Nicetone: Difference between revisions
No edit summary |
→Tunings: fix broken latex |
||
(One intermediate revision by one other user not shown) | |||
Line 20: | Line 20: | ||
== 5-limit Zarlino scale == | == 5-limit Zarlino scale == | ||
'''[[Ptolemy's intense diatonic]]''', '''5-limit Zarlino''' or sometimes '''Zarlino''' for short is a [[heptatonic]] [[5-limit]] [[JI]] [[scale]] with the [[nicetone]] step pattern. It consists of the intervals [[1/1]] | '''[[Ptolemy's intense diatonic]]''', '''5-limit Zarlino''' or sometimes '''Zarlino''' for short is a [[heptatonic]] [[5-limit]] [[JI]] [[scale]] with the [[nicetone]] step pattern. It consists of the intervals [[1/1]]–9/8–[[5/4]]–[[4/3]]–[[3/2]]–[[5/3]]–[[15/8]]–[[2/1]]. It corresponds to the case where L represents [[9/8]], M represents [[10/9]], and s represents [[16/15]]. See the [[Ptolemy's intense diatonic|dedicated page]] for Scala files and Fokker blocks information. | ||
== Intervals == | == Intervals == | ||
Line 190: | Line 190: | ||
|- | |- | ||
! Outer generator<br />({{nowrap|''G''<sub>1</sub> {{=}} 2L + M + s}}) | ! Outer generator<br />({{nowrap|''G''<sub>1</sub> {{=}} 2L + M + s}}) | ||
| <math>\displaystyle \frac{4}{7} | | <math>\displaystyle \frac{4}{7} \lt G_\text{1} \lt \frac{2}{3}</math> | ||
|- | |- | ||
! RH inner generator<br />({{nowrap|''G''<sub>2R</sub> {{=}} L + M}}) | ! RH inner generator<br />({{nowrap|''G''<sub>2R</sub> {{=}} L + M}}) | ||
| <math>\displaystyle \frac{1}{2} G_\text{1} | | <math>\displaystyle \frac{1}{2} G_\text{1} \lt G_\text{2R} \lt 4 G_\text{1} - 2 \,\text{ for }\, \frac{4}{7} \lt G_\text{1} \le \frac{3}{5}</math> <br><math>\displaystyle \frac{1}{2} G_\text{1} \lt G_\text{2R} \lt 1 - G_\text{1} \,\text{ for }\,\frac{3}{5} \le G_\text{1} \lt \frac{2}{3}</math> | ||
|- | |- | ||
! LH inner generator<br />({{nowrap|''G''<sub>2L</sub> {{=}} L + s}}) | ! LH inner generator<br />({{nowrap|''G''<sub>2L</sub> {{=}} L + s}}) | ||
| <math>\displaystyle 2 - 3 G_\text{1} | | <math>\displaystyle 2 - 3 G_\text{1} \lt G_\text{2L} \lt \frac{1}{2} G_\text{1} \,\text{ for }\,\frac{4}{7} \lt G_\text{1} \le \frac{3}{5}</math> <br><math>\displaystyle 2 G_\text{1} - 1 \lt G_\text{2L} \lt \frac{1}{2} G_\text{1} \,\text{ for }\,\frac{3}{5} \le G_\text{1} \lt \frac{2}{3}</math> | ||
|- | |- | ||
! Large step<br />({{nowrap|L {{=}} 2''G''<sub>1</sub> − 1}}) | ! Large step<br />({{nowrap|L {{=}} 2''G''<sub>1</sub> − 1}}) | ||
| <math>\displaystyle \frac{1}{7} | | <math>\displaystyle \frac{1}{7} \lt L \lt \frac{1}{3}</math> | ||
|- | |- | ||
! Middle step<br />({{nowrap|M {{=}} 1 − ''G''<sub>1</sub> − ''G''<sub>2L</sub>}}) | ! Middle step<br />({{nowrap|M {{=}} 1 − ''G''<sub>1</sub> − ''G''<sub>2L</sub>}}) | ||
| <math>\displaystyle \frac{1}{4} (1 - 3 L) | | <math>\displaystyle \frac{1}{4} (1 - 3 L) \lt M \lt L \,\text{ for }\, \frac{1}{7} \lt L \le \frac{1}{5}</math> <br><math>\displaystyle \frac{1}{4} (1 - 3 L) \lt M \lt \frac{1}{2} (1 - 3 L) \,\text{ for }\, \frac{1}{5} \le L \lt \frac{1}{3}</math> | ||
|- | |- | ||
! Small step<br />({{nowrap|s {{=}} 1 − ''G''<sub>1</sub> − ''G''<sub>2R</sub>}}) | ! Small step<br />({{nowrap|s {{=}} 1 − ''G''<sub>1</sub> − ''G''<sub>2R</sub>}}) | ||
| <math>\displaystyle \frac{1}{2} (1 - 5 L) | | <math>\displaystyle \frac{1}{2} (1 - 5 L) \lt s \lt \frac{1}{4} (1 - 3 L) \,\text{ for }\, \frac{1}{7} \lt L \le \frac{1}{5}</math> <br><math>\displaystyle 0 \lt s \lt \frac{1}{4} (1 - 3 L) \,\text{ for }\, \frac{1}{5} \le L \lt \frac{1}{3}</math> | ||
|} | |} | ||