User:Godtone/Augmented-chromatic equivalence continuum: Difference between revisions

Godtone (talk | contribs)
mNo edit summary
Godtone (talk | contribs)
m improve explanation of structure of 5/4 to 4/3 region in terms of n
 
(5 intermediate revisions by the same user not shown)
Line 15: Line 15:
* For ''n'' a nonnegative integer, half-integer or third-integer('''*'''), increasing ''n'' corresponds to increasingly sharp tunings of ~5/4. In the limit, as ''n'' goes to infinity, these all approach ~5/4 = 1\3, corresponding to [[augmented temperament]].
* For ''n'' a nonnegative integer, half-integer or third-integer('''*'''), increasing ''n'' corresponds to increasingly sharp tunings of ~5/4. In the limit, as ''n'' goes to infinity, these all approach ~5/4 = 1\3, corresponding to [[augmented temperament]].
:: ('''*''' It is conjectured by [[User:Godtone]] that for a given choice of denominator ''b'' in ''n'' = ''a''/''b'', a larger value of ''a'' always corresponds to a sharper tuning of ~5/4, where the sharpness in a pure-octaves tuning is always strictly flat of 1\3, so that (more trivially) taking the limit as ''a'' goes to infinity, ~5/4 = 1\3. The intuition for why we might expect this to be true is that in a pure-2's pure-3's tuning, we are always constraining ~128/125's size to be equal to the appropriate relation to ~25/24, where as 2 and 3 are fixed, the ~5 is the only free variable and depending only on ''n'', with that ''n'' essentially indirectly specifying the degree of tempering.)
:: ('''*''' It is conjectured by [[User:Godtone]] that for a given choice of denominator ''b'' in ''n'' = ''a''/''b'', a larger value of ''a'' always corresponds to a sharper tuning of ~5/4, where the sharpness in a pure-octaves tuning is always strictly flat of 1\3, so that (more trivially) taking the limit as ''a'' goes to infinity, ~5/4 = 1\3. The intuition for why we might expect this to be true is that in a pure-2's pure-3's tuning, we are always constraining ~128/125's size to be equal to the appropriate relation to ~25/24, where as 2 and 3 are fixed, the ~5 is the only free variable and depending only on ''n'', with that ''n'' essentially indirectly specifying the degree of tempering.)
* Also, if one is interested in what intervals are present between ~5/4 and ~4/3, it is simple to observe because (16/15)/(25/24) = 128/125, meaning for a nonnegative integer ''n'' there is exactly one more interval between ~5/4 and ~4/3 as between ~6/5 and ~5/4. As there is ''n'' - 1 intervals between ~6/5 and ~5/4 (because of splitting ~25/24 into ''n'' parts), that means that (for nonnegative integer ''n'') there is exactly ''n'' intervals between ~5/4 and ~4/3. More generally, for rational ''n'' = ''a''/''b'', we have ''a'' - 1 intervals between ~6/5 and ~5/4 and because there is another ~128/125 between ~5/4 and ~4/3 we have ''a''/''b'' + 1 = ''a''/''b'' + ''b''/''b'' for the translated coordinates so that we have ''a'' + ''b'' - 1 intervals between ~5/4 and ~4/3, corresponding to splitting ~16/15 into ''a'' + ''b'' equal parts.


Therefore, if ''n'' = ''a''/''b'' is a rational with ''b'' > 1 and ''b'' not a multiple of 3 (so that 3''a''/''b'' + 2 doesn't simplify), we reach prime 3 in a fractional number of generators of ~5/4, which means that the generator is not ~5/4 but rather ''b'' equal divisions of some octave-equivalent of ~5/4 or ~8/5, which as a result means that we reach prime 3 in ''b''(3''a''/''b'' + 2) = 3''a'' + 2''b'' generators, and also means that ~128/125 is split into ''b'' equal parts.
Therefore, if ''n'' = ''a''/''b'' is a rational with ''b'' > 1 and ''b'' not a multiple of 3 (so that 3''a''/''b'' + 2 doesn't simplify), we reach prime 3 in a fractional number of generators of ~5/4, which means that the generator is not ~5/4 but rather ''b'' equal divisions of some octave-equivalent of ~5/4 or ~8/5, which as a result means that we reach prime 3 in ''b''(3''a''/''b'' + 2) = 3''a'' + 2''b'' generators, and also means that ~128/125 is split into ''b'' equal parts.
Line 56: Line 57:
|-
|-
| 5/3
| 5/3
| [[Mutt]] ({{nowrap|84 & 87}})
| [[Mutt]] ({{nowrap|84 & 87}}) {{nowrap|(generator {{=}} ~[[Würschmidt's comma]])}}
| [[mutt comma]]
| [[476837158203125/474989023199232|mutt comma]]
| {{ monzo| -44 -3 21 }}
| {{ monzo| -44 -3 21 }}
|-
|-
Line 119: Line 120:
If we approximate the [[JIP]] with increasing accuracy, (that is, using ''n'' a rational that is an increasingly good approximation of 1.72125...) we find a sequence of increasingly accurate temperaments ''n'' = 2, 5/3, 7/4, 12/7:
If we approximate the [[JIP]] with increasing accuracy, (that is, using ''n'' a rational that is an increasingly good approximation of 1.72125...) we find a sequence of increasingly accurate temperaments ''n'' = 2, 5/3, 7/4, 12/7:
{| class="wikitable center-1"
{| class="wikitable center-1"
|+ style="font-size: 105%;" | Microtemperaments with fractional ''n''
|+ style="font-size: 105%;" | Temperaments closely approximating the just ''n''
|-
|-
! rowspan="2" | ''n''
! rowspan="2" | ''n''
Line 144: Line 145:
|-
|-
| 7/4
| 7/4
| {{nowrap|3 & 118}}
| [[squarschmidt]] ({{nowrap|3 & 118}})
| [[186773283746309210112/186264514923095703125|(42 digits)]]
| [[186773283746309210112/186264514923095703125|(42 digits)]]
| {{ monzo| 61 4 -29 }}
| {{ monzo| 61 4 -29 }}
Line 155: Line 156:
The simplest of these other than [[Würschmidt]] is [[mutt]] which has interesting properties discussed there. In regards to mutt, the fact that the denominator of ''n'' is a multiple of 3 tells us that it has a 1\3 period because it's contained in 3edo. The fact that the numerator is 5 tells us that 25/24 is split into 5 parts. From {{nowrap|(128/125)<sup>n</sup> {{=}} 25/24}} we can thus deduce that each part is thus equal to ~cbrt(128/125) = (128/125)<sup>1/3</sup>, so that ~5/4 is found at 1\3 minus a third of a diesis, so that ~125/64 is found at thrice that. This observation is more general, leading to consideration of temperaments of third-integer ''n''. (Note that [[ditonic]] at ''n'' = 3/2 is included as an alternative approximation of ''n'' = ~1.7... as it finds relevance in [[53edo]], whose 5-limit is exceptionally accurate for its note count, but also because its increased complexity relative to Würschmidt allows it to spread damage over more generators.)
The simplest of these other than [[Würschmidt]] is [[mutt]] which has interesting properties discussed there. In regards to mutt, the fact that the denominator of ''n'' is a multiple of 3 tells us that it has a 1\3 period because it's contained in 3edo. The fact that the numerator is 5 tells us that 25/24 is split into 5 parts. From {{nowrap|(128/125)<sup>n</sup> {{=}} 25/24}} we can thus deduce that each part is thus equal to ~cbrt(128/125) = (128/125)<sup>1/3</sup>, so that ~5/4 is found at 1\3 minus a third of a diesis, so that ~125/64 is found at thrice that. This observation is more general, leading to consideration of temperaments of third-integer ''n''. (Note that [[ditonic]] at ''n'' = 3/2 is included as an alternative approximation of ''n'' = ~1.7... as it finds relevance in [[53edo]], whose 5-limit is exceptionally accurate for its note count, but also because its increased complexity relative to Würschmidt allows it to spread damage over more generators.)


The 3 & 118 microtemperament is at ''n'' = 7/4. Its generator is approximately 397{{cent}} so that four generators reaches 5/2, corresponding to the denominator of 4. The number of generators of ~(5/2)<sup>1/4</sup> needed to find prime 3 is thus four times the result of plugging ''n'' = 7/4 into 3''n'' + 2 , which is 3(7/4) + 2 = 21/4 + 8/4 = 29/4, that is, 29 generators.
The 3 & 118 microtemperament [[squarschmidt]] is at ''n'' = 7/4. Its generator is approximately 397{{cent}} so that four generators reaches 5/2, corresponding to the denominator of 4. The number of generators of ~(5/2)<sup>1/4</sup> needed to find prime 3 is thus four times the result of plugging ''n'' = 7/4 into 3''n'' + 2 , which is 3(7/4) + 2 = 21/4 + 8/4 = 29/4, that is, 29 generators.


Finally, the 3 & 612 microtemperament at ''n'' = 12/7 is extremely complex, because to find prime 5, you need 7 times 3(12/7) + 2 = 36/7 + 14/7 = 50/7, that is, 50 generators, and is noted only because of being extremely close to the JIP and being supported by the 5-limit microtemperament [[612edo]]. The denominator of 7 indicates that 128/125 is split into 7 equal parts.
Finally, the 3 & 612 microtemperament at ''n'' = 12/7 is extremely complex, because to find prime 5, you need 7 times 3(12/7) + 2 = 36/7 + 14/7 = 50/7, that is, 50 generators, and is noted only because of being extremely close to the JIP and being supported by the 5-limit microtemperament [[612edo]]. The denominator (7) indicates that 128/125 is split into 7 equal parts, while the numerator indicates that each (128/125)<sup>1/7</sup> part represents (25/24)<sup>1/12</sup>, that is, a twelfth of 25/24.


[[Category:3edo]]
[[Category:3edo]]
[[Category:Equivalence continua]]
[[Category:Equivalence continua]]