|
|
(18 intermediate revisions by 10 users not shown) |
Line 1: |
Line 1: |
| This MOS, generated by any interval up to a diatonic semitone of 1/10edo (120 cents), is called the "Happy" decatonic scale. It is the simplest MOS which may be used as a complete version of Miracle temperamet, which is also its harmonic entropy minimum.
| | {{Infobox MOS |
| | | Name = |
| | | Periods = 1 |
| | | nLargeSteps = 1 |
| | | nSmallSteps = 9 |
| | | Equalized = 9 |
| | | Collapsed = 1 |
| | | Pattern = Lsssssssss |
| | }} |
|
| |
|
| {| class="wikitable" | | {{MOS intro}} |
| |-
| |
| ! colspan="5" | Generator
| |
|
| |
|
| (octave fraction)
| | This scale is the simplest MOS which may be used as a complete version{{Clarify}} of [[Miracle]] temperament, which is also its [[harmonic entropy]] minimum. |
| ! | Generator
| |
|
| |
|
| (cents)
| | This scale is known as the '''Happy decatonic scale''' in [[Graham Breed's MOS naming scheme|Graham Breed's naming system]]. |
| ! | Comments
| | |
| |-
| | == Scale properties == |
| | | 0\1
| | {{TAMNAMS use}} |
| | |
| | |
| | |
| | === Intervals === |
| | |
| | {{MOS intervals}} |
| | |
| | |
| | | 0
| | === Generator chain === |
| | style="text-align:center;" |
| | {{MOS genchain}} |
| |-
| | |
| | |
| | === Modes === |
| | |
| | {{MOS mode degrees}} |
| | |
| | |
| | |
| | == Scale tree== |
| | | 1\14
| | {{MOS tuning spectrum |
| | | 85.714
| | | 9/7 = [[Miracle]] |
| | style="text-align:center;" |
| | | 8/5 = [[Misneb]] |
| |-
| | | 3/1 = [[Ripple]] |
| | |
| | | 13/5 = Golden ripple (103.288¢) |
| | |
| | | 10/3 = [[Passion]] |
| | |
| | | 6/1 = [[Nautilus]], [[nuke]], ↓[[valentine]] |
| | | 1\13
| | }} |
| | |
| | |
| | | 92.308
| | [[Category:10-tone scales]] |
| | style="text-align:center;" | L/s = 4
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 2\25
| |
| | | 96
| |
| | style="text-align:center;" |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 1200/(9+pi)
| |
| | |
| |
| |-
| |
| | |
| |
| | |
| |
| | | 1\12
| |
| | |
| |
| | |
| |
| | | 100
| |
| | style="text-align:center;" | L/s = 3
| |
| |-
| |
| | |
| |
| | | | |
| | |
| |
| | |
| |
| | |
| |
| | | 1200/(9+e)
| |
| | |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 3\35
| |
| | | 102.857
| |
| | style="text-align:center;" |
| |
| |-
| |
| | |
| |
| | |
| |
| | | | |
| | |
| |
| | |
| |
| | | 1200/(10+phi)
| |
| | |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | | 2\23
| |
| | |
| |
| | | 104.348
| |
| | style="text-align:center;" |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 3\34
| |
| | | 105.882
| |
| | style="text-align:center;" |
| |
| |-
| |
| | |
| |
| | | 1\11
| |
| | |
| |
| | |
| |
| | |
| |
| | | 109.091
| |
| | style="text-align:center;" |
| |
| |- | |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 1200/(9+sqrt(3))
| |
| | |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 4\43
| |
| | | 111.628
| |
| | style="text-align:center;" |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | | 3\32
| |
| | |
| |
| | | 112.5
| |
| | style="text-align:center;" |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 1200/(9+phi)
| |
| | | | |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 5\53
| |
| | | 113.2075
| |
| | style="text-align:center;" |
| |
| |- | |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 1200/(9+pi/2)
| |
| | |
| |
| |-
| |
| | |
| |
| | |
| |
| | | 2\21
| |
| | |
| |
| | |
| |
| | | 114.286
| |
| | style="text-align:center;" |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 5\52
| |
| | | 115.385
| |
| | style="text-align:center;" |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | | 3\31
| |
| | |
| |
| | | 116.129
| |
| | style="text-align:center;" |
| |
| |-
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 4\41
| |
| | | 117.073
| |
| | style="text-align:center;" |
| |
| |-
| |
| | | 1\10
| |
| | |
| |
| | |
| |
| | |
| |
| | |
| |
| | | 120
| |
| | style="text-align:center;" |
| |
| |}
| |