1L 9s: Difference between revisions

Inthar (talk | contribs)
No edit summary
ArrowHead294 (talk | contribs)
mNo edit summary
 
(18 intermediate revisions by 10 users not shown)
Line 1: Line 1:
This MOS, generated by any interval up to a diatonic semitone of 1/10edo (120 cents), is called the "Happy" decatonic scale. It is the simplest MOS which may be used as a complete version of Miracle temperamet, which is also its harmonic entropy minimum.
{{Infobox MOS
| Name =
| Periods = 1
| nLargeSteps = 1
| nSmallSteps = 9
| Equalized = 9
| Collapsed = 1
| Pattern = Lsssssssss
}}


{| class="wikitable"
{{MOS intro}}
|-
! colspan="5" | Generator


(octave fraction)
This scale is the simplest MOS which may be used as a complete version{{Clarify}} of [[Miracle]] temperament, which is also its [[harmonic entropy]] minimum.
! | Generator


(cents)
This scale is known as the '''Happy decatonic scale''' in [[Graham Breed's MOS naming scheme|Graham Breed's naming system]].
! | Comments
 
|-
== Scale properties ==
| | 0\1
{{TAMNAMS use}}
| |
 
| |
=== Intervals ===
| |
{{MOS intervals}}
| |
 
| | 0
=== Generator chain ===
| style="text-align:center;" |
{{MOS genchain}}
|-
 
| |
=== Modes ===
| |
{{MOS mode degrees}}
| |
 
| |
== Scale tree==
| | 1\14
{{MOS tuning spectrum
| | 85.714
| 9/7 = [[Miracle]]
| style="text-align:center;" |
| 8/5 = [[Misneb]]
|-
| 3/1 = [[Ripple]]
| |
| 13/5 = Golden ripple (103.288¢)
| |
| 10/3 = [[Passion]]
| |
| 6/1 = [[Nautilus]], [[nuke]], ↓[[valentine]]
| | 1\13
}}
| |
 
| | 92.308
[[Category:10-tone scales]]
| style="text-align:center;" | L/s = 4
|-
| |
| |
| |
| |
| | 2\25
| | 96
| style="text-align:center;" |
|-
| |
| |
| |
| |
| |
| | 1200/(9+pi)
| |
|-
| |
| |
| | 1\12
| |
| |
| | 100
| style="text-align:center;" | L/s = 3
|-
| |
| |
| |
| |
| |
| | 1200/(9+e)
| |
|-
| |
| |
| |
| |
| | 3\35
| | 102.857
| style="text-align:center;" |
|-
| |
| |
| |
| |
| |
| | 1200/(10+phi)
| |
|-
| |
| |
| |
| | 2\23
| |
| | 104.348
| style="text-align:center;" |
|-
| |
| |
| |
| |
| | 3\34
| | 105.882
| style="text-align:center;" |
|-
| |
| | 1\11
| |
| |
| |
| | 109.091
| style="text-align:center;" |
|-
| |
| |
| |
| |
| |
| | 1200/(9+sqrt(3))
| |
|-
| |
| |
| |
| |
| | 4\43
| | 111.628
| style="text-align:center;" |
|-
| |
| |
| |
| | 3\32
| |
| | 112.5
| style="text-align:center;" |
|-
| |
| |
| |
| |
| |
| | 1200/(9+phi)
| |
|-
| |
| |
| |
| |
| | 5\53
| | 113.2075
| style="text-align:center;" |
|-
| |
| |
| |
| |
| |
| | 1200/(9+pi/2)
| |
|-
| |
| |
| | 2\21
| |
| |
| | 114.286
| style="text-align:center;" |
|-
| |
| |
| |
| |
| | 5\52
| | 115.385
| style="text-align:center;" |
|-
| |
| |
| |
| | 3\31
| |
| | 116.129
| style="text-align:center;" |
|-
| |
| |
| |
| |
| | 4\41
| | 117.073
| style="text-align:center;" |
|-
| | 1\10
| |
| |
| |
| |
| | 120
| style="text-align:center;" |
|}