^{-v_2(d)}d)&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;max(2^{-v_2(n)}n,
2^{-v_2(d)}d)&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:10 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:11:
[[math]]&amp;lt;br/&amp;gt;
2^{(T1(2^{-v_2(q)}q)+|log_2(q)-v_2(q)|)/2}&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;2^{(T1(2^{-v_2(q)}q)+|log_2(q)-v_2(q)|)/2}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:11 --&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;!-- ws:start:WikiTextMathRule:12:
[[math]]&amp;lt;br/&amp;gt;
T1(2^{-v_2(q)}q)+|log_2(q)-v_2(q)|&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;T1(2^{-v_2(q)}q)+|log_2(q)-v_2(q)|&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:12 --&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


Where T1(q) is the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Generalized%20Tenney%20Norms%20and%20Tp%20Interval%20Space#The%20Tenney%20Norm%20(T1%20norm)"&gt;tenney norm&lt;/a&gt; of q in monzo form, and vp(x) is the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/P-adic_order" rel="nofollow"&gt;p-adic valuation&lt;/a&gt; of x.&lt;br /&gt;
[[Category:Math]]
&lt;br /&gt;
[[Category:Interval complexity measures]]
Some useful identities:&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:13:
[[math]]&amp;lt;br/&amp;gt;
n=2^{(T1(q)\pm|log_2(q)|)/2}&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;n=2^{(T1(q)\pm|log_2(q)|)/2}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:13 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:14:
[[math]]&amp;lt;br/&amp;gt;
d=2^{(T1(q)\mp|log_2(q)|)/2}&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;d=2^{(T1(q)\mp|log_2(q)|)/2}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:14 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:15:
[[math]]&amp;lt;br/&amp;gt;
nd=2^{T1(q)}&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;nd=2^{T1(q)}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:15 --&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>