Father–3 equivalence continuum/Godtone's approach: Difference between revisions
m correct syntax of join |
m improve explanation of structure of 5/4 to 4/3 region in terms of n |
||
Line 14: | Line 14: | ||
* For ''n'' a nonnegative integer, half-integer or third-integer('''*'''), increasing ''n'' corresponds to increasingly sharp tunings of ~5/4. In the limit, as ''n'' goes to infinity, these all approach ~5/4 = 1\3, corresponding to [[augmented temperament]]. | * For ''n'' a nonnegative integer, half-integer or third-integer('''*'''), increasing ''n'' corresponds to increasingly sharp tunings of ~5/4. In the limit, as ''n'' goes to infinity, these all approach ~5/4 = 1\3, corresponding to [[augmented temperament]]. | ||
:: ('''*''' It is conjectured by [[User:Godtone]] that for a given choice of denominator ''b'' in ''n'' = ''a''/''b'', a larger value of ''a'' always corresponds to a sharper tuning of ~5/4, where the sharpness in a pure-octaves tuning is always strictly flat of 1\3, so that (more trivially) taking the limit as ''a'' goes to infinity, ~5/4 = 1\3. The intuition for why we might expect this to be true is that in a pure-2's pure-3's tuning, we are always constraining ~128/125's size to be equal to the appropriate relation to ~25/24, where as 2 and 3 are fixed, the ~5 is the only free variable and depending only on ''n'', with that ''n'' essentially indirectly specifying the degree of tempering.) | :: ('''*''' It is conjectured by [[User:Godtone]] that for a given choice of denominator ''b'' in ''n'' = ''a''/''b'', a larger value of ''a'' always corresponds to a sharper tuning of ~5/4, where the sharpness in a pure-octaves tuning is always strictly flat of 1\3, so that (more trivially) taking the limit as ''a'' goes to infinity, ~5/4 = 1\3. The intuition for why we might expect this to be true is that in a pure-2's pure-3's tuning, we are always constraining ~128/125's size to be equal to the appropriate relation to ~25/24, where as 2 and 3 are fixed, the ~5 is the only free variable and depending only on ''n'', with that ''n'' essentially indirectly specifying the degree of tempering.) | ||
* Also, if one is interested in what intervals are present between ~5/4 and ~4/3, it is simple to observe because (16/15)/(25/24) = 128/125, meaning for a nonnegative integer ''n'' there is exactly one more interval between ~5/4 and ~4/3 as between ~6/5 and ~5/4, and | * Also, if one is interested in what intervals are present between ~5/4 and ~4/3, it is simple to observe because (16/15)/(25/24) = 128/125, meaning for a nonnegative integer ''n'' there is exactly one more interval between ~5/4 and ~4/3 as between ~6/5 and ~5/4. As there is ''n'' - 1 intervals between ~6/5 and ~5/4 (because of splitting ~25/24 into ''n'' parts), that means that (for nonnegative integer ''n'') there is exactly ''n'' intervals between ~5/4 and ~4/3. More generally, for rational ''n'' = ''a''/''b'', we have ''a'' - 1 intervals between ~6/5 and ~5/4 and because there is another ~128/125 between ~5/4 and ~4/3 we have ''a''/''b'' + 1 = ''a''/''b'' + ''b''/''b'' for the translated coordinates so that we have ''a'' + ''b'' - 1 intervals between ~5/4 and ~4/3, corresponding to splitting ~16/15 into ''a'' + ''b'' equal parts. | ||
Therefore, if ''n'' = ''a''/''b'' is a rational with ''b'' > 1 and ''b'' not a multiple of 3 (so that 3''a''/''b'' + 2 doesn't simplify), we reach prime 3 in a fractional number of generators of ~5/4, which means that the generator is not ~5/4 but rather ''b'' equal divisions of some octave-equivalent of ~5/4 or ~8/5, which as a result means that we reach prime 3 in ''b''(3''a''/''b'' + 2) = 3''a'' + 2''b'' generators, and also means that ~128/125 is split into ''b'' equal parts. | Therefore, if ''n'' = ''a''/''b'' is a rational with ''b'' > 1 and ''b'' not a multiple of 3 (so that 3''a''/''b'' + 2 doesn't simplify), we reach prime 3 in a fractional number of generators of ~5/4, which means that the generator is not ~5/4 but rather ''b'' equal divisions of some octave-equivalent of ~5/4 or ~8/5, which as a result means that we reach prime 3 in ''b''(3''a''/''b'' + 2) = 3''a'' + 2''b'' generators, and also means that ~128/125 is split into ''b'' equal parts. |