User:Ganaram inukshuk/Sandbox: Difference between revisions

Ganaram inukshuk (talk | contribs)
Ganaram inukshuk (talk | contribs)
No edit summary
 
(78 intermediate revisions by the same user not shown)
Line 1: Line 1:
This is a sandbox page for me (Ganaram) to test out a few things before deploying things. (Expect some mess.)
This is a sandbox page for me (Ganaram) to test out a few things before deploying things. (Expect some mess.)


== MOS intro ==
<pre>{{subst:User:Ganaram inukshuk/JI ratios|Int Limit=50|Prime Limit=7|Equave=2/1}}</pre>
First sentence:
* Single-period 2/1-equivalent: '''xL ys''' (TAMNAMS name ''tamnams-name''), also called ''other-name'', is an octave-repeating moment of symmetry scale that divides the octave (2/1) into x large and y small steps.
* Multi-period 2/1-equivalent: '''nxL nys''' (TAMNAMS name ''tamnams-name''), also called ''other-name'', is an octave-repeating moment of symmetry scale that divides the octave (2/1) into nx large steps and ny small steps, with n periods of c cents containing x large and y small steps each.
* Single-period 3/1-equivalent: '''3/1-equivalent xL ys''', also called other-name, is a twelfth-repeating moment of symmetry scale that divides the tritave or perfect 12th (3/1, c cents) into x large and y small steps.
* Multi-period 3/1-equivalent: '''3/1-equivalent nxL nys''', also called ''other-name'', is a twelfth-repeating moment of symmetry scale that divides the tritave or perfect 12th (3/1, nc cents) into nx large steps and ny small steps, with n periods of c cents containing x large and y small steps each.
* Single-period 3/2-equivalent: '''3/2-equivalent xL ys''', also called other-name, is a fifth-repeating moment of symmetry scale that divides the perfect 5th (3/2, c cents) into x large and y small steps.
* Multi-period 3/2-equivalent: '''3/2-equivalent nxL nys''', also called ''other-name'', is a fifth-repeating moment of symmetry scale that divides the perfect 5th (3/2, nc cents) into nx large steps and ny small steps, with n periods of c cents containing x large and y small steps each.
Second sentence:


* Generators that produce this scale range from g1 cents to g2 cents, or from d1 cents to d2 cents.
produces


Octave-equivalent relational info:
1/1, 50/49, 49/48, 36/35, 28/27, 25/24, 21/20, 16/15, 15/14, 27/25, 49/45, 35/32, 10/9, 28/25, 9/8, 8/7, 7/6, 32/27, 25/21, 6/5, 49/40, 5/4, 32/25, 9/7, 35/27, 21/16, 4/3, 27/20, 49/36, 48/35, 25/18, 7/5, 45/32, 10/7, 36/25, 35/24, 40/27, 3/2, 32/21, 49/32, 14/9, 25/16, 8/5, 45/28, 49/30, 5/3, 42/25, 27/16, 12/7, 7/4, 16/9, 25/14, 9/5, 49/27, 50/27, 28/15, 15/8, 40/21, 48/25, 27/14, 35/18, 49/25, 2/1


* Parents of mosses with 6-10 steps: xL ys is the parent scale of both child-soft and child-hard.
== MOS scalesig ==
* Children of mosses with 6-10 steps: xL ys expands parent-scale by adding step-count-difference tones.
{{Infobox|Left Link=Neutral 3rd|Title=Major 3rd|Right Link=Perfect 4th|Data 1='''Interval range information'''|Header 2=Approximate range|Data 2=180{{c}} - 240{{c}}|Header 3=Complement|Data 3=Minor 6th|Data 5='''JI examples'''|Data 6=5/4, 9/7, 81/64|Data 10='''Generated scales'''|Data 11=4L 3s, 4L 7s}}


Rothenprop:
== MOS tuning spectrum (AKA, scale tree) ==


* Single-period: Scales of this form are always proper because there is only one small step.
{{MOS tuning spectrum
* Multi-period: Scales of this form, where every period is the same, are proper because there is only one small step per period.
| Scale Signature = 1L 1s
| Int Limit = 13
}}


== MOS tunings==
{{MOS tuning spectrum
{{MOS tunings|Scale Signature=5L 2s|Step Ratios=}}{{MOS tunings|Scale Signature=10L 4s<4/1>|Step Ratios=3/2}}
| Scale Signature= 3L 4s
| Int Limit = 20
| 6/5 = [[Mohaha]] / ptolemy↑
| 5/4 = Mohaha / migration / [[mohajira]]
| 11/8 = Mohaha / mohamaq
| 7/5 = Mohaha / [[neutrominant]]
| 10/7 = [[Hemif]] / [[hemififths]]
| 11/7 = [[Suhajira]]
| 13/8 = Golden suhajira (354.8232¢)
| 5/3 = Suhajira / [[ringo]]
| 12/7 = [[Beatles]]
| 13/5 = Unnamed golden tuning (366.2564¢)
| 7/2 = [[Sephiroth]]
| 9/2 = [[Muggles]]
| 5/1 = [[Magic]]
| 6/1 = [[Würschmidt]]↓
}}


{{MOS tunings|Scale Signature=5L 3s<11/5>|Step Ratios=3/2; 5/3}}
{{MOS tuning spectrum
{{MOS tunings|Scale Signature=5L 3s<11/5>|Step Ratios=4/1}}
| Depth = 3
{{MOS tunings|Scale Signature=5L 3s<11/5>|Step Ratios=2/1; 3/1; 5/2}}
| Scale Signature= 3L 4s<3/2>
{{MOS tunings|Scale Signature=4L 3s}}
}}
{{MOS tunings|Scale Signature=8L 3s <3/1>|Step Ratios=Central Spectrum}}
{{MOS tunings|Scale Signature=9L 4s <7/2>|Step Ratios=Central Spectrum}}


==Mos intervals and mos interval HE==
== MOS intro==
{{MOS intervals|Scale Signature=5L 2s}}
First sentence:
{{MOS interval HE|Scale Signature=5L 2s}}
*Single-period 2/1-equivalent: '''xL ys''' (TAMNAMS name ''tamnams-name''), also called ''other-name'', is an octave-repeating moment of symmetry scale that divides the octave (2/1) into x large and y small steps.
*Multi-period 2/1-equivalent: '''nxL nys''' (TAMNAMS name ''tamnams-name''), also called ''other-name'', is an octave-repeating moment of symmetry scale that divides the octave (2/1) into nx large steps and ny small steps, with n periods of c cents containing x large and y small steps each.
*Single-period 3/1-equivalent: '''3/1-equivalent xL ys''', also called other-name, is a twelfth-repeating moment of symmetry scale that divides the tritave or perfect 12th (3/1, c cents) into x large and y small steps.
*Multi-period 3/1-equivalent: '''3/1-equivalent nxL nys''', also called ''other-name'', is a twelfth-repeating moment of symmetry scale that divides the tritave or perfect 12th (3/1, nc cents) into nx large steps and ny small steps, with n periods of c cents containing x large and y small steps each.
*Single-period 3/2-equivalent: '''3/2-equivalent xL ys''', also called other-name, is a fifth-repeating moment of symmetry scale that divides the perfect 5th (3/2, c cents) into x large and y small steps.
*Multi-period 3/2-equivalent: '''3/2-equivalent nxL nys''', also called ''other-name'', is a fifth-repeating moment of symmetry scale that divides the perfect 5th (3/2, nc cents) into nx large steps and ny small steps, with n periods of c cents containing x large and y small steps each.
Second sentence:


==Name==
*Generators that produce this scale range from g1 cents to g2 cents, or from d1 cents to d2 cents.


===6-note mosses===
Octave-equivalent relational info:
{{Template:TAMNAMS name|1L 5s}}


{{Template:TAMNAMS name|2L 4s}}
*Parents of mosses with 6-10 steps: xL ys is the parent scale of both child-soft and child-hard.
*Children of mosses with 6-10 steps: xL ys expands parent-scale by adding step-count-difference tones.


{{Template:TAMNAMS name|3L 3s}}
Rothenprop:


{{Template:TAMNAMS name|4L 2s}}
*Single-period: Scales of this form are always proper because there is only one small step.
 
*Multi-period: Scales of this form, where every period is the same, are proper because there is only one small step per period.
{{Template:TAMNAMS name|5L 1s}}
 
===7-note mosses===
{{Template:TAMNAMS name|1L 6s}}
 
{{Template:TAMNAMS name|2L 5s}}
 
{{Template:TAMNAMS name|3L 4s}}
 
{{Template:TAMNAMS name|4L 3s}}
 
{{Template:TAMNAMS name|5L 2s}}
 
{{Template:TAMNAMS name|6L 1s}}
 
===8-note mosses===
{{Template:TAMNAMS name|1L 7s}}
 
{{Template:TAMNAMS name|2L 6s}}
 
{{Template:TAMNAMS name|3L 5s}}
 
{{Template:TAMNAMS name|4L 4s}}
 
{{Template:TAMNAMS name|5L 3s}}
 
{{Template:TAMNAMS name|6L 2s}}
 
{{Template:TAMNAMS name|7L 1s}}
 
===9-note mosses===
{{Template:TAMNAMS name|1L 8s}}
 
{{Template:TAMNAMS name|2L 7s}}
 
{{Template:TAMNAMS name|3L 6s}}
 
{{Template:TAMNAMS name|4L 5s}}
 
{{Template:TAMNAMS name|5L 4s}}
 
{{Template:TAMNAMS name|6L 3s}}
 
{{Template:TAMNAMS name|7L 2s}}
 
{{Template:TAMNAMS name|8L 1s}}
 
===10-note mosses===
{{Template:TAMNAMS name|1L 9s}}
 
{{Template:TAMNAMS name|2L 8s}}
 
{{Template:TAMNAMS name|3L 7s}}
 
{{Template:TAMNAMS name|4L 6s}}
 
{{Template:TAMNAMS name|5L 5s}}
 
{{Template:TAMNAMS name|6L 4s}}
 
{{Template:TAMNAMS name|7L 3s}}
 
{{Template:TAMNAMS name|8L 2s}}
 
{{Template:TAMNAMS name|9L 1s}}
 
==Scale data==
{{MOS scale properties|Scale Signature=5L 5s}}
 
== 5L 2s modes and modmos modes==
{{MOS mode degrees|Scale Signature=5L 2s|MODMOS Step Pattern=cscscsscscss}}
{{MOS mode degrees|Scale Signature=5L 2s|MODMOS Step Pattern=LsLLsAs}}
{{MOS mode degrees|Scale Signature=5L 2s|MODMOS Step Pattern=LsLLLLs}}
{{MOS mode degrees|Scale Signature=5L 2s|MODMOS Step Pattern=LLsLsAs}}
{{MOS mode degrees|Scale Signature=5L 2s|MODMOS Step Pattern=AAdAdAd}}
{{MOS mode degrees|Scale Signature=5L 2s|MODMOS Step Pattern=LLLLLLd}}
{{MOS mode degrees|Scale Signature=5L 2s|MODMOS Step Pattern=LALdLAd}}
 
==4L 4s modes and modmos modes==
{{MOS mode degrees|Scale Signature=4L 4s}}
{{MOS mode degrees|Scale Signature=4L 4s|MODMOS Step Pattern=LLssLLss}}
{{MOS mode degrees|Scale Signature=4L 4s|MODMOS Step Pattern=LLssLsLs}}


==Sandbox for proposed templates==
==Sandbox for proposed templates==
Line 176: Line 108:
</div>
</div>


===MOS characteristics===
=== MOS characteristics===
NOTE: not suitable for displaying intervals or scale degrees. Repurpose for other content.<div style="  display: block;
NOTE: not suitable for displaying intervals or scale degrees. Repurpose for other content.<div style="  display: block;
   background-color: #dddddd;
   background-color: #dddddd;
Line 257: Line 189:
|Perfect 0-diastep
|Perfect 0-diastep
|0
|0
| 0.0¢
|0.0¢
|P0ms
|P0ms
|-
|-
Line 267: Line 199:
|-
|-
|Large 1-diastep
|Large 1-diastep
| L
|L
|171.4¢ to 240.0¢
|171.4¢ to 240.0¢
|L1ms
|L1ms
|-
|-
| rowspan="2" |2-diastep
| rowspan="2" | 2-diastep
|Small 2-diastep
|Small 2-diastep
|L + s
|L + s
| 240.0¢ to 342.9¢
|240.0¢ to 342.9¢
|s2ms
|s2ms
|-
|-
|Large 2-diastep
|Large 2-diastep
|2L
| 2L
|342.9¢ to 480.0¢
|342.9¢ to 480.0¢
|L2ms
|L2ms
Line 304: Line 236:
|L4ms
|L4ms
|-
|-
| rowspan="2" | 5-diastep
| rowspan="2" |5-diastep
|Small 5-diastep
|Small 5-diastep
| 3L + 2s
|3L + 2s
|720.0¢ to 857.1¢
|720.0¢ to 857.1¢
|s5ms
|s5ms
Line 317: Line 249:
| rowspan="2" |6-diastep
| rowspan="2" |6-diastep
|Small 6-diastep
|Small 6-diastep
| 4L + 2s
|4L + 2s
|960.0¢ to 1028.6¢
|960.0¢ to 1028.6¢
|s6ms
| s6ms
|-
|-
|Large 6-diastep
|Large 6-diastep
|5L + s
|5L + s
| 1028.6¢ to 1200.0¢
|1028.6¢ to 1200.0¢
|L6ms
|L6ms
|-
|-
Line 329: Line 261:
|Perfect 7-diastep
|Perfect 7-diastep
|5L + 2s
|5L + 2s
|1200.0¢
| 1200.0¢
|P7ms
|P7ms
|}
|}
Line 344: Line 276:
!Names
!Names
!Bri.
!Bri.
!Rot.
! Rot.
!0
!0
!1
!1
Line 366: Line 298:
|Lg.
|Lg.
|Lg.
|Lg.
|Perf.
| Perf.
|-
|-
|<nowiki>5L 2s 5|1</nowiki>
|<nowiki>5L 2s 5|1</nowiki>
Line 403: Line 335:
|Perf.
|Perf.
|Lg.
|Lg.
| Sm.
|Sm.
|Sm.
|Sm.
|Lg.
|Lg.
Line 537: Line 469:
!Size 1
!Size 1
!Size 2
!Size 2
!Size 3
! Size 3
!Size 4
!Size 4
!Size 5
!Size 5
Line 677: Line 609:


</pre>
</pre>
|X's are placeholders for note names.
| X's are placeholders for note names.
Naturals only, as there is not enough room for accidentals.
Naturals only, as there is not enough room for accidentals.


Line 697: Line 629:
|+3L 4s step sizes
|+3L 4s step sizes
! rowspan="2" |Interval
! rowspan="2" |Interval
! colspan="2" |Basic 3L 4s
! colspan="2" | Basic 3L 4s
(10edo, L:s = 2:1)
(10edo, L:s = 2:1)
! colspan="2" |Hard 3L 4s
! colspan="2" |Hard 3L 4s
Line 713: Line 645:
|-
|-
|Large step
|Large step
|2
| 2
|240¢
| 240¢
|3
|3
|276.9¢
| 276.9¢
|3
|3
|211.8¢
|211.8¢
Line 722: Line 654:
|-
|-
|Small step
|Small step
|1
| 1
|120¢
|120¢
|1
|1
Line 735: Line 667:
|4
|4
|369.2¢
|369.2¢
|5
| 5
|355.6¢
|355.6¢
|
|
Line 766: Line 698:
|}
|}


===Navbox MOS===
<div class="wikitable mw-collapsible" style="overflow:auto">
<div style="width: 100%; background-color:#eaecf0; padding-top:0.2em; padding-bottom:0.2em;"><center><b>[[MOS scale|Moment-of-symmetry scales]]</b></center></div>
<table class="mw-collapsible-content nowraplinks" style="width: 100%; margin:0em">
<tr style="display: table-row">
<td style="width:15%; text-align:right; background-color:#eaecf0;">6- to 10-note mosses</td>
<td style="width:85%; text-align:left;">1L 5s (selenite) {{!}} 2L 4s ( {{!}} 3L 3s {{!}} 4L 2 {{!}} 5L 1s</td>
</tr>
<tr>
<td style="width:15%; text-align:right; background-color:#eaecf0;">Monolarge family</td>
<td>1L 5s (selenite) {{!}} 1L 6s (onyx) {{!}} 1L 7s (spinel) {{!}} 1L 8s (agate) {{!}} 1L 9s (olivine)</td>
</tr>
<tr>
<td style="width:15%; text-align:right; background-color:#eaecf0;">Diatonic mos family</td>
<td style="width:85%; text-align:left; padding:0; margin:0;">
<table class="nowraplinks" style="width:100%; margin:0em">
<tr>
<td style="width:15%; text-align:right; background-color:#eaecf0;">Parent mos</td>
<td style="width:85%; text-align:left;">5L 2s (diatonic)</td>
</tr>
<tr>
<td style="width: 15%; text-align: right; background-color:#eaecf0;">Chromatic scales</td>
<td style="width: 85%; text-align: left;">7L 5s (soft diatonic chromatic) {{!}} 5L 7s (hard diatonic chromatic)</td>
</tr>
<tr>
<td style="width: 15%; text-align: right; background-color:#eaecf0;">Enharmonic scales</td>
<td style="width: 85%; text-align: left;">7L 12s (soft diatonic enharmonic) {{!}} 12L 7s (hyposoft diatonic enharmonic) {{!}} 12L 5s (hypohard diatonic enharmonic) {{!}} 5L 12s (hard diatonic enharmonic)</td>
</tr>
<tr>
<td style="width: 15%; text-align: right; background-color:#eaecf0;">Subchromatic scales</td>
<td style="width: 85%; text-align: left;">7L 19s and 19L 7s {{!}} 19L 12s and 12L 19s {{!}} 12L 17s and 17L 12s {{!}} 17L 5s and 5L 17s</td>
</tr>
</table></td>
</tr>
</table>
</div>


== Encoding scheme for module:mos==
== Encoding scheme for module:mos==
Line 829: Line 718:
!Intervals with 1 size
!Intervals with 1 size
!Nonperfectable intervals
!Nonperfectable intervals
! Bright gen
!Bright gen
!Dark gen
!Dark gen
!Period intervals
!Period intervals
Line 843: Line 732:
|1
|1
|Large plus 1 chroma
|Large plus 1 chroma
| Perfect plus 1 chroma
|Perfect plus 1 chroma
|Augmented
|Augmented
|Augmented
|Augmented
Line 870: Line 759:
|Diminished
|Diminished
|2× Diminished
|2× Diminished
| Diminished
|Diminished
|2× Diminished
|2× Diminished
|-
|-
Line 879: Line 768:
|3× Diminished
|3× Diminished
|2× Diminished
|2× Diminished
|3× Diminished
| 3× Diminished
|}
|}
Rationale:
Rationale:
Line 897: Line 786:
|-
|-
!Mossteps
!Mossteps
!Chroma
! Chroma
|-
|-
|0
|0
|0
|0
|0
| 0
|Perfect 0-diastep
|Perfect 0-diastep
|F
| F
|-
|-
|s
|s
|1
|1
| -1
| -1
|Minor 1-diastep
|Minor 1-diastep
|Gb
|Gb
|-
|-
|L
| L
|1
|1
|0
|0
Line 917: Line 806:
|G
|G
|-
|-
| L + s
|L + s
|2
|2
| -1
| -1
Line 932: Line 821:
|3
|3
| -1
| -1
|Perfect 3-diastep
| Perfect 3-diastep
|Bb
|Bb
|-
|-
|3L
|3L
|3
| 3
|0
|0
| Augmented 3-diastep
|Augmented 3-diastep
| B
|B
|-
|-
|2L + 2s
|2L + 2s
Line 953: Line 842:
|C
|C
|-
|-
|3L + 2s
| 3L + 2s
|5
|5
| -1
| -1
|Minor 5-diastep
|Minor 5-diastep
| Db
|Db
|-
|-
|4L + s
|4L + s
Line 974: Line 863:
|6
|6
|0
|0
|Major 6-diastep
| Major 6-diastep
|E
|E
|-
|-
Line 990: Line 879:
|-
|-
!Default
!Default
! Names
!Names
!Bri.
!Bri.
!Rot.
!Rot.
Line 999: Line 888:
!4
!4
!5
!5
!6
! 6
!7
!7
|-
|-
Line 1,051: Line 940:
|0
|0
|0
|0
| -1
| -1
| -1
| -1
|0
|0
Line 1,088: Line 977:
|<nowiki>5L 2s 0|6</nowiki>
|<nowiki>5L 2s 0|6</nowiki>
|Locrian
|Locrian
|7
| 7
|4
|4
|sLLsLLL
|sLLsLLL