|
|
(167 intermediate revisions by 13 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Infobox MOS}} |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | {{MOS intro}} It is also equal to a degenerate form of [[diasem]]. |
| : This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2015-02-11 15:23:11 UTC</tt>.<br>
| |
| : The original revision id was <tt>540653732</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The familiar harmonic entropy minimum with this MOS pattern is [[meantone family#Godzilla|godzilla]], in which a generator is [[8_7|8/7]] or [[7_6|7/6]] (tempered to be the same interval, or even 37/32 if you like) so two of them make a [[4_3|4/3]]. However, in addition to godzilla (tempering out 81/80) and the 2.3.7 temperament [[Chromatic pairs#semaphore|semaphore]], there is also a weird scale called "[[pseudo-semaphore]]", in which two different flavors of [[3_2|3/2]] exist in the same scale: an octave minus two generators makes a sharp 3/2, and two octaves minus seven generators makes a flat 3/2.
| |
| ||||||||||||||||||||||~ Generator ||~ Cents ||~ Comments ||
| |
| || 1\5 || || || || || || || || || || || 240 ||= ||
| |
| || || || || || || || || || || || 12\59 || 244.068 ||= Pseudo-semaphore is around here ||
| |
| || || || || || || || || || || 11\54 || || 244.444 ||= ||
| |
| || || || || || || || || || 10\49 || || || 244.898 ||= ||
| |
| || || || || || || || || 9\44 || || || || 245.455 ||= ||
| |
| || || || || || || || 8\39 || || || || || 246.154 ||= ||
| |
| || || || || || || 7\34 || || || || || || 247.059 ||= ||
| |
| || || || || || 6\29 || || || || || || || 248.276 ||= ||
| |
| || || || || || || 11\53 || || || || || || 249.057 ||= Semaphore is around here ||
| |
| || || || || 5\24 || || || || || || || || 250 ||= L/s = 4 ||
| |
| || || || || || || 9\43 || || || || || || 251.163 || ||
| |
| || || || || || || || || || || || || 252.540 ||= <span style="display: block; text-align: center;">L/s = 3*2^(1/75)</span> ||
| |
| || || || 4\19 || || || || || || || || || 252.632 ||= Godzilla is around here
| |
| L/s = 3 ||
| |
| || || || || || || || || || || || || 252.724 ||= <span style="display: block; text-align: center;">L/s = 3/2^(1/75)</span> ||
| |
| || || || || || 11\52 || || || || || || || 253.813 || ||
| |
| || || || || 7\33 || || || || || || || || 254.5455 || ||
| |
| || || || || || 10\47 || || || || || || || 255.319 || ||
| |
| || || || || || || 13\61 || || || || || || 255.734 || ||
| |
| || || || || || || || 16\75 || || || || || 256.000 || ||
| |
| || || 3\14 || || || || || || || || || || 257.143 ||= Boundary of propriety (generators
| |
| larger than this are proper) ||
| |
| || || || || || 11\51 || || || || || || || 258.8235 || ||
| |
| || || || || 8\37 || || || || || || || || 259.459 ||= ||
| |
| || || || || || || 21\97 || || || || || || 259.794 ||= ||
| |
| || || || || || || || || 55\254 || || || || 259.843 ||= ||
| |
| || || || || || || || || || || 144\665 || || 259.850 ||= ||
| |
| || || || || || || || || || || || 233\1076 || 259.851 ||= Golden [[superpelog]] ||
| |
| || || || || || || || || || 89\411 || || || 259.854 ||= ||
| |
| || || || || || || || 34\157 || || || || || 259.873 ||= ||
| |
| || || || || || 13\60 || || || || || || || 260 ||= ||
| |
| || || || 5\23 || || || || || || || || || 260.870 ||= Optimum rank range (L/s=3/2) superpelog ||
| |
| || || || || 7\32 || || || || || || || || 262.5 ||= ||
| |
| || || || || || 9\41 || || || || || || || 263.415 ||= ||
| |
| || || || || || || 11\50 || || || || || || 264 ||= ||
| |
| || || || || || || || 13\59 || || || || || 264.407 ||= ||
| |
| || || || || || || || || 15\68 || || || || 264.706 ||= ||
| |
| || || || || || || || || || 17\77 || || || 264.935 ||= ||
| |
| || || || || || || || || || || 19\86 || || 265.116 ||= ||
| |
| || || || || || || || || || || || 21\95 || 265.263 ||= ||
| |
| || 2\9 || || || || || || || || || || || 266.667 ||= ||</pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>5L 4s</title></head><body>The familiar harmonic entropy minimum with this MOS pattern is <a class="wiki_link" href="/meantone%20family#Godzilla">godzilla</a>, in which a generator is <a class="wiki_link" href="/8_7">8/7</a> or <a class="wiki_link" href="/7_6">7/6</a> (tempered to be the same interval, or even 37/32 if you like) so two of them make a <a class="wiki_link" href="/4_3">4/3</a>. However, in addition to godzilla (tempering out 81/80) and the 2.3.7 temperament <a class="wiki_link" href="/Chromatic%20pairs#semaphore">semaphore</a>, there is also a weird scale called &quot;<a class="wiki_link" href="/pseudo-semaphore">pseudo-semaphore</a>&quot;, in which two different flavors of <a class="wiki_link" href="/3_2">3/2</a> exist in the same scale: an octave minus two generators makes a sharp 3/2, and two octaves minus seven generators makes a flat 3/2.<br />
| |
|
| |
|
| | == Names == |
| | The [[TAMNAMS]] convention, used by this article, uses '''semiquartal''' (derived from 'half a fourth') for the 5L 4s pattern. Another attested name is '''hemifourths'''. |
|
| |
|
| <table class="wiki_table">
| | == Scale properties == |
| <tr>
| | {{TAMNAMS use}} |
| <th colspan="11">Generator<br />
| |
| </th>
| |
| <th>Cents<br />
| |
| </th>
| |
| <th>Comments<br />
| |
| </th>
| |
| </tr>
| |
| <tr>
| |
| <td>1\5<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>240<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>12\59<br />
| |
| </td>
| |
| <td>244.068<br />
| |
| </td>
| |
| <td style="text-align: center;">Pseudo-semaphore is around here<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>11\54<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>244.444<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>10\49<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>244.898<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>9\44<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>245.455<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>8\39<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>246.154<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7\34<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>247.059<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>6\29<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>248.276<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>11\53<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>249.057<br />
| |
| </td>
| |
| <td style="text-align: center;">Semaphore is around here<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5\24<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>250<br />
| |
| </td>
| |
| <td style="text-align: center;">L/s = 4<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>9\43<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>251.163<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>252.540<br />
| |
| </td>
| |
| <td style="text-align: center;"><span style="display: block; text-align: center;">L/s = 3*2^(1/75)</span><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>4\19<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>252.632<br />
| |
| </td>
| |
| <td style="text-align: center;">Godzilla is around here<br />
| |
| L/s = 3<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>252.724<br />
| |
| </td>
| |
| <td style="text-align: center;"><span style="display: block; text-align: center;">L/s = 3/2^(1/75)</span><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>11\52<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>253.813<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7\33<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>254.5455<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>10\47<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>255.319<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>13\61<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>255.734<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>16\75<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>256.000<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td>3\14<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>257.143<br />
| |
| </td>
| |
| <td style="text-align: center;">Boundary of propriety (generators<br />
| |
| larger than this are proper)<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>11\51<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>258.8235<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>8\37<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>259.459<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>21\97<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>259.794<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>55\254<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>259.843<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>144\665<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>259.850<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>233\1076<br />
| |
| </td>
| |
| <td>259.851<br />
| |
| </td>
| |
| <td style="text-align: center;">Golden <a class="wiki_link" href="/superpelog">superpelog</a><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>89\411<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>259.854<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>34\157<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>259.873<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>13\60<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>260<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>5\23<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>260.870<br />
| |
| </td>
| |
| <td style="text-align: center;">Optimum rank range (L/s=3/2) superpelog<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>7\32<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>262.5<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>9\41<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>263.415<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>11\50<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>264<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>13\59<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>264.407<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>15\68<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>264.706<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>17\77<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>264.935<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>19\86<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>265.116<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>21\95<br />
| |
| </td>
| |
| <td>265.263<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2\9<br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td><br />
| |
| </td>
| |
| <td>266.667<br />
| |
| </td>
| |
| <td style="text-align: center;"><br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| </body></html></pre></div> | | === Intervals === |
| | {{MOS intervals}} |
| | |
| | === Generator chain === |
| | {{MOS genchain}} |
| | |
| | === Modes === |
| | {{MOS mode degrees}} |
| | |
| | Note that the darkest two modes have no diatonic or [[armotonic]] fifth on the root in nonextreme semiquartal tunings. |
| | |
| | == Theory == |
| | The harmonic entropy minimum with this MOS pattern is [[godzilla]], in which the generator tempers [[8/7]] or [[7/6]] to be the same interval, and two generators is [[4/3]]. However, in addition to godzilla (tempering out 81/80) and the 2.3.7 temperament [[semaphore]], there is also a weird scale called "[[pseudo-semaphore]]", in which two different flavors of [[3/2]] exist in the same scale: an octave minus two generators makes a sharp 3/2, and two octaves minus seven generators makes a flat 3/2. The 2.3.13/5 [[barbados]] temperament is another possible interpretation. |
| | |
| | == Tuning ranges == |
| | === Hard-of-basic === |
| | Hard-of-basic tunings have [[semifourth]]s as generators, between 1\5 (240{{c}}) and 3\14 (257.14{{c}}), where two of them create a diatonic 4th. The generator could be viewed as a 15/13, and the resulting "inframinor" and "ultramajor" chords and triads could be viewed as approximating, respectively, 26:30:39 and 10:13:15 (see [[Arto and tendo theory]]). |
| | |
| | ==== Hypohard ==== |
| | The sizes of the generator, large step and small step of 5L 4s are as follows in various hypohard ({{nowrap|2/1 ≤ L/s ≤ 3/1}}) tunings. |
| | {| class="wikitable right-2 right-3 right-4 right-5 right-6" |
| | |- |
| | ! |
| | ! [[14edo]] ({{nowrap|L/s {{=}} 2/1}}) |
| | ! [[47edo]] ({{nowrap|L/s {{=}} 7/3}}) |
| | ! [[33edo]] ({{nowrap|L/s {{=}} 5/2}}) |
| | ! [[52edo]] ({{nowrap|L/s {{=}} 8/3}}) |
| | ! [[19edo]] ({{nowrap|L/s {{=}} 3/1}}) |
| | |- |
| | | Generator (g) |
| | | 3\14, 257.14 |
| | | 10\47, 255.32 |
| | | 7\33, 254.54 |
| | | 11\52, 253.85 |
| | | 4\19, 252.63 |
| | |- |
| | | L ({{nowrap|octave − 4g}}) |
| | | 171.43 |
| | | 178.72 |
| | | 181.81 |
| | | 184.62 |
| | | 189.47 |
| | |- |
| | | s ({{nowrap|5g − octave}}) |
| | | 85.71 |
| | | 76.60 |
| | | 72.73 |
| | | 69.23 |
| | | 63.16 |
| | |} |
| | |
| | This range is notable for having many simple tunings that are close to being "eigentunings" (tunings that tune a certain JI interval exactly): |
| | * 33edo semiquartal has close 7/5 (error −0.69{{c}}), 9/5 (error −0.59{{c}}) and 9/7 (error +1.28{{c}}), thus can be used for the close 5:7:9 in the two Locrian-like modes 1|7 and 0|8 |
| | * 52edo semiquartal has close 22/19 (error +0.04{{c}}) |
| | * 19edo semiquartal has close 6/5 (error +0.15{{c}}) and 28/27 (error +0.20{{c}}) |
| | However, for the more complex intervals such as 22/19 and 28/27, you might want to use the exact eigentuning for the full effect, unless you specifically need an edo for modulatory purposes. |
| | |
| | ==== Parahard and ultrahard ==== |
| | One important sub-range is given by stipulating that two semifourth generators must make a ''meantone'' fourth; i.e. that four fifths should approximate a [[5/4]] major third. This can be considered the [[19edo]] (4\19)-to-[[24edo]] (5\24) range, i.e. parahard semiquartal, which also contains [[43edo]] (9\43) and [[62edo]] (13\62). Parahard semiquartal can be given an RTT interpretation known as [[godzilla]]. |
| | |
| | The sizes of the generator, large step and small step of 5L 4s are as follows in various hypohard ({{nowrap|2/1 ≤ L/s ≤ 3/1}}) tunings. |
| | {| class="wikitable right-2 right-3 right-4 right-5" |
| | |- |
| | ! |
| | ! [[19edo]] |
| | ! [[24edo]] |
| | ! [[29edo]] |
| | |- |
| | | Generator (g) |
| | | 4\19, 252.63 |
| | | 5\24, 250.00 |
| | | 6\29, 248.28 |
| | |- |
| | | L ({{nowrap|octave − 4g}}) |
| | | 189.47 |
| | | 200.00 |
| | | 206.90 |
| | |- |
| | | s ({{nowrap|5g − octave}}) |
| | | 63.16 |
| | | 50.00 |
| | | 41.38 |
| | |} |
| | |
| | === Soft-of-basic === |
| | Soft-of-basic tunings have semifourths that are between 3\14 (257.14{{c}}) and 2\9 (266.67{{c}}), creating a "[[mavila]]" or "[[superdiatonic]]" 4th. [[23edo]]'s 5\23 (260.87{{c}}) is an example of this generator. |
| | |
| | The sizes of the generator, large step and small step of 5L 4s are as follows in various soft-of-basic tunings. |
| | {| class="wikitable right-2 right-3 right-4 right-5" |
| | |- |
| | ! |
| | ! [[23edo]] |
| | ! [[32edo]] |
| | ! [[37edo]] |
| | |- |
| | | Generator (g) |
| | | 5\23, 260.87 |
| | | 7\32, 262.50 |
| | | 8\37, 259.46 |
| | |- |
| | | L ({{nowrap|octave − 4g}}) |
| | | 156.52 |
| | | 150.00 |
| | | 162.16 |
| | |- |
| | | s ({{nowrap|5g − octave}}) |
| | | 104.35 |
| | | 112.50 |
| | | 97.30 |
| | |} |
| | |
| | === Tuning examples === |
| | An example in the Diasem Lydian mode LSLSLMLSLM with M and S equated. ([[:File:Diasem Lydian Example Score.pdf|score]]) |
| | |
| | [[File:Diasem Lydian Example 14edo.mp3]] [[14edo]], [[basic]] semiquartal |
| | |
| | [[File:Diasem Lydian Example 19edo.mp3]] [[19edo]], [[hard]] semiquartal |
| | |
| | [[File:Diasem Lydian Example 23edo.mp3]] [[23edo]], [[soft]] semiquartal |
| | |
| | [[File:Diasem Lydian Example 24edo.mp3]] [[24edo]], [[superhard]] semiquartal |
| | |
| | [[File:Diasem Lydian Example 33edo semiquartal.mp3]] [[33edo]], [[semihard]] semiquartal |
| | |
| | == Scale tree == |
| | {{MOS tuning spectrum |
| | | 5/4 = Septimin |
| | | 4/3 = Beep |
| | | 3/2 = Bug |
| | | 13/8 = Golden bug |
| | | 13/5 = Golden semaphore |
| | | 3/1 = Godzilla |
| | | 11/3 = Semaphore |
| | }} |
| | |
| | == Gallery == |
| | [[File:Hemifourths.png|thumb|An alternative diagram with branch depth = 5|alt=|none|507x507px]] |
| | |
| | A voice-leading sketch in [[24edo]] by [[Jacob Barton]]: |
| | |
| | [[File:qt_mode_chord_prog.mp3|qt mode chord prog]] |
| | |
| | == Music == |
| | * [https://www.soundclick.com/bands/songInfo.cfm?bandID=376205&songID=5327098 ''Entropy, the Grandfather of Wind''] (broken link. 2011-03-04) In [[14edo]]{{dead link}} |
| | |
| | ; [[Frédéric Gagné]] |
| | * ''Whalectric'' (2022) – [https://youtu.be/_E6qvbJWYY8 YouTube] | [https://musescore.com/fredg999/whalectric score] – In [[51edo]], 4|4 mode |
| | |
| | ; [[Inthar]] |
| | * [[:File:Dream EP 14edo Sketch.mp3|''Dream EP 14edo Sketch'']] (2021) – A short swing ditty in [[14edo]], in the 212121221 mode |
| | * [[:File:19edo Semaphore Fugue.mp3|''19edo Semaphore Fugue'']] (2021) – An unfinished fugue in [[19edo]], in the 212121221 mode |
| | |
| | ; [[Starshine]] |
| | * [https://soundcloud.com/starshine99/rins-ufo-ride ''Rin's UFO Ride''] (2020) – Semaphore[9] in [[19edo]] |
| | |
| | ; [[Sevish]] |
| | * [http://www.youtube.com/watch?v=Gcgawrr2xao ''Desert Island Rain''] – Semaphore[9] in [[313edo]] using 65\313 as the generator |
| | |
| | [[Category:Semiquartal| ]] <!-- Main article --> |